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ABSTRACT The supraspinatus tendon is the most frequently torn tendon in the rotator cuff. Rotator cuff
reconstruction is more likely to result in retear if the muscle has atrophy or fatty degeneration. Thus, atrophy
and fatty degeneration of the supraspinatus muscle are predictors of the postoperative course, and volume
analysis using three-dimensional segmentation of the supraspinatus muscle is necessary. The supraspinatus
muscle is attached to the scapula, making it possible to estimate the region of the muscle based on the
position of the scapula. In this paper, we propose a supraspinatus muscle segmentation method based on the
scapula position in torso computed tomography (CT) images. Our proposedmethod consists of supraspinatus
muscle localization using a scapula segmentation result and supraspinatus muscle segmentation based on
the localization result. U-Net is used for scapula and supraspinatus muscle segmentation. In this experiment,
we used torso CT images and pseudo-chest CT images which were generated from the scans of the same
patient. The mean Dice values of the segmentation results obtained by applying the proposed method to the
torso and pseudo-chest CT images were both 0.881. When localization was not used, the mean Dice values
of the segmentation results in the torso and pseudo-chest CT images were 0.000 and 0.850, respectively.
The experimental results demonstrate the effectiveness of bone-based localization in supraspinatus muscle
segmentation using U-Net.

INDEX TERMS Computed tomography, scapula, segmentation, supraspinatus muscle, U-Net.

I. INTRODUCTION
The supraspinatus muscle is one of the skeletal muscles
that make up the rotator cuff. The supraspinatus tendon is
the most frequently torn tendon in the rotator cuff [1], and
rotator cuff tears cause weakness, pain, and limited/reduced
mobility [2]. Patients with rotator cuff tears are treated
with reconstructive surgery, but if muscle atrophy or fatty
degeneration occurs prior to surgery, they are more likely
to retear after surgery [3]. Thus, muscle atrophy and fatty
degeneration are important factors in predicting the risk of
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retear after reconstructive surgery. Muscle atrophy and fatty
degeneration have been quantitatively assessed by measuring
transverse area and volume, and Hounsfield units in muscle
regions, respectively [4], [5]. Therefore, for automatic analy-
sis of supraspinatus muscle atrophy and fatty degeneration,
three-dimensional (3D) supraspinatus muscle segmentation
capable of volume measurement and region identification is
necessary.

Skeletal muscles are attached to two bones across a joint.
The regions on bones where skeletal muscles are attached are
termed the origin and insertion [6]. Since the origin and inser-
tion of each muscle are uniquely determined, the location of
the muscle can be estimated by the location of the bones to
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which the muscle is attached. In addition, the location of a
bone can be used to identify the position of the target region
in medical images. For example, the identification of the L3
slice and the segmentation of its muscles have been studied
previously [7].

Computational anatomy is focused on skeletal muscles
and their site-specific segmentation [8]. Research on site-
specific skeletal muscle segmentation utilizes torso com-
puted tomography (CT) images. The conventional method
of skeletal muscle segmentation comprises automatic recog-
nition of landmarks (LMs) corresponding to the origin and
insertion in the automatic bone segmentation results, rep-
resenting the position and shape of muscle fibers by lines
connecting the LMs, and using these components to generate
an overall shape model. This model-based method, which
uses a handcrafted feature, has been used for the segmen-
tation of nine skeletal muscles, including the supraspinatus
muscle [9], [10]. In addition, in the conventional method,
the skeletal muscles are segmented by three consecutive pro-
cesses: recognition of LMs, representation of muscle fiber,
and generation of a shape model. Therefore, this method
has two limitations: only skeletal muscles that can easily be
modeled are segmented, and the accuracy of each of the three
processes affects the overall accuracy of the segmentation
result [10]. Automatic segmentation of the skeletal muscles
involves machine learning, including deep learning, and thus
overcomes these limitations. Erector spinae muscle segmen-
tation using random forest and Bayesian U-Net has achieved
an accuracy of 93.0% and 93.4%, respectively [11], [12].

For supraspinatus muscle segmentation in CT images, the
model-basedmethod byKatafuchi et al., described earlier [9],
and the rotator cuff segmentation method using deep learning
by Taghizadeh et al. [13] have been proposed. The former
method [9] includes segmenting the supraspinatus muscle
in torso CT images by automatically recognizing the LMs
based on the scapula segmentation results, expressing the
position and shape of muscle fibers with lines connecting
the LMs, and generating a shape model. The mean Jaccard
index of the segmentation results obtained by this method
was 0.491. However, the segmentation accuracy depends on
the accuracy of the LMs recognition. On the other hand, the
latter method [13] uses a modified version of U-Net [14] for
segmentation of each of the four skeletal muscles that com-
prise the rotator cuff. The mean Dice value of the supraspina-
tus muscle segmentation results by this method was 0.91,
making this effective even though the evaluation metrics are
different. However, this method segments the muscle only
one cross-section perpendicular to the scapular axis and pass-
ing through the spinoglenoid notch; hence, the segmentation
result is two-dimensional (2D). Although the segmentation in
CT images has been studied, 3D segmentation, which is nec-
essary to accurately measure the volume of the supraspinatus
muscle, has not been achieved.

The purpose of this study was to propose the use of auto-
matic segmentation of the supraspinatus muscle based on
the localization of the muscle in torso CT images. To verify

the effectiveness of the proposed method, we used torso CT
images and pseudo-chest CT images, which were generated
from the same patient. The proposed method and a segmen-
tation method without localization were applied to the two
types of CT images, and the segmentation accuracies were
compared.

This paper is organized as follows. In Section II, the pro-
posed method is described. In Section III, image details,
experimental environment, and evaluation methods are
described. In Section IV, we show the experimental results.
Then, we discuss the results of the experiments in Section V
and conclude the paper in Section VI.

II. METHODS
In the proposedmethod, two-stage segmentation is performed
using two-stage U-Net for segmentation of the supraspina-
tus muscle in torso CT images. The two-step segmentation
method like the proposed method has been proposed in other
studies. For example, Liu et al. used a two-stage U-Net for
segmentation of the whole heart and its substructures [15].
The first stage U-Net segmented the whole heart, and the
second stage U-Net segmented the substructures using the
segmentation result of whole heart. As shown in this method,
the possibility of a method that first segments the entire target
organ and then divides it in detail has been suggested. On the
other hand, in this study, we focus on the anatomical rela-
tionship of muscles attached to bones, and propose a method
that localizes the muscle based on the segmentation of the
bone to which the muscle is attached in the first stage, and
performs muscle segmentation using the localization result
in the second stage. An overview of the proposed method
is shown in Fig. 1 and consists of two steps: supraspinatus
muscle localization (Stage 1) and supraspinatus muscle seg-
mentation (Stage 2). In Stage 1, the supraspinatus muscle is
localized based on the segmentation result of the scapula,
the bone to which the muscle is attached. Then, in Stage 2,
the supraspinatus muscle is segmented in the region includ-
ing the muscle using the localization results of Stage 1.
In these stages, we use U-Net [14] for the segmentation of the
scapula and supraspinatus muscle. By using U-Net, which is
a general-purpose network for medical image segmentation,
we can verify the effectiveness of the bone-based localiza-
tion in the proposed method. The details of this method are
described below.

A. SUPRASPINATUS MUSCLE LOCALIZATION
The supraspinatus muscle is a skeletal muscle of the shoul-
der girdle, originating from the supraspinatus fossa of the
scapula and inserting into the greater tubercle of the humerus.
In other words, this muscle is located on the upper part of
the scapula. Therefore, the area from the top slice of torso
CT images to the bottom slice of the scapula was defined
as the region around the supraspinatus muscle because it
anatomically contains the muscle. In this stage, the scapula
is automatically segmented in the torso CT images. Then, the
muscle is localized by cropping the region around the muscle
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FIGURE 1. Overview of the proposed method for automatic segmentation of the supraspinatus muscle via bone-based localization in torso CT
images.

FIGURE 2. Overview of the supraspinatus muscle localization stage in the proposed method.

using the scapula segmentation result. An overview of this
stage is shown in Fig. 2.

For scapula segmentation, we use U-Net, which is a net-
work consisting of Encoder and Decoder; in Encoder, the
process of applying 3 × 3 Convolution twice and Max Pool-
ing once is repeated four times. Then, 3 × 3 Convolution
is applied to the feature map twice repeatedly. In Decoder,
the process of combining the feature map with Up Convo-
lution and the corresponding feature map in Encoder, and
applying 3 × 3 Convolution twice is repeated four times.
Finally, 1× 1 Convolution and Sigmoid are applied to obtain
the segmentation result. Zero padding is applied before all
3× 3 Convolutions, while batch normalization and Rectified
Linear Unit (ReLU) are applied afterwards. U-Net utilized
all the 2D axial images in torso CT images as input, and
segmented the scapula region in the input images. Then,
the 3D segmentation result of the scapula was obtained by
stacking the 2D segmentation results. The training parameters
of this network were as follows: the number of epochs was
100, batch size was 16, optimization function was Adam [16],
the learning rate was 3 × 10−4, and the loss function was
a combination of binary cross-entropy (BCE) loss and Dice
loss. These loss functions were defined as follows:

lossBCE =−

∑N
i=1 [yilog

(
ŷi
)
+ (1− yi) log

(
1− ŷi

)
]

N
(1)

lossDice=−
2×

∑N
i=0 yiŷi + smooth∑N

i=0 yi +
∑N

i=0 ŷi + smooth
(2)

loss= 0.5× lossBCE + lossDice (3)

where N refers to the number of pixels, yi and ŷirefer to the
ground truth label and the predicted probability of the point i,
respectively, and smooth is a constant to avoid division by
zero. Data augmentation was applied in the training phase.
We used a shear transformation and rotation of random angles
from -π /8 to +π /8 and from −10◦ to +10◦, respectively,
a random scaling from −35% to +35%, a translation of
random distances with a maximum value of 25% of the
side image length, and horizontal flip. After processing with
U-Net, we extracted the two regions with the largest volume,
which we regarded as the result for the scapula segmentation
since the human body has two scapulae.

Next, the region around the supraspinatus muscle was
cropped in the torso CT images using the result for scapula
segmentation. The lengths of the vertical and horizontal axes
of the axial images remained unchanged as only the range in
the direction of the body axis was specified for cropping. The
cropped image was regarded as the output for this stage.

B. SUPRASPINATUS MUSCLE SEGMENTATION
The second stage is supraspinatus muscle segmentation.
In Stage 1, based on the anatomical fact that the supraspina-
tus muscle attaches to the scapula and humerus, the mus-
cle localization was performed by cropping the CT image
using the location information of the scapula. Then, in
Stage 2, supraspinatus muscle segmentation is performed in
the images localized in Stage 1. For segmentation of the
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TABLE 1. Evaluation Results (mean ± standard deviation).

supraspinatus muscle, U-Net, which has the same network
structure as U-Net in Stage 1, was used. The 2D axial images
from the cropped imagewere theU-Net input, and the 2D seg-
mentation results were the output. The 3D supraspinatusmus-
cle segmentation results were obtained from the 2D results.
The training parameters of U-Net and the data augmentation
method in this stage were the same as those in Stage 1. The
extraction of the two largest volumes was then applied to the
U-Net output.

III. EXPERIMENTS
A. IMAGE DETAILS AND EXPERIMENTAL ENVIRONMENT
In this study, we used 30 non-contrast torso CT images
obtained using the LightSpeed Ultra 16 (GE Healthcare,
Chicago, IL, USA) at Gifu University Hospital. This study
was approved by the ethical review committees of Gifu
University (28-120, June 6, 2020) and Aichi Prefectural
University (Jo2020-03, July 13, 2020). The image size was
512 × 512 × 802.1104 [voxel], and the spatial resolution
was 0.625 × 0.625 × 0.625 [mm]. Ground truth was created
by manual segmentation of the scapula and supraspinatus
muscle, as recommended by an anatomist.

The experiments were conducted on a computer with
4 Tesla V100 (32 GB) graphics processing units (GPU).
We used TensorFlow-GPU 1.10.0 [17] and Keras 2.2.2 [18]
as machine-learning libraries.

B. EVALUATION METHODS
We used the Dice value, Jaccard index, precision, and recall
to evaluate the similarity between the result for supraspinatus
muscle segmentation and the ground truth. Definitions of
these metrics are as follows:

Dice =
2× ∼ |Res ∩ GT |
|Res| + |GT |

(4)

Jaccard =
|Res ∩ GT |
|Res ∪ GT |

(5)

Precision =
|Res ∩ GT |
|Res|

(6)

Recall =
|Res ∩ GT |
|GT |

(7)

where Res refers to the segmentation result, GT refers to the
ground truth, and the operator || returns the number of voxels

contained in the region. Then, for the supraspinatus muscle
localization, the accuracy of slice estimation at the bottom of
the scapulawas evaluated usingMeanAbsolute Error (MAE).
MAE was defined as follows:

MAE = Abs(IdxRes − IdxGT ) (8)

where IdxRes and IdxGT refer to the index of the slice at
the bottom of the scapula in the segmentation result and the
ground truth, respectively, and function Abs returns the abso-
lute value. The segmentation accuracy of the supraspinatus
muscle was evaluated via 3-fold cross-validation using 20 of
the 30 images as training data and 10 images as test data.

The proposed method was compared with a without-
localization method. This without-localization method is a
method that applies only Stage 2 of the proposed method.
Therefore, all axial images of the torso CT images are input to
U-Net, and the result of supraspinatus muscle segmentation
is output. The training parameters and data augmentation
method are the same as those of the proposed method. Then,
we compare the segmentation results of the proposed method
and the without-localization method to verify the effect of
localization in the proposed method. Moreover, torso and
pseudo-chest CT images were used as input CT images. The
pseudo-chest CT images were generated by cropping the
range from the top slice of the images to the bottom slice
of the lung in the torso CT images. In addition, to com-
pare the accuracy of the proposed method with the conven-
tional method [13], which achieves 2D segmentation of the
supraspinatusmuscle, we compare the accuracywith the Dice
value in a 2D sagittal-oblique image. The sagittal-oblique
section for calculating the Dice value is the standardized
sagittal-oblique section [19] defined as the plane perpendicu-
lar to the scapular axis and passing through the spinoglenoid
notch, as in the conventional method. Sixty sagittal-oblique
images were obtained from the left and right sides of 30 torso
CT images, but two of them did not show the supraspinatus
muscle. Therefore, 58 sagittal-oblique images were used to
evaluate the accuracy.

IV. RESULTS
Table 1 presents the evaluation results of supraspina-
tus muscle segmentation by applying the with-localization
(proposed) method and the without-localization method to
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FIGURE 3. 3D-rendered images of the segmentation results. (a) Segmentation result obtained by applying the proposed method to the torso
computed tomography (CT) images. (b) Segmentation result obtained by applying the proposed method to the pseudo-chest CT images.
(c) Segmentation result obtained by applying the baseline method to the pseudo-chest CT images. The yellow area represents the overlapped area
between the segmentation result and the ground truth, the red area represents the over-extracted area, and the green area represents the
under-extracted area.

FIGURE 4. Axial images of the segmentation results. The yellow area represents the overlapped area between the segmentation result and the
ground truth, the red area represents the over-extracted area, and the green area represents the under-extracted area.

the torso and pseudo-chest CT images. The mean Dice value
of the segmentation results by the with-localization method
was 0.881 (standard deviation [SD]: 0.087), the mean Jac-
card index was 0.797 (SD: 0.114), the mean precision was
0.891 (SD: 0.064), and the mean recall was 0.884 (SD:
0.129) for the torso CT images. On the other hand, the
mean Dice value, Jaccard index, precision, and recall were
all 0.000 (SD: 0.000) for the without-localization method.
In the latter, the pixels in all cases were segmented as
the background. The segmentation results of both meth-
ods, applied to pseudo-chest CT images, are presented in
Table 1. The 3D-rendered images of the supraspinatus muscle
segmentation results are presented in Fig. 3, and the axial
images of the segmentation results are shown in Fig. 4. Both

segmentation results are of the same case. The Dice values
of the results shown in Fig. 3 and Fig. 4 after applying the
with-localization method to the torso and pseudo-chest CT
images were both 0.920. On the other hand, the Dice value
of the result after applying the without-localization method
to the pseudo-chest CT images was 0.793. In Fig. 3 and Fig. 4,
the overlapped area between the segmentation result and the
ground truth are marked in yellow, the over-extracted area in
red, and the under-extracted area in green. Fig. 3(a) and (b)
show some over-extracted regions in the segmentation results
obtained by applying the with-localization method to both
CT images. However, Fig. 3(c) shows large under-extracted
regions in the segmentation result obtained by applying the
without-localization method to the pseudo-chest CT images.
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Moreover, in the slices shown in Fig. 4(a), a large segmen-
tation error was not observed in any of the segmentation
results; however, in the slices shown in Fig. 4(b), there
was under-extraction in the segmentation result obtained by
applying the without-localization method to the pseudo-chest
CT images.

The MAE of the bottom slice of the scapula in the
supraspinatus muscle localization was 0.433 slices in the
torso CT images and 0.633 slices in the pseudo-chest CT
images. The error was 0 slice in 17 cases for the torso CT
images and 15 cases for the pseudo-chest CT images, and the
maximum error was 3 slices.

The Dice values of the proposed method and the con-
ventional method [13] in the 2D sagittal-oblique images are
shown in Table 2. The mean Dice value of the proposed
method is 0.863, while the mean Dice value of the conven-
tional method is 0.91. Fig. 5(a) shows the sagittal-oblique
image of the torso CT images, and Fig. 5(b) shows the
sagittal-oblique image of the segmentation result of the pro-
posed method. The Dice value of the segmentation result in
the 2D image shown in Fig. 5(b) is 0.973. The segmentation
accuracy of the proposed method was not as good as that
of the conventional method, although the comparison was
not made under the same conditions because the positions of
the arms in the CT images were different between the two
methods.

TABLE 2. Evaluation results in the sagittal-oblique image.

The mean Jaccard index of the 3D segmentation results
obtained by applying the proposed method to the torso
CT images was 0.797, but that obtained by applying the
model-based method was 0.491 [9]. Therefore, the with-
localization method outperformed the conventional method
of 3D supraspinatus muscle segmentation.

V. DISCUSSION
We propose a supraspinatus muscle segmentation method
that localizes the muscle based on the scapula position and
inputs the axial CT images from the top of the images to
the bottom of the scapula to U-Net for segmentation even
when the field of view of the CT images differ owing to
the localization of the muscle. Therefore, we consider that
the segmentation accuracies were similar, regardless of the
field of view of the input images. On the other hand, when
we applied the without-localization method, which inputs all
slices of the pseudo-chest CT images to U-Net, the mean
Dice value of the segmentation results was lower than that

FIGURE 5. Sagittal-oblique images of the original CT (a) and the
segmentation result (b). The yellow area represents the overlapped area
between the segmentation result and the ground truth, the red area
represents the over-extracted area, and the green area represents the
under-extracted area.

obtained when applying the with-localization method. Fur-
thermore, all pixels were segmented as the background in all
cases of the segmentation results in the without-localization
method (meanDice value: 0.000). Fig. 6 shows the loss values
for the training data during U-Net training for supraspina-
tus muscle segmentation. Fig. 6(a) shows the loss values
for the with-localization method, (b) shows the loss values
when the without-localization method was applied to the
torso CT images, and (c) shows the loss values when the
without-localization method was applied to the pseudo-chest
CT images. The loss value of the with-localization method
converges to a value close to the minimum value of −1.
Moreover, when the without-localization method was applied
to the pseudo-chest CT images, the loss value converged to a
value close to that of the with-localization method but higher.
On the other hand, when the without-localization method
was applied to the torso CT images, the loss value decreased
to −0.3, then increased, and finally converged to −0.2.
As described above, although the same parameters were used
in all experiments, there were differences in the changes of
loss values during training depending on the range of input
CT images. Table 3 shows the mean number of input axial
images of U-Net for supraspinatus muscle segmentation in
the with-localization andwithout-localizationmethod and the
axial images in which the supraspinatus muscle is included
for each case. In deep learning, when the number of pixels
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FIGURE 6. The loss value for training data during the training of U-Net for supraspinatus muscle segmentation. (a) The loss value for the
with-localization method. (b) The loss value when the without-localization method was applied to the torso CT images. (c) The loss value when the
without-localization method was applied to the pseudo-chest CT images.

TABLE 3. Mean number of input axial images.

in the target and background regions are unbalanced, the seg-
mentation results may be inaccurate [20]. Therefore, we con-
sidered that the with-localization method achieves higher
segmentation accuracy than the without method because the
number of axial images is the lowest in the input image of
U-Net.

In the experiment, the without-localization method seg-
mented all pixels as background in the supraspinatus muscle
segmentation using all axial images of the torso CT images
as input. On the other hand, the MAE of the proposed
method was 0.433 for the muscle localization by scapula
segmentation using all axial images of torso CT images as
input. These results show that although the range of the input
image was the same, there were cases where segmentation
was successful and cases where it failed depending on the
target region. The reason for this phenomenon is considered
to be the difference between the number of slices that include
the scapula and that include the supraspinatus muscle in the
torso CT images. This is the same cause of the difference in
segmentation accuracy when the without-localizationmethod
was applied to torso CT images and pseudo-chest CT images.
Since the upper end of the scapula is not included in the torso
CT images used in this study, the mean number of slices
including the scapula is 241.6, which is the same as that of
the cropped image in Table 3. Moreover, the mean number

of slices of the torso CT images is 953.9 slices. Therefore,
the ratio of the number of slices including the scapula to the
total number of slices in the torso CT images is 25.3%. This
value is higher than the 22.9% ratio of the number of slices
including the supraspinatus muscle to the total number of
slices in the input CT images for the muscle segmentation in
the pseudo-chest CT images, where successful segmentation
results were obtained. Thus, we consider that the scapula
segmentation using U-Net in the torso CT images was suc-
cessful. On the other hand, the ratio of the number of slices
including the supraspinatus muscle to the total number of
slices in the input CT images for the muscle segmentation
in the torso CT images that failed segmentation was as low
as 9.9%. This difference in the ratio of the number of slices
including the target region to the total number of slices in the
input images is considered to have caused the difference in
the segmentation results.

The mean Dice value in the sagittal-oblique images of
the supraspinatus muscle segmentation results by the pro-
posed method was 0.863. This value is lower than that
of results by the conventional method (0.91). Therefore,
when evaluating only the sagittal-oblique section, it is bet-
ter to perform segmentation using only that section as in
the conventional method, instead of obtaining a virtual
sagittal-oblique section from 3D segmentation results as in
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the proposed method. On the other hand, the evaluation of the
supraspinatus muscle as a 3D volume can only be achieved
by the proposed method. In addition, in the conventional
method, the sagittal-oblique image to be input to the mod-
ified U-Net is determined manually, but in the proposed
method, the segmentation of the supraspinatus muscle can
be achieved fully automatically from the input of the torso
CT image. Thus, the proposed method is the first to achieve
3D supraspinatusmuscle segmentation. Furthermore, the pro-
posedmethod achieves robust supraspinatus segmentation for
different imaging ranges by localization, while being fully
automatic.

There are several limitations of this study. First, there is
a need for further studies on the image-cropping method for
supraspinatus muscle localization. In the proposed method,
the CT images were cropped in the axial direction until the
bottom slice of the scapula. The muscle was then segmented
using the U-Net in the cropped CT image. However, since
the attachment site of the supraspinatus muscle to the scapula
(supraspinatus fossa) is located close to the upper edge of
the scapula, the range in which the muscle appears can
be narrowed much further than in the proposed method by
localizing the muscle based on its origin and insertion. The
recognition of origin and insertion has been addressed for
other skeletal muscles [21]. Therefore, the automatic seg-
mentation of the supraspinatus muscle based on its origin
and insertion remains a challenge. Second, this study did
not examine the effectiveness of bone-based localization in
the segmentation of other skeletal muscles. In particular, for
segmentation of those with a small cross-sectional area in the
axial plane, it may be more effective to combine cropping in
the axial direction, as in the proposed method, with cropping
in the sagittal and coronal directions in bone-based localiza-
tion. Therefore, it is necessary to select the image-cropping
method according to the position and shape of the target
skeletal muscle. Third, the accuracy of bone segmentation
in bone-based localization affects the accuracy of muscle
segmentation. In the proposed method, the CT images are
cropped to the edge of the bone using the bone segmentation
result, and then input to U-Net for muscle segmentation.
Thus, if the accuracy of the bone segmentation is low, it may
not be possible to crop the image to include the whole muscle.
In this study, the supraspinatus muscle, which is a muscle
located on the upper part of the scapula, was targeted, and the
crop range was from the top of the CT images to the bottom
of the scapula. Therefore, we consider that the segmentation
accuracy of the scapula does not affect the segmentation
accuracy of the supraspinatus muscle. However, if the pro-
posed method is applied to other muscles, the segmentation
accuracy of the bone may become important. For example,
if the infraspinatus muscle, which is located in the lower part
of the scapula, is to be segmented, a part of the muscle may be
out of the range from the top of the CT images to the bottom
of the scapula if the scapula segmentation accuracy is low.
Therefore, depending on the position of the target muscle in
relation to the bone, it is necessary to consider amore accurate

bone-based slice estimation method or an expansion of the
crop range.

VI. CONCLUSION
We proposed a supraspinatus muscle segmentation method
that uses bone-based localization in torso CT images. In this
method, the muscle was localized based on the segmenta-
tion result of the scapula, to which the muscle attaches, by
U-Net. We conclude that this method provides a higher accu-
racy for supraspinatus muscle segmentation than a method
performed without localization. The proposed method is
an extension of the 2D cross-sectional localization based
on bone location and skeletal muscle segmentation [7] to
3D localization and skeletal muscle segmentation. How-
ever, further studies on image cropping for supraspinatus
muscle localization, such as cropping based on origin and
insertion and in the sagittal and coronal directions, are
needed.
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