
Received October 25, 2021, accepted November 9, 2021, date of publication November 11, 2021,
date of current version November 22, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3127437

Multi-Branch Neural Architecture Search for
Lightweight Image Super-Resolution
JOON YOUNG AHN1, (Member, IEEE), AND NAM IK CHO 2, (Senior Member, IEEE)
1Samsung Electronics Company Ltd., Suwon, Gyeonggi-do 18448, South Korea
2Department of Electrical and Computer Engineering, Institute of NewMedia and Communications (INMC), Seoul National University, Seoul 08826, South Korea

Corresponding author: Nam Ik Cho (nicho@snu.ac.kr)

This work was supported in part by the Ministry of Science and ICT (MSIT), South Korea, through the Information Technology Research
Center (ITRC) Support Program, supervised by the Institute for Information and Communications Technology Planning and Evaluation
(IITP), under Grant IITP-2021-2016-0-00288; and in part by Samsung Electronics Company Ltd.

ABSTRACT Deep convolutional neural networks (CNNs) are widely used to improve the performance of
image restoration tasks, including single-image super-resolution (SISR). Generally, researchers are manually
designing more complex and deeper CNNs to further increase the given problems’ performance. Instead of
this hand-crafted CNN architecture design, neural architecture search (NAS) methods have been developed
to find an optimal architecture for a given task automatically. For example, NAS-based SR methods find
optimized network connections and operations by reinforcement learning (RL) or evolutionary algorithms
(EA). These methods enable finding an optimal system automatically, but most of them need a very long
search time. In this paper, we propose a new search method for the SISR that can significantly reduce the
overall design time by applying a weight-sharing scheme.We also employ amulti-branch structure to enlarge
the search space for capturing multi-scale features, resulting in better reconstruction on the textured region.
Experiments show that the proposed method finds an optimal SISR network about twenty times faster than
the existing methods, while showing comparable performance in terms of PSNR vs. parameters. Comparison
of visual quality validates that the obtained SISR network reconstructs texture areas better than the previous
methods because of the enlarged search space to find multi-scale features.

INDEX TERMS Single image super-resolution, neural architecture search, image restoration.

I. INTRODUCTION
Single image super-resolution (SISR) is a task that restores
a high-resolution (HR) image from a single low-resolution
(LR) observation. It is widely used as a preprocessing step
of various tasks such as medical image analysis [1], security
image processing [2], satellite image recognition [3], etc.
Most of the recent researches adopt learning-based methods
that use LR-HR image pairs for training [4]–[14], which gen-
erally show better performance than the classic interpolation-
based [15] or reconstruction-based [16] methods.

Most earlier learning-based SRmethods used single-branch
neural networks for their simplicity and straightforwardness.
However, when the single branch is deepened to increase
the performance, there can be a gradient vanishing problem,
and the resulting network needs too many parameters. Thus,
instead of using the single branch network, some methods
exploited multi-branch networks for extracting multi-scale

The associate editor coordinating the review of this manuscript and

approving it for publication was Peng Liu .

features from the LR input [8], [14], [17], [18], thereby
achieving better performances with fewer parameters. But
due to the increased complexity of the network structure,
it needs many trials and errors to find the optimal connec-
tion between the elements manually. Based on this, in this
paper, we employ multi-branch architecture and propose an
automated multi-branch SISR network design based on the
neural architecture search (NAS) scheme [19], unlike the
conventional manual design of single-branch or multi-branch
networks. We include the multi-branch networks to expand
the search space and propose a newNAS-based SISR network
design while existing search methods attempted to find the
optimal connection within the single-branch networks.

Neural architecture search (NAS) algorithm has been
developed for the purpose of reducing the effort put into
designing the neural architecture of certain tasks [19]–[27].
They focus on the image classification task and try to
find promising network automatically by adopting reinforce-
ment learning, evolutionary algorithm or gradient descent
method.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 153633

https://orcid.org/0000-0001-5297-4649
https://orcid.org/0000-0003-3292-8551

J. Y. Ahn, N. I. Cho: Multi-Branch Neural Architecture Search for Lightweight Image Super-Resolution

Recently, researchers have expanded the NAS to
other tasks such as image restoration (MoreMNAS [28],
FALSR [29], HNAS [30], Improved DARTS [31],
DLSR [32]), object detection [33], and other dense pre-
dictions such as segmentation, pose estimation and 3D
detection by encoding multi-scale image contexts in the
search space [34]. For the SISR, FALSR and MoreMNAS
used a reinforced evolution algorithm and solved the image
SR task as a multi-objective problem. However, the rein-
forced evolution method took a tremendous amount of
time to derive an optimal network. Additionally, FALSR
did not use a complete training scheme, but they mea-
sured the performance of the network approximately. DLSR
extended the differentiable NAS [25] and its improved ver-
sion MiLeNas [35] for the SISR and achieved state-of-the-
art performance while requiring about ten times less design
time than the FLASR based on the reinforced evolution
method.

In this paper, we adopt the weight-sharing scheme of
ENAS [21] as our baseline search algorithm because it
is known to provide faster design time than its predece-
sors. As in the original ENAS for the classification prob-
lems, we configure a controller and a child network in
the search process. The controller generates a sequence
for a child network, and a child network is constructed
by the generated controller sequence. REINFORCE algo-
rithm is used to train the controller network to generate
a better child network. For the SISR task, The reward
signal in REINFORCE is the PSNR between the gener-
ated child network’s output and the ground-truth. We share
the parameters of each child network during the search
phase. In addition, we propose a complexity-based penalty
to reduce the reward from the network that needs a huge
parameter. By applying the complexity-based penalty, the
controller tends to recommend powerful but lightweight
networks.

Image super-resolution is a kind of regression task that
generally requires a more precise and complex network than
a classification task. For this reason, we search for a new SR
architecture on a multi-branch search space as stated above.
To be specific, we develop a Multi-Branch Neural Architec-
ture Search (MBNAS) algorithm, which tries to find opti-
mal connections of multi-scale features. The MBNAS search
space consists of partially shared nodes (PSN) for multi-scale
block, local feature fusion layer, and global feature fusion
layer. The PSNs share their parameters with different net-
work branches to transmit information efficiently with fewer
parameters. For simplicity, we use only 3 × 3 convolution
and 3× 3 dilated convolutions [36] as basic building blocks,
and let the search algorithm find optimal connections. Still,
we obtain an efficient architecture as a result of the search
algorithm, which is validated by extensive experiments. The
experimental results show that our network obtained by the
MBNAS, named as MBNASNet, performs comparably to
human-crafted networks and the existing NAS-based SR
networks [28]–[30].

Our main contributions are summarized as follows:

1) New NAS-based SR: We propose a new NAS-based
SR network design method, named MBNAS, which
searches for networks with higher performance by
combining multi-scale information efficiently. The
resulting SR network is the MBNASNet.

2) Complexity-based penalty: We propose a complexity-
based penalty and add it to the reward signal of the
REINFORCE algorithm. This enables us to search for
an efficient network that has high performance with a
lightweight structure.

3) Multi-scale feature extraction: We construct the net-
work with a multi-branch structure, which has been
used in existing lightweight SR network design
[8], [14], [17], [18].

4) Partially shared node (PSN): We partially share the
parameters of branches to connect each other’s infor-
mation and construct a lightweight structure. The par-
tially shared structure efficiently reduces the searched
network’s parameter without performance degradation.

We presented a preliminary work of NAS-based image
super-resolution with a single-branch network in [37], called
DeCoNASNet. The major difference of this work from our
previous version is that we propose an expanded search space
for NAS to capture multi-scale information, which brings a
significant performance gain with reduced parameters. For
this, we modify the algorithm to include the multi-braches
into the search space. Also, we provide detailed analysis and
explanations of the search process and results, and exhibit
more experimental results, including the results on higher
rate SR.

The rest of this paper is organized as follows.
Section 2 summarizes related works on the single image
super-resolution and neural architecture search methods.
In section 3, We explain our proposed search method for
SISR. Section 4 includes the details about our implementation
settings and dataset configurations, followed by experiment
results. We discuss our main contributions and conduct abla-
tion experiments in section 5. Finally, We provide a summary
and concluding remarks in section 6.

II. RELATED WORK
A. SINGLE IMAGE SUPER-RESOLUTION
A number of methods have been proposed for learning the
mapping function from LR images to the appropriate HR
counterparts [4]–[14]. Dong et al. proposed SRCNN [4],
which is the first deep learning structure for the SISR.
It used three layers of convolutional neural networks (CNNs)
and outperformed non-learning-based conventional methods
by a large margin. FRCNN [5] and ESPCN [6] used spe-
cific structures to reduce the computational cost of deep
neural networks in the SISR networks. They proposed
deconvolution layers and sub-pixel convolution layers to
upsample LR features to an HR image. VDSR [7] used
residual learning and gradient clipping strategy to increase

153634 VOLUME 9, 2021

J. Y. Ahn, N. I. Cho: Multi-Branch Neural Architecture Search for Lightweight Image Super-Resolution

the depth and thus the performance. Lim et al. [8] introduced
residual blocks with extensive features (EDSR) and multi-
scale structure (MDSR) to improve the performance fur-
ther. MemNet [10], MSRN [14], and DenseSR [9] proposed
memory block, multi-scale residual block, and dense block,
respectively, for a better SR restoration. SelNet [38] improved
the performance by replacing the Relu operation with the
selection unit. Zhang et al. proposed residual dense block and
dense feature fusion algorithm in RDN [11] to extract abun-
dant information from the input image. RCAN [39] proposed
a channel attention scheme that improved the representational
ability of the neural network.

B. NEURAL ARCHITECTURE SEARCH
In designing a deep network, we should select a consider-
able number of network configurations such as connection,
operation type, the number of feature channels, depth, etc.
Researchers have designed their structures through a large
number of trials to achieve a competent performance. How-
ever, it is a tedious task and difficult to find an optimal system
for a given task. The NAS algorithms have been proposed to
alleviate this burden, especially in the case of image classifi-
cation researches [19]–[26].

As the first study of NAS, Zoph et al. [19] proposed a
reinforcement learning (RL) based algorithm. They config-
ured a controller network to generate a child network and
trained it by REINFORCE [40], which is a kind of policy
gradient algorithm. The performance of the child network
was used as a reward signal of the controller network, where
the child network was trained from scratch. Therefore, it took
a huge amount of time to get a reward signal from the child
network. To reduce the time to measure the performance,
PNAS by Liu et al. [20] used the sequential model-based
optimization (SMBO) with a surrogate model which predicts
its performance instantly. On the other hand, Pham et al. [21]
proposed ENAS that constructs a weight sharing child net-
work to reduce the reward calculation time. This method
configured a large graph and regarded each child network
as a sub-graph. The parameters of the child network were
shared in the search phase by storing their weights in the main
graph.

Evolutionary methods [22]–[24] are another trend of
the NAS algorithm. They pick a population of architec-
tures randomly at first and then encode these networks as
binary codes. Genetic modifications such as crossover or
mutations are applied to the sequence, suggesting a bet-
ter structure. Lu et al. [23] proposed another method that
takes advantage of search history by using a Bayesian
optimization algorithm. AmoebaNet [24] applies an aging
evolution method to NAS to discard the earliest trained
network.

DARTS [25], SGAS [41], NAO [26] and CSA-NAS [27]
proposed different approaches from RL and evolutionary
methods. Specifically, DARTS applies continuous relaxation
to the neural architecture’s connections for optimizing the
connections and parameters simultaneously. SGAS applies

a greedy operation selection method to the DARTS and
obtains the best architecture without retraining. NAO projects
the encoded sequence to the learnable embedding space of
structures and recommends the best architecture as a result.
CSA-NAS adopts a binary crow search algorithm to find
the optimal architecture. More recently, HR-NAS [34] was
proposed to exploit multiscale features by adopting a multi-
branch architecture. As a result, they could effectively learn
high-resolution representations and showed improved perfor-
mance in several dense prediction tasks, as well as in image
classification.

Regarding the search space design, neural architecture
search methods can be categorized into two groups: methods
dealing with (1) flat search space or (2) cell-based search
space. The methods with flat search space [19], [21]–[23]
aim to find the optimal setting for the number of channels
(width), number of layers (depth), types of operations (con-
volution or max pooling) for the whole structure, while cell-
based algorithms [20], [21], [23]–[26] try to find a structure
of the cell before stacking them to form the final architec-
ture. The cell-based search space design is inspired by the
split-transform-merge strategy used in Inception block [42],
hence it can approximate the optimal solution for a given
task.

Unlike the above algorithms, CSNAS [43], UnNAS [44],
and SSNAS [45] discard supervised settings which suffer
from the high cost of data labeling. CSNAS and SSNAS
adopt a self-supervised setting, and UnNAS applies unsu-
pervised learning to search for promising architectures with
unlabeled data. Recently, researchers are also trying to over-
come the reproduction challenge and fairly compare search
methods by proposing benchmarks for the NAS and provid-
ing some important principles for scientific research in the
community [46]–[48].

There have been many NAS methods as stated above,
among which we choose ENAS as our SR design baseline
for its fast design time and also for including the network
complexity in the design constraints. Regarding the design
time, DARTS [25], FBNet [49], and FBNetV2 [50] also
provide fast design time for practical use. But, we choose
ENAS as our SR design baseline because we can easily
include the complexity constraint into consideration within
the ENAS framework. Specifically, as the ENAS is based
on the REINFORCE, we modify the reward signal of the
REINFORCE to consider the network complexity as well as
the SR performance.

C. IMAGE SUPER-RESOLUTION WITH NEURAL
ARCHITECTURE SEARCH
Some researchers recently adopted NAS methods to
design image super-resolution CNNs [28]–[30], [32].
MoreMNAS [28] adopted multi-objective genetic algorithm
NSGA-II [51] for the model generation and proposed a
reinforced mutation method. FALSR [29] used a hybrid
controller instead of a reinforced controller and proposed an
elastic search space for macro and micro search. The search

VOLUME 9, 2021 153635

J. Y. Ahn, N. I. Cho: Multi-Branch Neural Architecture Search for Lightweight Image Super-Resolution

FIGURE 1. The overall structure of MBNASNet. It consists of a shallow feature extraction network (SFENet), a multi-branch network (MBNet), and an
upscaling network (UPNet). The result of each branch is combined and upsampled by the periodic shuffling layer. The MSB (multi-scale block) is a basic
building block, detailed in Fig. 2(a).

space complexity of both methods is 9.6× 1015. HNAS [30]
adopted a hierarchical search algorithm with reinforcement
learning to simultaneously find promising cell structure and
upsampling layer positions. They also considered the com-
putational cost (FLOPS) to meet the requirements about
resources constraint. More recently, DLSR [32] adopted
DARTS for SR network search, which is shown to require
less design time than the preceding design methods. They
also showed that SISR models could be searched on both the
cell-level and network-level by their method and reported the
state-of-the-art models.

Regarding the architecture and the search space thereof,
these previous NAS-based methods prepare basic build-
ing blocks, which consist of convolutional layers, ReLu,
etc., in cascade. Then, they let the NAS algorithm deter-
mine the number of layers and connections inside the
cells. Meanwhile, we prepare a sophisticated architec-
ture to have expanded search space, i.e., a structure with
more different functional elements to connect. Specifi-
cally, we prepare several branches of building blocks,
consisting of multi-rate dilated convolutions, ReLu, and
attention, and let the NAS algorithm find the connec-
tions among the various-scale convolutions. By expand-
ing search space through the multi-branch of dilated
convolutions, we can exploit multi-scale features for
better SR reconstruction than conventional single-branch
architecture.

III. METHOD
A. OVERVIEW OF THE PROPOSED MBNAS
Our MBNASNet (a child network) is shown in Fig. 1, whose
components (MSBs) are designed by a controller in Fig. 2,
according to the MBNAS algorithm of Fig. 3. The automated
design cycle in Fig. 3 illustrates that the controller is trained
to generate a potent network, and the child network is trained
to get the performance, which is used to calculate the reward
signal.

Fig. 1 shows the overview of MBNASNet, which consists
of a shallow feature extraction network (SFENet), an upscal-
ing network (UPNet), and a multi-branch network (MBNet).
TheMBNet is designed by the NAS, which consists of several
branches. The MSB (multi-scale block) in the figure is the
basic building block detailed in Fig. 2. We extract a shallow
feature by the SFENet that is fed to each branch. The partially
shared parameters in each branch extract the multi-scale fea-
tures with different receptive fields. Results from each branch
are combined and upsampled by pixelshuffle layers [6] to cre-
ate HR residual information. Finally, the residual information
is added to the upsampled LR input to make the final HR
result.

Fig. 2 shows the details of MSB and illustrates their
internal connections according to sequences from the con-
troller. In each of Fig. 2(a) and (b), the upper part shows
a branch of MBNASNet in Fig. 1, where three consecutive
MSBs are shown. The central part details the structure of

153636 VOLUME 9, 2021

J. Y. Ahn, N. I. Cho: Multi-Branch Neural Architecture Search for Lightweight Image Super-Resolution

FIGURE 2. The upper part of (a) shows details of our MSB, and the lower part is illustrating that a controller determines the connections inside the MSBs
of branch 1 according to the controller sequence (outputs of FC layers), with an example that there are two partially shared nodes (PSNs) (M = 2) and
two branches (B = 2). (b) shows the example for branch 2, where the elements inside the MSB are differently connected than the above case according
to the corresponding controller. Two branches share the parameters of the light purple box. The dashed arrows and colored arrows mean that these
connections are to be searched.

the d-th MSB, and the left and right are the (d − 1)-th and
(d + 1)-th MSBs. The lower part shows the controller that
outputs a sequence to determine the internal connections of

the MSB. Fig. 2(a) and (b) show different examples of the
output sequences from the controller and the corresponding
connections inside the MSBs.

VOLUME 9, 2021 153637

J. Y. Ahn, N. I. Cho: Multi-Branch Neural Architecture Search for Lightweight Image Super-Resolution

FIGURE 3. The overview of the search cycle and training. In the search phase, the controller and constructed child network are trained
alternatively. In the training phase, the searched final architecture is trained from scratch.

We use Long Short Term Memory (LSTM) [52] to cre-
ate the controller, where the parameters are updated by
REINFORCE algorithm. While conventional RL methods
calculate the reward signal of REINFORCE as the perfor-
mance of validation sets, we consider both performance and
network complexity. For this, we design a complexity-based
penalty and add it to the reward signal to find a more efficient
architecture. The details of the controller, MBNASNet, and
design procedure are explained in the rest of this Section.

B. CONTROLLER AND COMPLEXITY-BASED PENALTY
1) CONTROLLER CONFIGURATION
We use a two-layer LSTM as our controller as shown in the
lower part of Fig. 2. It generates a sequence for creating a
child network at the end of the fully connected layer (FC).
The output sequence Sc for a child network c is defined as

Sc = {s0, s1, . . . , sb, . . . , sB},

sb = {(sb)m,n}, 0 < m ≤ M , 0 ≤ n < N , (1)

in the case that the child network consists of B branches, M
PSNs in one multi-scale block (MSB), and each node has N
layers. Sc consist of B sequences, and each sb denotes the
sequence of the b-th branch structure. We need N sequences
to create the m-th PSN for one branch. As a result, our con-
troller consists ofM×N×B LSTM blocks, where each block
is followed by an FC layer. The FC layer hasK outputs, where
K is the candidate operations of our network. The example
sequence and the constructed block architecture are shown
in Fig. 2, which generate eight outputs for a two-branch
structure (B = 2) with two PSNs (M = 2) that have two
layers (N = 2).

In our search space, the total number of possible directed
acyclic graphs (DAGs) is |K |B×M×N . The set of all possible
neural architecture is enormously expanded by a factor of
|K |M×N when increasing the number of branches. The search
space is also expanded if we increase the number of PSNs or
their layers. Hence, to limit the number of possible architec-
tures to a manageable size, we choose B = 3, M = 2 and
N = 2 in our MBNASNet. Because we have three candidate
operations (|K | = 3), as will be addressed in Sec. III-D, the
possible set of the architecture is 5.3×105. Finally, to ensure
that the number of parameters is less than 2M, we construct
our MBNASNet with four multi-scale blocks (D = 4).

2) COMPLEXITY-BASED PENALTY
The REINFORCE algorithm uses a reward signal to train
the parameters of the controller. While ENAS uses only a
task performance as the reward signal, we modify the reward
signal to find a more powerful and lightweight architecture,
as stated in overview section. Specifically, we propose a
complexity-based penalty to penalize a structure with large
parameters, and define a reward signal R as

R = p(c;w)− λ× cb(c), (2)

where p(c;w) is the PSNR of model c andw is the parameters
of a child network. The complexity-based penalty, cb(c) is
defined as

cb(c) =
nc
nmax

, (3)

where nmax denotes the number of the model’s parameters,
which uses all candidates in the search space, and nc is the
number of parameters of the designed child network. To set

153638 VOLUME 9, 2021

J. Y. Ahn, N. I. Cho: Multi-Branch Neural Architecture Search for Lightweight Image Super-Resolution

a trade-off between the parameters and the performance,
we multiply λ to the complexity-based penalty.

C. MBNASNet
As shown in Fig. 1, we first extract a shallow feature F0 from
an input low-resolution image (ILR) by the SFENet (3 × 3
convolution layers). The F0 is then fed to the first MSB of
each branch. Formally, the F0 is expressed as

F0 = H3(ILR) (4)

where H3(·) denotes the 3× 3 convolution operation.
The MBNet is constructed to have B branches, where each

branch is a cascade of MSBs followed by their outputs’ con-
catenation and 1× 1 convolution to make a feature map. The
searchedMSBs in each branch have different receptive fields,
and thus each branch learns multi-scale characteristics for
image super-resolution. We multiply an independent scalar
weight to the outputs of each node and block to adjust the
gradient magnitude in back-propagation. A similar technique
was used in [14]. We name these weights as gradient flow
control weights and denote them as α, as illustrated in the
last part of the MBNet block in Fig. 1.
Formally, the output of the d-th MSB in the b-th branch,

Fb,d is

Fb,d = (αskip)b,d × Fb,d−1
+ (αres)b,d × H1(concat(Fb,d,1, . . . ,Fb,d,M)), (5)

where Fb,d,m denotes the output of the m-th PSN of the
d-th multi-scale block (MSB) in the b-th branch, and H1(·)
denotes the 1× 1 convolution operation for the local feature
fusion layer. Also, αskip and αres are the gradient flow control
weights for residual feature and skip connection, respectively.
Fb,d,m will be detailed in the following subsection, with Fig. 2
and Eq. 9.
Then, the output of the MBNet is a weighted sum of all the

branch outputs:

FMB =
B∑
b=1

(αgff)b × (Fgff)b (6)

where

(Fgff)b = H1(concat(Fb,1, . . . ,Fb,D)), (7)

and (αgff)b is a gradient flow control weights for global fea-
ture fusion layer. Also, (Fgff)b is the output of global feature
fusion layer of the b-th branch.

Finally, we obtain the reconstructed high-resolution image
IHR by combining the up-sampled low-resolution image ILR
and residual information in the UPNet FMB. Formally, the IHR
is computed as

IHR = Hps(ILR)+ Hps(FMB), (8)

whereHps(·) denotes 3×3 convolution and periodic shuffling
layer as in ESPCN [6]. We fix the structure of SFENet and
UPNet while searching the connection of MBNet.

D. MULTI-SCALE BLOCK WITH PARTIALLY SHARED NODES
We apply a cell structure for the MSB, which means that
all MSBs in the same branch have the same connection and
operation. Each MSB consists of M PSNs as shown in the
upper part of Fig. 2 (a) and (b). The dashed arrows and
colored arrows in Fig. 2 mean that these connections are to
be searched. The candidate operations of the PSN are

1) 3× 3 convolution,
2) 3× 3 dilated convolution with rate two,
3) 3× 3 dilated convolution with rate three.

Following the signal flow in Fig. 2, Fb,d,m in Eq. 5 is
calculated as

Fb,d,m = (αskip)b,d,m × Fb,d,m−1
+ (αres)b,d,m × (Hb)PSN ,m(Fb,d,m−1), (9)

where (Hb)PSN ,m(·) denotes the operation of the m-th PSN in
the b-th branch. The (Hb)PSN ,m(·) can be expressed as

(Hb)PSN (·) = CA(H(sb)m,2 (Relu(H(sb)m,1 (·)))), (10)

where H(sb)m,n(·) denotes the k-th operation among K candi-
dates, which is chosen by the configuration sequence (sb)m,n.
We construct the PSN with two operations and one Relu
activation as shown in Eq. 10.CA(·) denotes channel attention
layer of RCAN [39].

To reduce the number of network parameters and spread
the information through the branches, the parameters of PSNs
have commonweights if the configuration sequence of differ-
ent branches activates an identical position in their sequence.
For example, if two branches’ configuration sequences are
’001’ and ’011,’ the operation corresponding to the first and
the third digit share their weights. In Fig. 2, we emphasize
the shared positions in the controller sequence (FC outputs)
by big bold digits.

E. MBNAS
Like conventional RL-based NAS methods [19], [21], our
algorithm has θ and w, which represents the parameter of the
controller and the child network, respectively. In the search
phase, θ and w are trained alternately for each epoch. After
the search phase is finished, we sample the sequences by
the trained controller. Then, the best sequence among the
sampled ones is chosen and trained from scratch.

1) TRAINING THE CHILD NETWORK
We first train the parameters of a child network to calculate
the reward signal of the controller. The problem is formulated
as

min
w

Ec∼π (c;θ)[L(c;w)], (11)

where L(·) denotes the loss function for the task which is
the L1 loss in our setting. The controller’s policy π (c; θ)
is fixed when training the child network. The Adam opti-
mizer [53] is used to optimize w. We estimate the gradient

VOLUME 9, 2021 153639

J. Y. Ahn, N. I. Cho: Multi-Branch Neural Architecture Search for Lightweight Image Super-Resolution

of Ec∼π (c;θ)[L(c;w)] with the Monte Carlo estimate

OwEc∼π (c;θ)[L(c;w)] ≈
1
M

M∑
i=1

OwL(ci;w), (12)

where ci denotes a sampled child network by the controller’s
policy. We choose M = 1, which means that we sample just
one child network for each mini batch.

2) TRAINING THE CONTROLLER
In the controller training phase, w is fixed, and θ is trained
by REINFORCE [40] algorithm. We optimize θ to maximize
the expectation of reward signal, which can be expressed as

max
θ

EP(a1:T ;θ)[R], (13)

where a1:T is the configuration sequence for the child network
c. In the REINFORCE, the gradient of the expected reward is
approximated as

OθEP(a1:T ;θ)[R] =
T∑
t=1

[Oθ logP(at |at−1:1; θ)(R− b)] (14)

where b is the baseline which is used to reduce the variance.
The moving average of the reward signal is used for the
baseline in our algorithm. As explained with Eq. 2, we use
the PSNR of validation set and complexity-based penalty to
calculate reward signal. Adam [53] is used to optimize the
reward.

IV. DATASETS AND EXPERIMENTS
A. SETTINGS
1) DATASETS, DEGRADATION METHODS, AND METRICS
WechooseDIV2K [54] dataset for the training and validation.
The DIV2K dataset is widely used as a training set of various
image restoration tasks. It contains 1,000 images, consisted
of 800 for training, 100 for validation, and the other 100
images for test. The validation images are used as the data
for measuring reward signal of controller network.

We measure the performance on four different bench-
mark dataset; Set5 [55], Set14 [56], BSDS100 [57], and
Urban100 [58]. To compare the performances with others,
we measure the PSNR and SSIM [59] of the test image on
the Y channel of YCbCr color domain. We create the syn-
thetic low-resolution image by applying Matlab’s imresize
function [60].

2) IMPLEMENATATION DETAILS
We construct the controller by a two-stacked LSTM network
with 64 hidden states. We connect three fully connected
layers to the end of each LSTM block to get the configure
sequence for the child network. We use word embedding [61]
to make the input of the LSTM layer from the previous LSTM
block’s output.

We construct ourMBNASNet with three branches (B = 3),
four multi-branch blocks (D = 4), and two PSNs (M = 2)
which have three operations as the candidate operations.

TABLE 1. Mean and variance of searched networks from three controllers
which are trained from different random seeds.

The number of output feature maps for SFENet andMSNet is
unified to 32. The number of intermediate features in PSNs is
128, which is four times bigger than the number of the output
feature maps.

3) HYPER-PARAMETER SETTINGS
In the search phase, we alternatively train the controller and
child network for one epoch each. We initialize both the
controller parameter θ and the child network parameter w
by using the variance scaled initialization [62] with 0.02
scaling value. We train the controller and the child network
for 500 epochs. For one epoch, we apply 100 iterations for
the controller, and 1,000 iterations for the child network.
The learning rate of the controller is fixed to 3 × 10−4. The
learning rate of the child network initialized to 3 × 10−4

and decreased by half for every 100 epochs. We use 16 low-
resolution image patches of size 64 × 64 from DIV2K train
images as a mini-batch of the child network. We augment
the patches by randomly applying horizontal flip and 90◦,
180◦, 270◦ rotation. The λ in Eq. 2 is set to 2, and p(c;w) is
the validation PSNR of child network. We randomly extract
1,000 low-resolution image patches from DIV2K validation
images and compute PSNR to calculate the reward.

In the training phase, we sample 500 configuration
sequences from the trained controller network and choose the
architecture which has the best performance in the DIV2K
validation set as our MBNASNet. We train the selected net-
work for 1,000 epochs and finetune the trained network for
1,000 more epochs. The hyper-parameter settings are the
same as the search phase except for the learning rate. The
learning rate of the child network is initialized to 3 × 10−4

and decreased half by 200 epochs.

B. EXPERIMENTS ON SINGLE IMAGE SUPER-RESOLUTION
(SISR)
1) MBNAS SEARCH RESEULT
The proposed MBNASNet has four multi-scale blocks
(D = 4) and two PSNs (M = 2) with three branches (B = 3).
We sample 500 architectures and choose the best architecture
from them. For ×2 scale, the configuration sequence of each
branch is found to be

s1 = {0, 0, 1, 2},

s2 = {0, 0, 1, 2},

s3 = {2, 0, 1, 2}. (15)

We note that our searched structure has two same
blocks with different channel attention and one block with

153640 VOLUME 9, 2021

J. Y. Ahn, N. I. Cho: Multi-Branch Neural Architecture Search for Lightweight Image Super-Resolution

TABLE 2. PSNR and SSIM on benchmark datasets (Set5, Set14, B100, and Urban100) for ×2 and ×3 SR tasks. We emphasize the best and the second-best
performances with the red and blue colors, respectively. Methods with bold characters are NAS-based methods, and the ‘‘Design time’’ at the last column
indicates the times taken for the search process. All four indicated design times are calculated with the same GPU (NVIDIA Tesla V100). Other NAS-based
methods do not report more than ×3 SR results due to huge search times, whereas we could. *In the case of the HNAS, the complexity is an estimated
one because they do not explicitly reveal the number of parameters. Also, the + sign at the HNAS denotes that they used self-ensemble, which generally
gives higher PSNR than the baseline.

FIGURE 4. Qualitative result on the 4th image from the Urban100 dataset for ×2 SR task. We compare our method with nine conventional SR methods.
(a) ground truth. (b) bicubic downsampled image. (c) VDSR. (d) LapSRN. (e) MemNet. (f) CARN. (g) MoreMNAS. (h) FALSR. (i) DeCoNASNet. (j) Proposed.

a larger receptive field to capture multi-scale features
efficiently.

On the other hand, the searched configuration sequence for
×3 scale is

s1 = {1, 1, 0, 2},

s2 = {1, 1, 0, 2},

s3 = {1, 1, 2, 2}. (16)

The ×3 scale SR task generally needs a larger receptive
field than the ×2 to extract multi-scale features, and our
searched×3 network satisfies this property. It takes about 24
hours to train the controller and the child network by one
Tesla V100 GPU in the search phase, which is far less than
other NAS-based methods such as MoreMNAS [28] and
FALSR [29]. To show the robustness of our search algorithm,
we search three times from different random seeds. Table 1

VOLUME 9, 2021 153641

J. Y. Ahn, N. I. Cho: Multi-Branch Neural Architecture Search for Lightweight Image Super-Resolution

FIGURE 5. Qualitative result on the 6th image from the Urban100 dataset for ×2 SR task. We compare our method with nine conventional SR
methods. (a) ground truth. (b) bicubic downsampled image. (c) VDSR. (d) LapSRN. (e) MemNet. (f) CARN. (g) MoreMNAS. (h) FALSR. (i) DeCoNASNet.
(j) Proposed.

FIGURE 6. Qualitative result on the 30th image from the Urban100 dataset for ×2 SR task. We compare our method with nine conventional SR methods.
(a) ground truth. (b) bicubic downsampled image. (c) VDSR. (d) LapSRN. (e) MemNet. (f) CARN. (g) MoreMNAS. (h) FALSR. (i) DeCoNASNet. (j) Proposed.

FIGURE 7. Qualitative result on the 97th image from the Urban100 dataset for ×2 SR task. We compare our method with nine conventional SR methods.
(a) ground truth. (b) bicubic downsampled image. (c) VDSR. (d) LapSRN. (e) MemNet. (f) CARN. (g) MoreMNAS. (h) FALSR. (i) DeCoNASNet. (j) Proposed.

indicates the mean and variance of 500 searched networks
from three different controllers for×3 image super-resolution
of Set5.

2) IMAGE SUPER-RESOLUTION RESULTS
Bicubic image down-sampling is widely used as the image
degradation setting of super-resolution task. We measure

PSNR and SSIM on four public benchmark dataset to
compare our method with eleven state-of-the-art meth-
ods: SRCNN [4], VDSR [7], LapSRN [13], MemNet [10],
MSAN [17], SelNet [38], CARN [12], A2F [63], MoreM-
NAS [28], FALSR [29], HNAS [30], and DeCoNASNet [37].
Among these, MoreMNAS, FALSR, DeCoNASNet, HNAS,
and ours are NAS-based aproaches. HNAS uses large training

153642 VOLUME 9, 2021

J. Y. Ahn, N. I. Cho: Multi-Branch Neural Architecture Search for Lightweight Image Super-Resolution

FIGURE 8. The graphical result of conventional lightweight methods and
our MBNASNet on Set14 dataset. The Blue dots are conventional
lightweight methods, and the red star is our MBNASNet method.

patch (96 × 96) when training and applies self-ensemble to
get better performances.

Table 2 shows the comparison with several state-of-the-
art SISR networks, where boldfaced methods are NAS-based
ones as ours, and non-bold are conventional hand-crafted
designs. Since our NAS-based approach is based on an effi-
cient search algorithm, which is about twenty times faster
thanMoreMNAS and FALSR, we could conduct experiments
on x3 super-resolution tasks while other NAS-based methods
did not. As shown in Table 2,MBNASNet performs compara-
ble to hand-crafted state-of-the-art methods and outperforms
the NAS-based ones in many situations. Specifically, HNAS
shows good performance for Set5 dataset, but MBNASNet
performs better for complex datasets such as Urban100 and
B100 datasets because we extract multi-scale features suc-
cessfully. Compared to a state-of-the-art hand-craft design
A2F-M [60], MBNASNet shows comparable results in the
case of x2 SR, but slightly worse for x3. We believe the
A2F-M shows higher PSNR because they usedmore elements
and technics (such as attentive auxiliary feature block and
dense block connection) than our automatic design having
only channel attention and feature fusion in block output.
We believe we can bring possibly better results by employ-
ing more elements in our automated design, i.e., by further
expanding search space. However, this may also induce huge
design times so that we leave it as future work.

Since different initial conditions may lead to different
results, we perform the design four times with different initial
hyperparameters. But, there are just slight differences for all
the cases in Table 2, with PSNR variance under 10−4, vali-
dating the robustness of our method against different initial
conditions. Hence, we denote the best PSNR among the four
experiments, following the convention.

In Fig. 4 and Fig. 7, we display the qualitative result of
our method and conventional methods. As shown in the fig-
ures, MBNASNet successfully restores the structures of the
images. Specifically, our network recovers the gray vertical

FIGURE 9. The result of three experiments for the controller. The blue
dots are from the CBP, the reds are the Baseline, and the greens are
Random settings. The ‘‘Relative Complexity’’ is defined the same as cbp in
equation(3), meaning the cbp in the case of NAS design results. In the
case of random and baseline, since the ‘‘penalty’’ is not defined,
we denote it as ‘‘Relative Complexity.’’

TABLE 3. Performance comparison between controller settings.

lines and holes in each image while other methods do not.
In summary, we compare the overall ×2 performance of
lightweight models graphically in Fig. IV-B1.

V. DISCUSSION
In this section, we discuss the effect of the proposed method’s
contributions; complexity-based penalty, multi-branch struc-
ture, and partially shared parameters.

A. EFFECT OF THE COMPLEXITY-BASED PENALTY TO THE
PERFORMANCE OF CONTROLLER
To evaluate the controller’s performance and the effect of
complexity-based penalty in the search phase, we conduct
three experiments.The first experiment uses a non-trained
controller, which generates a random controller sequence
(denoted as Random). The controller trained with the PSNR
reward but without the complexity-based penalty is denoted
as Baseline, and the one including the complexity-based
penalty is denoted as CBP. We choose λ = 2 for the
complexity-based penalty.

We sample 100 structures for each controller setting and
measure the average and the best performance, as shown in
Table 3. Also, their distributions are illustrated in Fig. 9,
where blue dots are the results of the CBP with λ = 2,
red dots correspond to the Baseline, and the greens to the
Random. We can see that the Baseline setting finds better
architectures than the Random in terms of PSNR, sometimes

VOLUME 9, 2021 153643

J. Y. Ahn, N. I. Cho: Multi-Branch Neural Architecture Search for Lightweight Image Super-Resolution

TABLE 4. PSNR of MBNASNet with/without gradient flow control weights α on the public benchmark test data for ×2 SR tasks. We emphasize the
difference between two experiment by blue texts. We train each architecture for 1000epochs.

FIGURE 10. The PSNR on Set5 for three structures. The red line indicates
our MBNASNet structure, the green line is the multi-branch structure with
separate parameters, and the blue is the single branch structure.

with increased complexity. On the other hand, the CBP set-
ting successfully generates lightweight sequences that have
comparable PSNR to the Baseline.

B. EFFECT OF MULTI-BRANCH STRUCTURE AND PARTIAL
PARAMETER SHARING SCHEME
To compare and visualize the effect of multi-branch structure
and partial parameter sharing (PPS) scheme, we create three
networks; single-branch, multi-branch without PPS, multi-
branch with PPS. We set the parameters of three experiments
by ∼ 1, 000K to fairly compare the results.

We measure the PSNR of each structure on the Set5
dataset. Fig. 10 shows the results of three structures for 400
epochs.We can find that the multi-branch structure converges
faster than the single branch structure. Furthermore, with
the partial parameter sharing scheme, we can successfully
overcome the performance degradation phenomenon in the
multi-branch structure.

C. EFFECT OF GRADIENT FLOW CONTROL WEIGHTS AND
COMPLEXITY-BASED PENALTY COEFFICIENT
Gradient flow control weights allow MBNASNet to over-
come the gradient vanishing problem by adjusting the gra-
dient magnitude in the back-propagation process. We train
MBNASNet with/without gradient flow control weights α
and compare their performance in Table 4 and Fig. 11. The
results show that α helps the MBNASNet converge to better
point and achieve better performance.

To compare the effect of CBP weight λ, we train the con-
troller with different λ values (λ = 0.5, 1, 2, 4) and compare
their search results in Table 5. We can see that the mean CBP

FIGURE 11. The PSNR on Set5 of MBNASNet architecture with/without
gradient flow control weights α. The red line indicates our MBNASNet
structure with α, and the blue is MBNASNet without α.

TABLE 5. Mean PSNR and complexity-based penalty on different λ. The
PSNR is calculated by Set5 benchmark dataset.

value tends to decrease (a lighter network is found), and the
mean PSNR slightly decreases as the λ becomes larger. When
the λ becomes too big (λ = 4), the controller fails to find
a promising network in the search space. The experiments
validate that the λ efficiently controls the trade-off between
the performance and the number of parameters until λ = 2,
and hence we use λ = 2 in other experiments.

VI. CONCLUSION
We have proposed a new NAS-based SR network, named as
MBNASNet. We have attempted to improve the performance
of the NAS-based SR by adopting a multi-branch network
that can extract multi-scale features. In other words, we could
obtain a better SR model by expanding the search space.
We also regularized the reward signal of REINFORCE algo-
rithm with a complexity-based penalty to favor a lightweight
network. Besides, the partial parameter sharing scheme suc-
cessfully reduces the number of parameters and helps the
information transfer between each branch. It takes 24 hours
to find promising network structures, which is a lot faster
than the existing NAS-based design methods. The results
show that the proposed method performs comparably to the

153644 VOLUME 9, 2021

J. Y. Ahn, N. I. Cho: Multi-Branch Neural Architecture Search for Lightweight Image Super-Resolution

conventional hand-crafted structures and other NAS-based
networks. We will release our codes and more result images
at https://github.com/Junem360/MBNAS.

REFERENCES
[1] J. S. Isaac and R. Kulkarni, ‘‘Super resolution techniques for medical

image processing,’’ in Proc. Int. Conf. Technol. Sustain. Develop. (ICTSD),
Feb. 2015, pp. 1–6.

[2] W. W. W. Zou and P. C. Yuen, ‘‘Very low resolution face recognition prob-
lem,’’ IEEE Trans. Image Process., vol. 21, no. 1, pp. 327–340, Jan. 2011.

[3] Y. Luo, L. Zhou, S. Wang, and Z. Wang, ‘‘Video satellite imagery super
resolution via convolutional neural networks,’’ IEEE Geosci. Remote Sens.
Lett., vol. 14, no. 12, pp. 2398–2402, Dec. 2017.

[4] C. Dong, C. C. Loy, K. He, and X. Tang, ‘‘Learning a deep convolutional
network for image super-resolution,’’ in Proc. Eur. Conf. Comput. Vis.
Cham, Switzerland: Springer, 2014, pp. 184–199.

[5] C. Dong, C. C. Loy, and X. Tang, ‘‘Accelerating the super-resolution
convolutional neural network,’’ in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2016, pp. 391–407.

[6] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, ‘‘Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 1874–1883.

[7] J. Kim, J. K. Lee, and K. M. Lee, ‘‘Accurate image super-resolution using
very deep convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 1646–1654.

[8] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, ‘‘Enhanced deep residual
networks for single image super-resolution,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017, pp. 136–144.

[9] T. Tong, G. Li, X. Liu, and Q. Gao, ‘‘Image super-resolution using
dense skip connections,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 4799–4807.

[10] Y. Tai, J. Yang, X. Liu, andC.Xu, ‘‘MemNet: A persistentmemory network
for image restoration,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 4539–4547.

[11] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, ‘‘Residual dense net-
work for image super-resolution,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 2472–2481.

[12] N. Ahn, B. Kang, and K.-A. Sohn, ‘‘Fast, accurate, and lightweight super-
resolution with cascading residual network,’’ in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2018, pp. 252–268.

[13] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, ‘‘Deep Laplacian
pyramid networks for fast and accurate super-resolution,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 624–632.

[14] J. Li, F. Fang, K. Mei, and G. Zhang, ‘‘Multi-scale residual network for
image super-resolution,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 517–532.

[15] L. Zhang and X. Wu, ‘‘An edge-guided image interpolation algorithm via
directional filtering and data fusion,’’ IEEE Trans. Image Process., vol. 15,
no. 8, pp. 2226–2238, Aug. 2006.

[16] K. Zhang, X. Gao, D. Tao, and X. Li, ‘‘Single image super-resolution
with non-local means and steering kernel regression,’’ IEEE Trans. Image
Process., vol. 21, no. 11, pp. 4544–4556, Nov. 2012.

[17] J. W. Soh and N. I. Cho, ‘‘Lightweight single image super-resolution
with multi-scale spatial attention networks,’’ IEEE Access, vol. 8,
pp. 35383–35391, 2020.

[18] C. Wang, Z. Li, and J. Shi, ‘‘Lightweight image super-resolution with
adaptive weighted learning network,’’ 2019, arXiv:1904.02358.

[19] B. Zoph and Q. V. Le, ‘‘Neural architecture search with reinforcement
learning,’’ 2016, arXiv:1611.01578.

[20] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, ‘‘Progressive neural architecture
search,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 19–34.

[21] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, ‘‘Efficient neural
architecture search via parameter sharing,’’ 2018, arXiv:1802.03268.

[22] L. Xie and A. Yuille, ‘‘Genetic CNN,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 1379–1388.

[23] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman,
and W. Banzhaf, ‘‘NSGA-Net: Neural architecture search using multi-
objective genetic algorithm,’’ in Proc. Genetic Evol. Comput. Conf.,
Jul. 2019, pp. 419–427.

[24] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, ‘‘Regularized evolution
for image classifier architecture search,’’ in Proc. AAAI Conf. Artif. Intell.,
vol. 33, 2019, pp. 4780–4789.

[25] H. Liu, K. Simonyan, and Y. Yang, ‘‘DARTS: Differentiable architecture
search,’’ 2018, arXiv:1806.09055.

[26] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, ‘‘Neural architecture opti-
mization,’’ in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 7816–7827.

[27] M. Ahmad, M. Abdullah, H. Moon, S. J. Yoo, and D. Han, ‘‘Image
classification based on automatic neural architecture search using binary
crow search algorithm,’’ IEEE Access, vol. 8, pp. 189891–189912, 2020.

[28] X. Chu, B. Zhang, and R. Xu, ‘‘Multi-objective reinforced evolution in
mobile neural architecture search,’’ in Proc. Eur. Conf. Comput. Vis.Cham,
Switzerland: Springer, 2020, pp. 99–113.

[29] X. Chu, B. Zhang, H. Ma, R. Xu, and Q. Li, ‘‘Fast, accurate and
lightweight super-resolution with neural architecture search,’’ 2019,
arXiv:1901.07261.

[30] Y. Guo, Y. Luo, Z. He, J. Huang, and J. Chen, ‘‘Hierarchical neural archi-
tecture search for single image super-resolution,’’ IEEE Signal Process.
Lett., vol. 27, pp. 1255–1259, 2020.

[31] Y. Weng, Z. Chen, and T. Zhou, ‘‘Improved differentiable neural archi-
tecture search for single image super-resolution,’’ Peer Peer Netw. Appl.,
vol. 14, no. 3, pp. 1806–1815, May 2021.

[32] H. Huang, L. Shen, C. He, W. Dong, H. Huang, and G. Shi, ‘‘Lightweight
image super-resolution with hierarchical and differentiable neural archi-
tecture search,’’ 2021, arXiv:2105.03939.

[33] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and
L. Fei-Fei, ‘‘Auto-DeepLab: Hierarchical neural architecture search for
semantic image segmentation,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 82–92.

[34] M. Ding, X. Lian, L. Yang, P. Wang, X. Jin, Z. Lu, and P. Luo, ‘‘HR-NAS:
Searching efficient high-resolution neural architectures with lightweight
transformers,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 2982–2992.

[35] C. He, H. Ye, L. Shen, and T. Zhang, ‘‘MiLeNAS: Efficient neural archi-
tecture search via mixed-level reformulation,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 11993–12002.

[36] F. Yu and V. Koltun, ‘‘Multi-scale context aggregation by dilated convolu-
tions,’’ 2015, arXiv:1511.07122.

[37] J. Y. Ahn and N. I. Cho, ‘‘Neural architecture search for image super-
resolution using densely constructed search space: DeCoNAS,’’ in Proc.
25th Int. Conf. Pattern Recognit. (ICPR), Jan. 2021, pp. 4829–4836.

[38] J.-S. Choi and M. Kim, ‘‘A deep convolutional neural network with selec-
tion units for super-resolution,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jul. 2017, pp. 154–160.

[39] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, ‘‘Image super-
resolution using very deep residual channel attention networks,’’ in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 286–301.

[40] R. J. Williams, ‘‘Simple statistical gradient-following algorithms for
connectionist reinforcement learning,’’ Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, 1992.

[41] G. Li, G. Qian, I. C. Delgadillo, M. Müller, A. Thabet, and B. Ghanem,
‘‘SGAS: Sequential greedy architecture search,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 1620–1630.

[42] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[43] N. Nguyen and J. M. Chang, ‘‘Contrastive self-supervised neural architec-
ture search,’’ 2021, arXiv:2102.10557.

[44] C. Liu, P. Dollár, K. He, R. Girshick, A. Yuille, and S. Xie, ‘‘Are labels
necessary for neural architecture search?’’ in Proc. Eur. Conf. Comput. Vis.
Cham, Switzerland: Springer, 2020, pp. 798–813.

[45] S. Kaplan and R. Giryes, ‘‘Self-supervised neural architecture search,’’
2020, arXiv:2007.01500.

[46] X. Dong, L. Liu, K. Musial, and B. Gabrys, ‘‘NATS-bench: Bench-
marking NAS algorithms for architecture topology and size,’’ IEEE
Trans. Pattern Anal. Mach. Intell., early access, Jan. 26, 2021, doi:
10.1109/TPAMI.2021.3054824.

[47] M. Lindauer and F. Hutter, ‘‘Best practices for scientific research on neural
architecture search,’’ J.Mach. Learn. Res., vol. 21, no. 243, pp. 1–18, 2020.

[48] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter,
‘‘NAS-Bench-101: Towards reproducible neural architecture search,’’ in
Proc. Int. Conf. Mach. Learn., 2019, pp. 7105–7114.

VOLUME 9, 2021 153645

http://dx.doi.org/10.1109/TPAMI.2021.3054824

J. Y. Ahn, N. I. Cho: Multi-Branch Neural Architecture Search for Lightweight Image Super-Resolution

[49] B. Wu, K. Keutzer, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian,
P. Vajda, and Y. Jia, ‘‘FBNet: Hardware-aware efficient ConvNet design
via differentiable neural architecture search,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 10734–10742.

[50] A. Wan, X. Dai, P. Zhang, Z. He, Y. Tian, S. Xie, B. Wu, M. Yu,
T. Xu, K. Chen, P. Vajda, and J. E. Gonzalez, ‘‘FBNetV2: Differentiable
neural architecture search for spatial and channel dimensions,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 12965–12974.

[51] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[52] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[53] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA,
May 2015, pp. 1–15.

[54] E. Agustsson and R. Timofte, ‘‘NTIRE 2017 challenge on single image
super-resolution: Dataset and study,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. Workshops (CVPRW), Jul. 2017, pp. 114–125.

[55] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. Alberi-Morel, ‘‘Low-
complexity single-image super-resolution based on nonnegative neighbor
embedding,’’ in Proc. Brit. Mach. Vis. Conf., R. Bowden, J. Collomosse,
and K. Mikolajczyk, Eds. Surrey, BC, Canada: BMVA Press, Sep. 2012,
pp. 135.1–135.10, doi: 10.5244/C.26.135.

[56] R. Zeyde, M. Elad, and M. Protter, ‘‘On single image scale-up using
sparse-representations,’’ in Proc. Int. Conf. curves Surf. Berlin, Germany:
Springer, 2010, pp. 711–730.

[57] D. Martin, C. Fowlkes, D. Tal, and J. Malik, ‘‘A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,’’ in Proc. 8th IEEE Int.
Conf. Comput. Vis. (ICCV), vol. 2, Jul. 2001, pp. 416–423.

[58] J.-B. Huang, A. Singh, and N. Ahuja, ‘‘Single image super-resolution from
transformed self-exemplars,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 5197–5206.

[59] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[60] MATLAB. Version 9.8.0.1298242 (R2020a). Natick, MA, USA:
The MathWorks, 2020.

[61] H. Inan, K. Khosravi, and R. Socher, ‘‘Tying word vectors and word clas-
sifiers: A loss framework for language modeling,’’ in Proc. 4th Int. Conf.
Learn. Represent. (ICLR), San Juan, Puerto Rico, May 2016, pp. 1–13.

[62] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,’’ inProc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026–1034.

[63] X. Wang, Q. Wang, Y. Zhao, J. Yan, L. Fan, and L. Chen, ‘‘Lightweight
single-image super-resolution network with attentive auxiliary feature
learning,’’ in Proc. Asian Conf. Comput. Vis., 2020, pp. 1–17.

JOON YOUNG AHN (Member, IEEE) received
the B.S. and Ph.D. degrees in electrical and com-
puter engineering from Seoul National University,
Seoul, South Korea, in 2014 and 2021, respec-
tively. He is currently with Samsung Electronics.
His research interests include computer vision,
machine learning, image restoration, and neural
architecture search.

NAM IK CHO (Senior Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in control and
instrumentation engineering from Seoul National
University, Seoul, South Korea, in 1986, 1988, and
1992, respectively. From 1991 to 1993, he was a
ResearchAssociate with the Engineering Research
Center for Advanced Control and Instrumentation,
Seoul National University. From 1994 to 1998,
he was an Assistant Professor of electrical engi-
neering with the University of Seoul. In 1999,

he joined the Department of Electrical and Computer Engineering, Seoul
National University, where he is currently a Professor. His research interests
include image processing, adaptive filtering, digital filter design, and com-
puter vision.

153646 VOLUME 9, 2021

http://dx.doi.org/10.5244/C.26.135

