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ABSTRACT Current transformer saturation has a negative effect on the operation of IEDs, resulting in their
malfunction. Here, we present a technique to compensate for saturated waveforms using Bayesian Deep
Neural Network (BDNN) comprising Deep Neural Network (DNN) and Bayesian optimization (BO). DNN,
that utilizes stacked denoising autoencoder (SDAE) and Backpropagation (BP), is employed to optimize
deep learning structure. Unlike the conventional neural network, which is a shallow network or random-
initialize weights, the SDAE calculates optimal weights for each hidden layer and BP uses them to fine-
tune which yields results with high performance for CT saturation compensation. To improve the empirical
search of training hyperparameters, Bayesian optimization is adopted to decide training-related vectors such
as batch size, learning rate, and number of neurons. Finally, the performance of the proposed approach
was evaluated on an overhead transmission line which is imported from PSCAD/EMTDC with the different
scenarios of fault inception angle, remnant flux, and voltage system. Therefore, numerical cases of saturation
were comprehensively evaluated to demonstrate the performance of the proposed algorithm. A comparative
analysis was shown to demonstrate that the proposed BDNN is superior to artificial neural network (ANN),
and least square error (LES) technique.

INDEX TERMS Current transformer, saturation, deep learning, stacked denoising auto-encoders, Bayesian.

NOMENCLATURE
The main parameters used throughout this paper are summa-
rized here.

iP Primary current.
iS Secondary current.
iM Magnetizing current.
LM Magnetizing inductance.
R Secondary resistance (burden).
iAC Fault signal.
iDC DC component signal.
Ak Amplitude of the k th harmonic component.
ϕk Phase angle of the k th harmonic component.
M Highest order of harmonic in the signal.
A0 Magnitude of DC component.
τ Time constant of the system.
λ(t) Flux induced in the CT core.
N Number of turns in secondary winding.

The associate editor coordinating the review of this manuscript and

approving it for publication was Kathiravan Srinivasan .

SCT Saturation slope.
Asignal Magnitude of signal.
Anoise Magnitude of random noise.
Wen Weight of encoding layer.
ben Bias of the encoding layer.
fen Activation function of the encoding layer.
Wde Weight of decoding layer.
bde Bias of the decoding layer.
fde Activation function of the decoding layer.
L Cost function of the autoencoder.
X ′ Normalized value of the input datasets.
xmax Maximum values of input dataset.
xmin Minimum values of input dataset.
m Window dimension.
s Moving step.
f (x) Objective function for Bayesian optimization.

I. INTRODUCTION
Current transformers (CTs) are used to convert a high-voltage
primary current to a relatively lower-voltage secondary
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current that can be easily read and isolate the circuit from
fault conditions. Reference [1] presents a detailed discussion
of CT functionality and providesmany useful examples. Fault
current, system complexity, and size may rise due to the
expansion of the interconnected power systems. Therefore,
CT saturation is inevitable because of the large proportion of
the fault current. CT saturation is a significant problem for
power systems as it provides the incorrect current magnitude
to CT. High fault currents, X/R ratio, and remnant flux are
commonly contributing factors to CT saturation which in
turn may lead to malfunctions in the protective relay [10].
Therefore, a robust CT saturation compensation scheme is
required to clear it rapidly and reliability in order to avoid
the system disturbance and equipment from damage.

This problem has been addressed in many approaches in
recent years [2]–[14]; one such algorithm is a conventional
neural network. The undistorted waveform was reproduced
byArtificial neural network (ANN) from the saturated behav-
ior; however, this approach was merely focused on satura-
tion compensation without considering the remnant flux [2].
Another ANN-based method in [3] for CT saturation com-
pensation was presented which included the remnant flux in
the core and other influence parameters for CT saturation.
However, the training structure in [2], [3] was empirically
decided that is very time-consuming. A modified version
of Adaptive Neuro Fuzzy Inference System (ANFIS) with
least-square method and gradient descent, was applied on
CT saturation to compensate saturated fraction [4]. However,
the drawback of this algorithm is computation burden when
there is large input dimension. In [5], CT saturation was
successfully removed by estimating the magnetizing current
from the negative value of the second difference function
and adding it to the measured secondary current. However,
this approach is limited by its reliance on the magnetization
curve of a specific CT. A hybrid algorithm comprising the
partial sum (PS) and multistage least-square (MLS) methods
was proposed to address for DC offset and CT saturation
problems, and was able to successfully solve these issues
with a quicker response time [6]. Alternatively, two-level
compensation filters can be used to compensate for satu-
ration effects and reproduce an undistorted waveform from
fault current and an inrush current with a low error [7].
The integration CT saturation detection and compensation
was proposed in [8] based on sample-based extraction from
the identified unsaturated samples using Kalman filter and
simply reconstructed with wave shape properties and fault
current characteristics. Another compensation approach uti-
lized a least-error square (LES) filter to estimate the phasor
parameters of the CT secondary current, and CT burden [9].
In [10], the unsaturated portions are extracted from distorted
secondary current and then utilize the least square curve
fitting method to estimate parameters for compensating CT
saturation. However, due linearization by Taylor series expan-
sion, it produces some error when the time constant is small.
The application of the wavelet transforms for compensating
the saturated signal was proposed in [11]. Extended Kalman

filter was used to detect and compensate CT saturation by
using the current sample points during the unsaturated regions
to estimate an appropriate model [12]. With this estimated
model, it reconstructed the signal from unsaturated behavior.
The LES filter and lookup table (LUT) was jointly applied
to solve DC offset and CT saturation problem which renders
superb results in the presence of noise and harmonic [13].
The author of [14] proposed a new algorithm to detect and
compensate for CT saturation based on derivative of sec-
ondary current and Newton’s backward difference. However,
this algorithm is really relied on low-pass filter characteristic
to detect saturation.

Recent advances in deep learning has been widely used
in power systems and energy applications because of its
robustness, speed, and powerful learning capacity. As pro-
posed in Reference [18], DC offset was generated with the
random noise and several harmonics. Different scenarios such
as voltage level, and inaccurate time constant, were consid-
ered to display the performance of the proposed method.
Thus, results outperform the conventional filters in terms of
speed and accuracy. The author of [19] used the unsupervised
learning feature extraction to classify severity of CT satura-
tion and it yielded superb results compared to conventional
regression methods. Reference [20] highlighted a combining
model of unsupervised feature learning and convolution neu-
ral network (CNN) to detect and classify faults based on the
three-phase voltage and current signals. The discrimination
between inrush current and magnetizing current in power
transformer using the CNN, fast GRNN, and CLGNN is
proposed in [21]–[24]. Although the method in [24] is useful
to compensate for CT saturation, it requires detecting the start
and end of CT saturation prior to compensation.

To the best of our knowledge, SDAE has rarely been
applied on energy and power systems. One related work is
a SDAE model for CT saturation compensation with the
empirical selection of the training hyperparameters studied
in [17]. This paper developed DBNN-based method which
uses deep neural network (DNN) and Bayesian optimiza-
tion (BO) to expand the capability of compensating for CT
saturation. On the basis, DNN’s structure is constructed based
on SDAE in an unsupervised manner to extract the feature of
the input during the pre-training and initialize the appropriate
weights for the structures. The reconstruction of unsaturated
waveform is obtained by performing backpropagation on
trained model from SDAE in a supervised manner with a
given label to compensate for CT saturation. Moreover, the
training hyperparameters are optimized via BO to reduce
difficulty for the empirical selection of training hyperpa-
rameters [29]. Lastly, we validate BDNN on simulated data
from PSCAD/EMTDC with real power system parameters
on a typical Korean transmission line and compared with
conventional methods (ANN, and LES), study the impact of
BDNN under various CT saturation conditions, and compare
with other intelligent methods and conventional methods
fromRef. [10]. To summarize, this paper makes the following
contributions:
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FIGURE 1. A Simplified equivalent circuit of CT.

FIGURE 2. An example of CT saturation on 154kV system (0◦ fault angle
and remnant flux of 60%).

• Propose a BDNN framework for CT saturation compen-
sation for the first time using SDAE to extract feature
that can accurately correct the distorted waveform and
handle noise problem without using low-pass filter.

• Adopt Bayesian optimization to search for training
hyperparameters.

• Compensate for CT saturation without the detection of
CT saturation.

• Provide a consistency and high accuracy on different
voltage in power systems.

The remainder of this paper is organized as follows.
Section II reviews the CT saturation literature, Section III
describes the proposed compensation method which com-
prises of adopting pre-training and fine-tuning, and data
preparation. In section IV, the simulation results and perfor-
mance evaluation were presented through many cases of the
problem after training and the comparative study with other
methods is also displayed. Section V presents concluding
remarks.

II. PROBLEM STATEMENT
This section first highlights the CT saturation formulation and
then introduces CT saturation datasets generation for training
procedure.

A. CT SATURATION FORMULATION
A simplified equivalent circuit of a CT with a pure resis-
tive burden is given in Fig. 1. Fig. 2 shows an example
of CT saturation with primary, secondary and magnetizing
current. Under the normal operation, the magnetizing current

is negligible because the exciting voltage is less than knee-
point. When the exciting voltage exceeds the knee-point,
CT begins to experience saturation which negatively causes
the magnetizing current to increase according to the B-H
hysteresis curve of the CT core. Therefore, primary and
secondary current are no longer proportionally equal due
to the induced magnetizing current. The saturation severity
is determined by the excitation current magnitude, and the
saturation duration is a function of the X/R ratio. In this
paper, we simplified the equations for CT saturation from [6].
The fault inception angle determines whether the saturation
is positive or negative. The primary current is the sum of iAC
and iDC , and it can be expressed as follows:

iP(t) = iAC (t)+ iDC (t)

=

M∑
k=1

Aksin(kωt + jk )+ A0e−
t
τ (1)

λ(t) is proportional to iS and it can be expressed as follows.

λ(t)−λ(t − 1)=
1
N

∫ t

t0
RiS (t)dt (2)

By using the magnetizing curve, (2) can be simply rewrit-
ten as:

SCT (iM (t) − iM (t0)) =
∫ t

t0
RiS (t)dt (3)

However, the value iM (t0) is approximately zero before
saturation begins as illustrated in Fig. 2 before fault occurs
and iM(t) at the first saturation instant can be subsequently
given by:

iM (t) =
1
SCT

∫ t

t0
RiS (t)dt (4)

iS is the difference between iP and iM and it is given in (5).

iS (t) = iP(t)− iM (t) (5)

B. CT SATURATION DATASET FOR TRAINING PROCEDURE
BDNN approach is a data-dependent algorithm which
requires many training datasets to obtain best results.
Saturated and unsaturated data are generated by well-
documented sheet from the IEEE Power System Relaying
Committee (PSRC) [26]. Core-induced flux and magnetizing
current are thoroughly computed in the excel sheet. Differ-
ent saturation cases were obtained by modifying some key
parameters (primary fault current, load resistance, X/R ratio,
DC offset units, and remnant flux). The saturation becomes
severe at the fault inception angle of 0◦, and remnant flux
of 60%, and lasts longer when X/R is 18. The training
parameters in Table 1 are used to generate training input
samples and it includes many types of saturation ranged from
light to severe saturation. The training data for this study
is 15680 saturation cases which accumulates approximately
11038720 datasets. The saturated current with random noise
is used as an input, and the unsaturated current is used as the
network label. Moreover, Anoise is added to the input Asignal
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TABLE 1. Training data parameters.

and its magnitude is generated by modifying a signal-to-
noise ratio (SNR), which can be expressed in Equation (6).
Harmonic from 2nd to 5th order was also considered in the
training dataset and its magnitudes are shown in Table 1.

SNRdB = 10log(Asignal/Anoise) (6)

III. CT SATURATION COMPENSATION APPROACH
CT saturation compensation aims to reconstruct undistorted
waveform under various scenarios of power system such
as power system voltage, fault inception angles, and fault
types. The proposed framework (BDNN) is based on BO and
DNN. SDAE extracts features in hidden layers and use it to
build a deeper DNN structure. To improve the compensation
accuracy, BO is employed prior to SDAE to globally optimize
the training hyperparameters such as learning rate, batch size,
and number of neurons.

A. THE FRAMEWORK OF DENOISING AUTOENCODER
A denoising autoencoder is an unsupervised ANNwhich uses
nonlinear feature extraction to reconstruct clean inputs from
noisy inputs, and efficiently compress and decodes data [27].
In a simple autoencoder, input x ∈ Rn (x0, x1, x2, . . . , xn)
includes in the training dataset. The input is then encoded to
low dimension and it is restored to its original structure in
the decoding part. The training uses the BP to minimize the
reconstruction error between input and output until desired
epoch is reached. After the training convergence, the encoder
model and extracted features (f1, f2, . . . , fn) are saved which
is used to train other autoencoders. Given the input x, the out-
put vector of the autoencoder x̂ is mathematically expressed
as follows.

x̂ = fde(Wdefen(Wen(x)+ ben)+ bde) (7)

where fen is Leaky ReLu activation function for encoding
layer. Linear function is the decoding layer activation func-
tion fde for regression task. By incorporating Adam opti-
mizer, the training can be proceeded. Root mean square error
(RMSE) is used to minimize the error between the input and
output.

L(x̂, x) =

√√√√ 1
N

N−1∑
i=1

(x̂i − xi)2 (8)

To yield the result from autoencoder, we minimize cost
function L by iteratively updating weights and bias values
by using backpropagation [25]. The result of autoencoder is
obtained when L is converged to a certain iteration.

B. ESTABLISHMENT OF PROPOSED BDNN
Traditionally, achieving deeper neural network structure was
a very challenging task because the computation error in
backpropagation process tends to dramatically increase when
the structure becomes very complex (vanishing gradient
problem). To strengthen the conventional neural network,
authors of [15], [16] presented a new way of network training
by adopting an unsupervised pre-training instead of manu-
ally selection the neural network parameters. The algorithm
employed a layer-by-layer unsupervised learning based on
the deep belief network (DBN) in which an unsupervised
greedy layer-wise training was proposed to provide an opti-
mization for the deeper structures. All layer parameters that
are initialized during pre-training are tuned in the final stage
in order to significantly achieve great results. Instead of using
DBN, SDAE is adopted to construct deeper networks and
it yields improved results [27]. Unlike conventional deeper
networks, SDAE is used to reduce the complexity of error
estimation by forming hidden layer one at a time. In a deeper
structure, training efficiency is affected by initial weights;
therefore, this problem can be alleviated by adopting SDAE.
The main idea is to train one layer at a time by minimizing
the reconstruction error. The feature of the i-th hidden layer
is used as input for the (i+1)-th hidden layer.

The first autoencoder is trained in a bottleneck fashion with
initial weights and bias (w1, b1). The distorted waveform x
with the random noise is then transformed into a low dimen-
sion through encoding function and restored back to its orig-
inal dimension in the decoding layer. The optimal is obtained
when the error function (L) reaches the minimum and it is
shown in (7). After converging to the minimum, the hidden
layer, which is so-called abstract features, is stored and used
as the input for the second autoencoder. After removing the
decoding layer x̂ in the first autoencoder, a new hidden layer
h2 and output ĥ1 are stacked onto the first autoencoder as
shown in Fig. 3. Using a similar process, many autoencoders
were successively stacked together to form a deeper net-
work structure. This process of using stacked autoencoders
is commonly referred to as pre-training because it resembles
as Restricted Boltzmann Machine (RBM). Lastly, prior layer
is trained with the given label (undistorted waveform) at
the output layer to reconstruct unsaturated signal. All opti-
mal SDAE weights and bias (wi, bi, and i = 1, 2, . . . , n)
which are obtained during the pre-training were fine-tuned
by backpropagation algorithm to achieve significant results
in the fine-tuning. Fig. 3 presents the proposed methodology
in depth.

C. PRE-PROCESS OF INPUT DATASETS
Table 1 concretely generates one-dimension saturated wave-
form. Due to different variation of input magnitude, BDNN
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FIGURE 3. The overall structure of the proposed framework using stacked
autoencoders training.

might produce large error and renders output inconsistently;
therefore, it requires to be normalized to the similar mag-
nitude to reduce the influence of this variation. As a result,
it accelerates DBNN training and improve generalization of
neural network [31]. The normalization formula is given as
follows:

X ′ =
2× (xi − xmin)
xmax − xmin

− 1 (9)

where xi is the ith sample of the input data. After normal-
ization is conducted, a moving-window algorithm is applied
to input normalized datasets to form DBNN input training
matrix. Selecting m and s are vital to reconstruct unsaturated
waveform. In this study, we set m to 64 that is equal to
number of samples per cycle with s of 1. Considering an input
x = {x1, x2,. . . .., xi}, where i is the input index. By using x,
input training matrix can be formed as follows where N is the
number of signal index.

X ′ =


x1 x2 . . . xm−1 xm
x2 x3 . . . xm xm+1
...

...
. . .

...
...

xN−m−s+1 xN−m−s+2 · · · xN−s−1 xN−s


(10)

D. DEEP LEARNING HYPERPARAMETERS TUNING
Searching for the optimal training hyperparameters is
normally performed by randomly choosing a set of hyperpa-
rameters which is very time-consuming to attain these hyper-
parameters. In recent years, grid search and random search
are the most common optimization for hyperparameter tun-
ing in machine learning and deep learning. However, as the
dimension of tuned hyperparameters increases, the search
of optimal hyperparameters in the grid search increases
exponentially. Random search is proposed to deal with the
problem occurred in the grid search where the random

combinations of the hyperparameters are used to find the
best solution for the model. For a huge dataset, it is time-
consuming to achieve the optimal hyperparameters in the ran-
dom search. Therefore, Bayesian optimization (BO) comes in
as a tool to efficiently tune machine learning and deep learn-
ing hyperparameters [29] that chooses the hyperparameters
giving in more optimal solution. Thus, BO is chosen as a
hyperparameter tuning for SDAEs during the pre-training to
solve this searching difficulty.
Bayesian optimization (BO) is an effective global opti-

mization of black-box functions which is based on a prob-
abilistic model (gaussian process) to measure the objective
function in the search space. Bayesian surrogate model helps
to represent the underlying objective function of the prob-
lem and acquisition model selects the next evaluation point
based on prior knowledge. Our goal with respect to BO was
to identify the best combination of hyperparameters xt for
an objective function f (x), the combination that maximizes
the output of a given search space X. The search space is
designed to be a 3-dimension vector (learning rate, batch
size, and number of neurons). Then, a surrogate model is
built for optimization process to estimate a set of hyperpa-
rameters for SDAE with an initial hyperparameter set by
distributing the gaussian process that matches the similar-
ity of hyperparameters in the search space and use it as
a prior knowledge for the optimization process. After that,
we choose Expected Improvement (EI) for the acquisition
function which optimizes the locations in the search space
by using the prior knowledge to generate the next samples
for evaluation. EI chooses the next point xn in the search
space X to evaluate that yields the smallest error. After several
iteration, the best training hyperparameters can be obtained
from BO.

xt = argmaxx∈XEI (x) (11)

with EI (x) = E(max(f (x)− f ∗, 0)) (12)

where, f ∗ is the maximum value that f (x) has experienced
during the optimization process. The flowchart of the pro-
posed BDNN is given in Fig. 4.

IV. PERFORMANCE EVALUATION
A. DATA GENERATION FOR TESTING PROCEDURE
To evaluate BDNN efficiency, a typical three-phase over-
head transmission line as shown in Fig. 5 is modelled in
PSCAD/EMTDC which generates cases for BDNN testing.
A CT model in [30] is utilized to generate saturation data for
training in PSCAD/EMTDC with a ratio of 2000:5 (C400,
R2 = 0.61�) and a resistive burden of 3.42�. Phase
A current at the relay point is collected to evaluate with
various fault inception angle and remnant flux. The sam-
pling frequency is set to 3840Hz or 64 samples cycle in a
60Hz system. Then, the imported signal will pass through
the moving-window technique in (10) to create the test-
ing datasets for BDNN. When pre-processing is correctly
configured, the training process is conducted on a graphics
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FIGURE 4. Flowchart of the proposed BDNN.

FIGURE 5. Single line diagram of 154kV and 345kV overhead
transmission system.

TABLE 2. Overhead transmission parameters.

processing unit (NVIDIA GeForce GTX 2080 Ti), and it
is carried out using a python-based version of TensorFlow
(Google LLC) [25].

B. TRAINING HYPERPARAMETERS DETERMINATION
We varied the number of hidden layers when determining
the optimal deep learning structure for saturation compensa-
tion. Five hidden layers were stacked during the pre-training
described in section II. Fig. 6 shows that compensation was
optimal with three or four hidden layers. However, due to
computation burden and time efficiency, the suitable number
of hidden layers is 3. Then, other optimal hyperparameters
for the training framework afforded by BO are given in
Table 3.

FIGURE 6. Error associated with different number of hidden layers.

TABLE 3. Optimal parameters for BDNN training.

FIGURE 7. Compensation result on 345kV system with fault angle of 0◦

and remnant flux of 0%.

C. IMPACT OF BDNN FOR CT SATURATION
In this subsection, we investigate an impact analysis on
345kV overhead transmission system on the maximum DC
offset occurs on the line. We consider scenarios with and
without remnant flux. The result of CT saturation with and
without remnant flux are illustrated in Fig. 7 and 8. Estimated
outputs from the BDNN-, ANN-, and LES-based techniques
are denoted as iBDNN , iANN , and iLES, respectively. We can
observe in Fig. 7 that BDNN completely compensate for CT
saturation throughout the whole cycle despite a slight and
undershoot during the second fault cycle. Small oscillations
are evident a fault, reflecting the use of moving-window
algorithm and a sudden change in fault magnitude. However,
this small error does not severely compromise the accuracy
of the proposed BDNN. Another observation is that BDNN
produces a slight undershoot in the second fault cycle after a
fault occurs and it is acceptable in this study. By investigating
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FIGURE 8. Compensation result on 345kV system with fault angle of 0◦

and remnant flux of 60%.

FIGURE 9. Compensation result on 345kV system with fault angle of 45◦

and remnant flux of 60%.

the error line (iError) of the proposed BDNN, the error line is
shown where it yields the largest error between 0.2284s to
0.2472s. Furthermore, BDNN yields the error approximately
0.21 with remnant flux of 0%. Based on these observations,
BDNN exhibits a great performance with less sensitivity to
abovementioned issues and rapid convergence.

To further evaluate the efficiency during heavy satura-
tion, the remnant flux is increased to 60% that produces
extreme saturation on the fault angle of 0◦ as shown in
Fig. 8. We observe in Fig. 8 that CT saturates in the first
fault cycle that is approximately at 0.2219s. Similarly, BDNN
estimates the correct magnitude of the unsaturated waveform.
In addition, the use of moving-window technique on phasor
estimation is insignificant as we discussed above. The error
line generates a large swing when there is distortion in current
from first half of fault cycle to the end of the second fault
cycle and the error decay to nearly zero after the second fault
cycle. Therefore, BDNN produces remarkable outputs even
there is a heavy saturation occurred in the system.

Next, we investigate the performance of BDNN on satura-
tion variation. It is vital for the proposed to estimate an accu-
rate result at any given saturation variation occurred in the

FIGURE 10. Compensation result on 154kV system with fault angle of 0◦

and remnant flux of 60%.

power systems. It is obvious that saturation severity decreases
in proportional to the decrease of DC offset magnitude. Fig. 9
shows compensation results on fault angle of 45◦ with 60%
remnant flux. In this case, the effect of moving-window algo-
rithm yields more oscillation prior to fault. We can observe
from these figures that BDNN also estimates magnitude with
slight error after the fault. Likewise, the most noticeable error
appears in the second fault cycle in which it produces an
apparent undershoot on 345kV system.

It is crucial that the proposed BDNN can compensate for
CT saturation in different voltage system. Fig. 10 presents
the compensation result for another different voltage system
with the severe saturation in the 154kV test system. As shown
in Fig. 10, it is observed that BDNN can also estimate the
correct magnitude in every cycle even it experiences the
heavy saturation. Thus, we can conclude that the proposed
BDNN performs well regardless voltage system because of
input dataset normalization. Data normalization plays a sig-
nificant role in our proposed BDNN algorithm as it reduces
the influence of magnitude variation.

D. COMPARATIVE STUDY
To investigate the performance of ANN and LESfilter, a com-
parative study is conducted. Fig. 11 shows the comparison
results of ANN, LES, and BDNN on the most severe satura-
tion having the fault angle of 00 and remnant flux of 60%.
As we observe in Fig. 11, the oscillation of ANN prior

to fault is slightly apparent than BDNN and LES. As the
fault occurs, ANN tends to produce less error than LES.
As displayed in Fig. 10, LES apparently yields a few notice-
able oscillations from the first to third fault cycle. It can be
assumed that LES produces error when saturation is severe
and the convergence of LES is achieved 3 cycles after a
fault. Compared to LES, ANN requires 2 cycle to con-
verge. Although ANN yields a similar output to the proposed
BDNN, it produces a noticeable oscillation before a fault
occurs and undershoot in the second fault cycle. Therefore,
ANN and LES do not cope well with CT saturation com-
pensation as they produce some ripples and overshoot in
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FIGURE 11. Compensation result on 345kV system with fault angle of 0◦

and remnant flux of 60% of ANN, and LES with BDNN.

TABLE 4. Mean error and standard deviation of BDNN, ANN, and LES.

some cases. Thus, the performance of BDNN gives better
suppression on CT saturation when there is an appearance of
CT saturation in the power systems. The comparison of other
saturation cases is given in Table 4.

To evaluate the accuracy of CT saturation compensation for
each algorithm, the estimationmean error (µ) and its standard
deviation (σ ) are computed and given in (13) and (14), respec-
tively, where xi is the reconstruction error between estimated
and actual waveform. Table 4 summarizes estimation mean
error and standard deviation of BDNN compared to ANN,
and LES for several remnant flux and fault angle on a different
voltage system. ANN generated mean error between 0.15 and
0.94 while LES returned error from 0.11 to 0.81. According
to Table 4, BDNN reaches the largest error of 0.39 on 345kV
system in the case of 0◦ fault angle with 60% remnant flux.
ANN produced largest standard deviation of 0.95 on 345kV
system in case of 0◦ fault angle with 60% remnant flux.
BDNN achieved the smallest standard deviation between

0.12 and 0.59. Due to sudden change in magnitude after the
fault occurrence and the use of moving-window technique,
BDNN and ANN approximates the incorrect magnitude a
cycle before a fault. However, BDNN shows less sensitive
to the sudden increase after it experiences fault and provides
quicker convergence than ANN as depicted in Figs. 7-11.
ANN tends to produce a large swing one cycle before fault
occurrence due to the moving-window effect. Thus, BDNN
can compensate the effect of CT saturation quickly and give
less ripple to the outputs under various fault magnitude. The
effectiveness of BDNN and ANN can be implemented on
other CTs that have similar characteristics. This fact was
shown in some studies using intelligent methods for protec-
tive relays [3], [4].

µ =
1
N

N−1∑
i=1

xi (13)

σ =

√√√√ 1
N

N−1∑
i=1

(xi − µ)2 (14)

V. CONCLUSION
This paper presents a current transformer saturation com-
pensation method comprising BO and DNN. DNN structure
is established through stacking denoising autoencoders and
backpropagation. By employing this method, the network
appropriately obtains initial weights and bias for each hid-
den layer that reduces the computation complexity in the
deeper structure and provide an easy method to build deep
networks. Moreover, the utilization of SDAE is to make the
model to suppress the noise effects in the real application
without using the low-pass filter. BO perfectly optimizes the
training hyperparameters which takes less time than other
available optimizations for deep learning. The performance
of BDNN is thoroughly evaluated on simulated data from
PSCAD/EMTDC on the variation of saturation such as dif-
ferent fault angles, remnant flux, and power system level. The
results show that BDNN can compensate CT saturation under
various scenario regardless of fault types and fault current
magnitude. Comparedwith ANN and LES, the reconstruction
error of BDNN achieves the least error and its performance
is relatively stable with different voltage system. Although
the slight error of implementing moving-window algorithm
is notably seen before a fault, this effect gives less influence
on the phasor estimation. The limitation of the proposed
BDNN is generalized to only some of the specific current
transformer that share the similar characteristics to the CTs
used during training phase. However, we intend to develop
a compensation model using BDNN that can work for all
kinds of current transformers. Our future work is to imple-
ment this proposed BDNN in the real time. The capability of
CPU provided in AM572x, which is the hardware platform
considered for our implementation in future, is 40GMAC
per core (80G FLOP per core). The floating-point operation
for the proposed BDNN is 1,201,104 that is sufficient for

154738 VOLUME 9, 2021



S. Key et al.: Bayesian Deep Neural Network to Compensate for Current Transformer Saturation

CPU of real-time devices to calculate the neural network
implementing on the real time.
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