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ABSTRACT Multi-channel signal has more abundant and accurate state characteristic information than
single channel signal. How to separate fault characteristic information from the multi-channel signal is the
key of fault diagnosis. As two typical multi-channel signal decomposition methods, multivariate empirical
mode decomposition (MEMD) and multivariate variational mode decomposition (MVMD) are widely used
in multi-channel signal analysis. However, MEMD and MVMD use cyclic iteration to complete the analysis
of multi-channel signals, and it is difficult to overcome their inherent defects. In view of this, based on
nonlinear sparse mode decomposition (NSMD), this paper proposes a multivariate nonlinear sparse mode
decomposition (MNSMD) by constraining singular local linear operators to separate the natural oscillation
modes in multi-channel signal. By constraining singular local linear operators into signal decomposition,
MNSMD has obvious advantages in restraining mode aliasing and robustness. In addition, the local narrow-
band component is used as the basis function for iteration, and the component signal is obtained by
approaching the original signal. Through the simulation signal and gear fault signal analysis, the results
show that, compared with MEMD and MVMD methods, MNSMD method can effectively complete gear
fault diagnosis.

INDEX TERMS Multivariate nonlinear sparse mode decomposition, singular local linear operator, gear,
fault diagnosis.

I. INTRODUCTION
Gear is the most vulnerable part of rotating machinery and
equipment, and its state will affect the healthy operation of
the entire machinery [1]. Due to the complexity and diversity
of rotating machinery system, the vibration signals measured
on site inevitably contain a lot of noise, and the fault signals
are often submerged in the noisy signal. Therefore, it is
necessary to extract gear fault characteristic from the noisy
signal [2], [3].

The vibration signals generated in the gear transmission
process are usually non-stationary and nonlinear, time-
frequency analysis is widely used in gear vibration signal
analysis because it can provide local information in both
time domain and frequency domain [4], [5]. For example,
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Yang, et al. proposed an adaptive chirp mode decomposition
method, which can adaptively decompose a complex original
signal into several components, and it realizes the fault
diagnosis of circuit-breaker [6]. Cheng, et al. proposed
an adaptive weighted symplectic geometry decomposition
method, which is an effective method to reduce the noise
of early gear fault signal [7]. Xun et al. proposed a
median ensemble empirical mode decomposition (MEEMD)
method, and the median operator is used instead of the
average operator to reduce the additional mode splitting
problem [8]. Mojtaba et al. proposed a successive variational
mode decompositionmethod, which has lower computational
complexity and is more robust against the initialization
compared with VMD [9]. Zhao et al. proposed a modified
variational mode decomposition method based on envelope
nesting and multi-criteria evaluation, which can adaptively
decompose a signal into a series of quasi-orthogonal natural
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modes [10]. Unfortunately, although the above methods have
a good decomposition effect on single channel signal, it is
difficult to obtain fault information in the case of weak
fault signal or large noise [11]. With the development of
multi-sensor measurement technology, the evaluation of the
dynamic relationship within and between multi-channel data
series observed by one or more sensors has become an
effective data analysis method, which has been paid more and
more attention by researchers [12], [13].

Multivariate empirical mode decomposition (MEMD) is
a typical multi-channel signal processing method, which
can complete multi-channel fusion and separation of infor-
mation [14], [15]. The principle of MEMD is to separate
fast and slow multivariable oscillations, and the local mean
value of multiple signals is estimated directly by the uniform
projectionmethod in themulti-dimensional space. At present,
MEMDand its improved algorithms have beenwidely used in
image processing [16], biological signal processing [17], fault
detection [18] and other fields. For example, Suman et al.
proposed a fault classification method-based brain-computer
interface using phase space features in multivariate empirical
mode decomposition, which completes the classification of
non-motor cognitive task in EEG [19]. Adarsh et al. proposed
a scale dependent prediction of reference evapotranspiration
based on multi-variate empirical mode decomposition, which
has achieved a good prediction result [20]. However, MEMD
is sensitive to sampling and noise, which have important
influence on decomposition performance.

Recently, multivariate variational mode decomposi-
tion (MVMD) is proposed as a multi variable extended signal
processing method based on variational mode decomposition
(VMD) [21]. Under the constraint of the existence of joint
frequency components in all signal channels, a multi-signal
representation is defined. MVMD has the characteristics
of mode alignment and quasi-orthogonal, which is the
most promising development direction in multi-signal
decomposition. For example, Cao et.al proposed a multi-
channel signal denoising method based on MVMD [22],
which uses the subspace projection of multivariate variational
decomposition to complete the noise reduction of multi-
channel signal. Gavas et al. proposed a multi-variable
extension method based on VMD, which can remove
flicker-related eye artifacts without manual intervention
automatically. However, like VMD, MVMD also needs to
determine the second penalty parameters and the number of
decomposition modes in advance [23].

Aiming at the limitation of MEMD and MVMD methods
in multi-channel signal analysis, this paper proposes a mul-
tivariable nonlinear sparse mode decomposition (MNSMD)
based on nonlinear sparse mode decomposition (NSMD).
In MNSMD, by constraining singular local linear operators
into signal decomposition, MNSMD can adaptively decom-
pose a complex signal into several local narrowband compo-
nents with physical significance of instantaneous frequency,
and has obvious advantages in restraining mode aliasing
and robustness [24]. Furthermore, MNSMD is defined

by inputting instantaneous frequency information among
several channels, which makes MNSMD algorithm robust.
Then, MNSMD method is different from the method of
cyclic screening decomposition, and the intrinsic oscillation
modes contained in multiple input signals are separated
by constraining singular local linear operators. Meanwhile,
the local narrow-band component is used as the basis
function for iteration, and the component signal is obtained
by approaching the original signal, which can reduce the
complexity of the model and improve the running speed of
the algorithm. Through the analysis of simulation signals
and experimental signals, MNSMD algorithm can accurately
and effectively separate multi-modal coupled signals and has
good anti-noise capability.

MNSMD method, like MEMD and MVMD methods, can
decompose the complex multi-channel signal into the sum of
components adaptively. The main highlights of this paper are
as follows:

(1) The singular local linear operator is used in the signal
decomposition ofMNSMD, which can restrain mode aliasing
and enhance robustness.

(2) The component signal is obtained by approaching the
original signal in MNSMD, which can reduce the complexity
of the model and improve the running speed of the algorithm.

(3) Two experimental datasets, including the gear fault
data of gear comprehensive fault test bed and planetary
gearbox fault test bed, are applied to fully evaluate the
proposed MNSMD method. Experimental results show that
the proposed method can successfully achieve fault diagnosis
of different gear types.

The rest of this paper is organized as follows: In Section II,
the proposed MNSMD method is introduced, and simulation
signals are used to verify the decomposition ability of the
proposed method. In Section III, MNSMD method is applied
to gear experimental data. Finally, we draw conclusions and
discuss future work in Section IV.

II. MULTIVARIATE NONLINEAR SPARSE MODE
DECOMPOSITION
In this paper, the core idea of MNSMD is to separate the
low-frequency oscillation signals coupled with multi-modes
into multiple natural modes by constructing a variational
optimization problem. Under the constraints of the variational
model, the bandwidth corresponding to each mode is
iteratively updated.

A. NONLINEAR SPARSE MODE DECOMPOSITION
In NSMD method, the problem of signal decomposition
is transformed into the nonlinear constrained optimization
problem, a complex non-stationary signal is decomposed
into several sparse components adaptively. Meanwhile, each
sparse component signal as a basic signal is demodulated to
approximate the original component signal. The steps are as
follows:
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Suppose S is a single channel signal, and its expression is
as follows:

S =
k∑
i−1

Vi + Uk (1)

where, V is the component signal, U is the residual useless
signal and k is the number of components.

By introducing the local singular linear operator N into the
signal decomposition, N (V (t)) = 0 can be obtained, that is,
V (t) is mapped to the null space by the local linear operator
N , where N (V (t)) = U (t). Therefore, the expression can be
further expressed as:

U (t) = min[‖N (S − U )‖2 + λ ‖D(U )‖2] (2)

where, D is a diagonal matrix with U as the main diagonal
and λ is Lagrange multiplier.
Because N is usually a differential operator, it is difficult

to decompose the component signal effectively. Therefore,
by introducing the leakage factor, the expression can be
changed to

U (t) = min[‖N (V − U )‖2 + λ1(‖D(U )‖2 + γ ‖S − U‖2)

+λ2 ‖Dα(t)‖2] (3)

where D is the leakage factor and α(t) is the differential
operator constant.

Therefore, a number of sparse components (SCs) are
obtained by minimizing Eq. (3). Each component is demodu-
lated to obtain its instantaneous amplitude and frequency, and
then the complete time-frequency distribution of the original
signal is obtained.

B. THE PRINCIPLE OF MNSMD
MNSMD extends the traditional NSMD algorithm from
one-dimensional to multi-dimensional, which provides great
convenience for processing multivariable or multi-channel
data. The MNSMD method is different from the method of
cyclic screening decomposition, and the intrinsic oscillation
modes contained in multiple input signals are separated by
constraining singular local linear operators. Meanwhile, the
local narrow-band component is used as the basis function
for iteration, and the component signal is obtained by
approaching the original signal. Suppose a multichannel data
set S, the MNSMD algorithm transforms the k intrinsic mode
functions of multiple signals into a set of sparse component
signals s(t), and the signal can be expressed as

S(t) =

 s1(t)s2(t)
...
sp(t)

 =



k∑
i=1

v1,i + u1,k

k∑
i=1

v2,i + u2,k

...
k∑
i=1

vp,i + up,k


(4)

where, vp,i is the i-th component of the p channel and up,i is
the i-th residual useless signal of the p channel.
By using the linear singular linear operator to solve

equation Eq.(4), and Eq.(5) can be obtained.

T (s1, s2, · · · , sp) = [u1, u2, · · · , up] (5)

According to the basic idea of NSMD, the local narrow-
band component is used as the basis function for iteration,
so as to approximate the original signal to complete the signal
decomposition.

min
ui

{ p∑
i=1

‖T (si − ui)‖2 + λ ‖D(ui)‖2
}

(6)

where, D is a diagonal matrix with ui and λ is a Lagrange
coefficient. T (si−ui) indicates that si−ui is in the zero space
of operator T .
When the differential operator is used for calculation, it is

difficult to separate multiple modes at one time. The null
space pursuit (NSP) algorithm and leakage factor γ are used
to solve this problem, and Eq.(6) becomes

min
ui

p∑
i=1

‖T (si − ui)‖2 + λ1(‖ui‖2 + γ ‖si − ui‖2)

+λ2(‖D2Q‖2 + ‖P‖2) (7)

where T = D2 + PD1 + Q, D1 and D2 are first-order and
second-order differential operators respectively, and the value
of leakage factor γ determines the amount of information in
si − ui.
To facilitate the solution, Eq.(7) is transformed into

F =
p∑
i=1

‖T (si − ui)‖2 + λ1(‖ui‖2 + γ ‖si − ui‖2)

+λ2(‖D2Q‖2 + ‖P‖2) (8)

Let θ = [PT,QT] and M = [D20, 0E],

F =
p∑
i=1

‖T (si − ui)‖2 + λ1(‖ui‖2 + γ ‖si − ui‖2)

+λ2 ‖Mθ‖2 (9)

The partial derivative of θ and u for F is obtained. Let ∂F
∂θ

and ∂F
∂u be equal to zero, we can get Eq.(10){
θ̃i = −(ATA+ λ2MTM )−1ATD2(si − ui)
ũi = (T TT + (1+ γ )λ1E)−1(T TTsi + λ1γ si)

(10)

where A = [ApAq], Ap and Aq are diagonal matrices of P and
Q, respectively.

In Eq.(10), λ and γ are two important parameters, which
will be updated according to the literature [25].

λ

=
1

1+ γ̃

×
sT[(T T

s Ts + (1+ γ )λ1E)−1]Ts
sT[(T T

s Ts+(1+γ )λ1E)−1]T(T T
s Ts + (1+ γ )λ1E)−1s

(11)
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γ =
(s− ũ)Ts

‖s− ũ‖2
− 1 (12)

The termination conditions of the pmodes are independent
of each other, that is,

∥∥∥ut+1i − uti

∥∥∥ < ε ‖si‖ (ε =

0.0001). When the termination conditions are satisfied, the
corresponding modes are output according to Eq.(13).

ṽi = (si − ũi)(1+ γ ) (13)

C. SIMULATION ANALYSIS
To verify the effectiveness of the proposed algorithm,
a three-channel simulation signal is decomposed as shown
in Eq. (14). Meanwhile, the dominant mode with frequency
of 20Hz is set for three signals to verify the effectiveness of
MNSMD algorithm for identifying the same mode of multi-
channel signal.

f1=2(1+ 0.5 sin(5π t) cos(50π t))+ 2.5 sin(20π t)+ n(t)
f2=2.5(1+0.5 sin(3π t) cos(60π t)+ 2.5 sin(20π t)+ n(t)
f3=2(1+ 0.5 sin(2π t) sin(60π t)+ 2.5 sin(20π t)+ n(t)

(14)

where n(t) is Gaussian white noise with 5dB, and the time
domain waveform of the signal and its components is shown
in Figure.1.

FIGURE 1. The time domain waveform of the simulated signal.

In the process of experimental verification, MEMD
and MVMD methods are used for comparison, and the
decomposition results of the three decomposition methods
are shown in Figures.2-4. As can be seen from Figure.2,
MNSMD is used to decompose the three-channel simulation
signal, and the multiple sparse components and noise
are obtained. Meanwhile, the components decomposed by
MNSMDare smooth and have nomode aliasing, and the error
is small compared with the actual data, which verifies the
effectiveness of the proposed method.

Figure.3 shows the decomposition results of MVMD, and
the simulation signal is decomposed into 3 layers. As shown
in Figure.3, the time-domainwaveform of the first component
obtained by MVMD decomposition contains less noise, and
the noise is not completely decomposed. Meanwhile, the
time domain waveform of the component obtained is not

FIGURE 2. The decomposition result of MNSMD.

FIGURE 3. The decomposition result of MVMD.

smooth, which cannot accurately reflect the information of
the original signal.

FIGURE 4. The decomposition result of MEMD.

Figure.4 shows the decomposition results of MEMD,
and each channel is decomposed into five components.
As shown in Figure.4, the third component and the fourth
component of three-channel simulation signal show mode
aliasing phenomenon, which is quite different from the cor-
responding real component and the decomposed components
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TABLE 1. Comparison of three decomposition methods under three
evaluation indexes.

are seriously distorted. Therefore, it is proved that the
proposed MNSMD method has obvious advantages in multi-
channel signal analysis.

Therefore, MNSMD method can effectively separate the
three-channel simulation signal with noise, and it has good
noise robustness. The reason is that constrained optimization
is used to obtain the instantaneous frequency, which has
physical significance and is close to the original signal
as the constraint condition. Therefore, MNSMD has better
decomposition performance than MEMD and MVMD.

The advantages of the proposed method are verified from
the time-domain components, and quantitative comparison
is carried out by using indicators, such as root mean square
error (RMSE), correlation coefficient (CC) and signal to
noise ratio (SNR). TABLE 1. shows the comparison results
of three decomposition methods under three indexes. It can
be seen from TABLE 1. that the proposed MNSMD method
has obvious advantages and all indicators are the best.

III. EXPERIMENTAL ANALYSIS
A. CASE#1
To verify the feasibility and practicability of the proposed
MNSMD method in this paper, it is applied to the signal
analysis of conventional gear simulation fault. The exper-
imental data is from the gear fault simulation test bed of
Hunan University, as shown in Figure.5. In the process of
experiment, 40 tooth driving gear and 80 tooth driven gear
are selected as the analysis objects. Meanwhile, the fault
width and depth of the fault gear are 0.15mm and 0.10mm,
respectively, as shown in Figure.6. In addition, the gear speed
is 420 r/min (The fault frequency is fr = 7 Hz), and the
sampling frequency is 1024Hz.

In the process of experiment, the dual-channel original
signal is obtained, and the time-domain waveform is shown
in Figure.7. However, due to the large background noise
of the extracted vibration signal, the periodic amplitude
modulation characteristics of the gear cracked cannot be
observed only from the time domain waveform. Meanwhile,

FIGURE 5. Gear fault simulation test bed.

FIGURE 6. The gear with a cracked tooth.

FIGURE 7. Time-domain waveform of measured signal.

envelope spectrum analysis is performed on the fault signal of
the gear cracked, as shown in Figure.8. As can be seen from
Figure.8, although the characteristic frequency can be found,
it is interfered by the background noise, so that the peak value
is not obvious. Therefore, it is necessary to use multi-channel
signal analysis method for vibration signal decomposition
and feature extraction.

Similarly, to verify the superiority of the proposed
MNSMD method for dual-channel gear fault signal, the
MNSMD method is compared with the MEMD and MVMD
methods. MNSMD method is used to decompose the dual-
channel fault signal, and the decomposition results are shown
in Figure.9. It can be seen from Figure.9 that the components
obtained have certainmodulation and impulse characteristics,
but it is not possible to determine whether the gear is faulty
only from the time domain waveform. The envelope spectrum
of each component is further obtained, as shown in Figure.10.
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FIGURE 8. The envelope spectrum of measured signal.

FIGURE 9. The decomposition result of MNSMD.

FIGURE 10. The component envelope spectrum of MNSMD.

From the envelope spectrum, it can be observed that the peak
value at the fault frequency is obvious, and the amplitude of
each order multiple frequency is prominent. Therefore, the
frequency band extracted by the proposed method contains
rich gear fault feature information, which can obviously
extract and highlight the gear fault feature information.

As a comparison, the same group of multi-channel signals
are decomposed by MVMD method, and the decomposition
results are shown in Figure.11(mode number is 3, penalty
parameter is 2500, the gear signal is decomposed into
three layers). Meanwhile, the envelope spectra of the three
components of the dual-channel are given, as shown in
Figure.12. It can be seen from Figure.12 that the envelope
spectrum of MVMD decomposition component has obvious
peak line at the fault frequency, which can determine that the
gear has fault. However, only the first-order fault frequency
of the envelope spectrum of the dual-channel signal is

FIGURE 11. The decomposition result of MVMD.

FIGURE 12. The component envelope spectrum of MVMD.

obvious, so it is difficult to observe the frequency doubling.
Therefore, comparedwithMNSMDmethod,MVMDmethod
has information omission after decomposition.

FIGURE 13. The decomposition result of MEMD.

Further, MEMD method is used to decompose the multi-
channel signal, and the decomposition results are shown in
Figure.13. Meanwhile, the envelope spectra of the first three
components are obtained, as shown in Figure.14. As can be
seen from Figure.14, the decomposition results ofMEMD are
greatly affected by noise, and a large amount of interference
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information is contained in the envelope spectrum, so it is
impossible to judge whether the gear has fault. Therefore,
compared with MNSMD and MVMD, the decomposition
performance of MEMD is the worst.

FIGURE 14. The component envelope spectrum of MEMD.

FIGURE 15. Planetary gearbox fault simulation test-bed.

FIGURE 16. Cracked solar wheel.

B. CASE # 2
The effectiveness of the MNSMDmethod is verified by dual-
channel signal, and three-channel signal is selected for further
analysis and verification. The experimental data is from
the planetary gearbox fault simulation platform of Anhui
University of Technology, as shown in Figure.15. The fault
of solar wheel is set by wire-electrode cutting, as shown in
Figure.16. The experimental parameters and conditions are
shown in TABLE 2 and TABLE 3.

During the experiment, three-channel vibration signal is
obtained through the three-way acceleration sensor, and the

TABLE 2. Tooth parameters of planetary gearbox.

TABLE 3. Characteristic frequency of planetary gearbox (Hz).

FIGURE 17. Time-domain waveform of measured signal.

time-domain waveform is shown in Figure.17. However,
due to the large amount of background noise in the
collected vibration signal, the periodic amplitude modulation
characteristics of cracked solar wheel cannot be observed
only from the time domain waveform. Furthermore, the
envelope spectrum analysis of the cracked solar wheel
vibration signal is carried out, as shown in Figure.18. It can
be seen from Figure.18 that although the envelope spectrum
of three-channel vibration signals has peak lines at the fault
frequency (31.25Hz), the interference noise component is too
prominent to completely cover up the fault frequency, and it is
unable to accurately determine the state type of the planetary
gearbox. Therefore, it is necessary to decompose and extract
features of the three-channel signal, so as to judge the true
state of the planetary gearbox.

Herein, MNSMD, MVMD and MEMD methods are used
to decompose the same group of multi-channel planetary
gearbox fault signals to further verify the effectiveness of the
proposed method.

Figure.19 shows the decomposition results of MNSMD
method. It can be seen from Figure. 19 that the obtained
components have some modulation and pulse characteristics,
but it is impossible to determine whether the gear is
faulty only from the time domain waveform. As shown in
Figure. 20, the envelope spectrum of each component is
further plotted. It can be seen from the envelope spectrum
that the peak value of cracked solar wheel fault frequency is
obvious, and the frequency doubling of each order is large.
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FIGURE 18. The envelope spectrum of measured signal.

FIGURE 19. The decomposition result of MNSMD.

Therefore, it can be determined that the solar wheel has a
fault.

FIGURE 20. The component envelope spectrum of MNSMD.

MVMD is used to decompose the above planetary
gearbox fault signal, and the decomposition results are
shown in Figure.21 (mode number is 3). It can be seen
from Figure.21 that the time domain waveform has tiny
modulation characteristics, which cannot be used as the
basis for judging the fault of planetary gearbox. Further,
the envelope spectrum is obtained, as shown in Figure. 22.
It can be seen from Figure.22 that the envelope spectrum
of the first two components of the three-channel signal has
no obvious peak line at the fault frequency of the cracked
solar wheel, and the fault information is submerged by the
interference noise. However, the envelope spectrum of the
third component of the three-channel signal has obvious fault
frequency information, so it can be judged that the solar

FIGURE 21. The decomposition result of MVMD.

FIGURE 22. The component envelope spectrum of MVMD.

wheel has fault, but it lacks frequency doubling information.
Therefore, compared with MNSMD method, MVMD has a
slightly worse decomposition effect onmulti-channel signals.

FIGURE 23. The decomposition result of MEMD.

Figure. 23 and Figure. 24 are the analysis results of
the MEMD (The envelope spectra of the first three com-
ponents of each channel are obtained). From Figure.23,
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FIGURE 24. The component envelope spectrum of MEMD.

the modulation characteristics of each component are not
obvious. From Figure.24 that only the third component
of the first channel and the third component of the third
channel have obvious peaks at the fault frequency of solar
wheel, but other interference noise information is still very
large.

In conclusion, the decomposition effects of MEMD,
MVMD and MNSMD are compared by decomposing
dual-channel common gear fault signal and three-channel
planetary gear fault signal. From the modulation character-
istics of the time domain waveform and the fault frequency
of the envelope spectrum, the MNSMD method adaptively
decomposes a multi-channel complex signal into several
local narrow-band components with physical meaning of
the instantaneous frequency by using singular local linear
operators. Therefore, compared with MEMD and MVMD,
MNSMD is an effective multi-channel signal decompo-
sition method, which provides a reference for gear fault
diagnosis.

IV. CONCLUSION
In view of the shortcomings of the existing multi-channel
analysis methods, A multivariate nonlinear sparse mode
decomposition (MNSMD) method is proposed by constrain-
ing singular local linear operators. In the MNSMD method,
MNSMD transforms the multi-channel signal decomposition
into a nonlinear constrained optimization problem, which
avoids the shortcomings of MEMD and MVMD methods in
multi-channel signal decomposition through cyclic iteration.
Meanwhile, MNSMD uses the local narrow-band component
as the iterative basis function, and obtains the local narrow-
band component signal by approximating the original signal,
which has obvious advantages in suppressing mode aliasing
and robustness. By analyzing the simulation signal and actual
gear fault signal, the experimental results show that MNSMD
has better decomposition performance than MEMD and
MVMD in multi-channel analysis.

Although the proposed multi-channel analysis method can
effectively diagnose gear fault and has certain advantages
compared with MEMD and MVMD methods, the proposed
MNSMD method still has some shortcomings, such as the

parameter initialization problem needs further research and
improvement.
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