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ABSTRACT Image reconstruction for electrical resistance tomography (ERT) is an ill-posed inverse
problem. L1 regularization is used to solve the inverse problem. An effective method of Barzilai-Borwein
gradient projection for sparse reconstruction (GPSR-BB) can resolve the inverse problem into bound-
constrained quadratic programming and achieve a gradient projection with line search. However, it is
computationally expensive to solve the problem when the data dimension is substantial. Hence, a projection
method is employed and combined with the GPSR-BB algorithm to improve the real-time performance.
The problem can be mainly solved in the Krylov subspace. For comparison, another L1 regularization
GPSR-BB method based on the truncated singular value decomposition is also conducted. Both simulation
(with 3D modeling) and experimental results demonstrate the new method’s effectiveness in reducing the
computational time and improving the image quality.

INDEX TERMS Electrical resistance tomography, projection method, L1 regularization method, gradient
projection for sparse reconstruction.

I. INTRODUCTION
Electrical resistance tomography (ERT), which reflects the
changes of electrical conductivity distribution in the control
volume based on the measured voltage [1]–[3], is considered
a novel sensing technique. Due to the advantages of non-
radiation, non-invasive and fast response, it has been suc-
cessfully applied in several fields, such as industrial process
imaging [4]–[6], medical imaging [7], [8], and geophysical
surveying [9].

The inverse problem for ERT is ill-posed and
ill-conditioned due to the property of the sensitivity matrix.
Regularization has been widely used to overcome ill-
posedness in ERT, which can be divided into two main
types: projection methods [10], [11] and penalty methods.
Projection methods include the truncated singular value
decomposition (TSVD), the Ivanov regularization, and so on.
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The penalty methods [12]–[15] include Tikhonov regulariza-
tion, L1 regularization, and so on. Tikhonov regularization is
commonly used among these methods. However, it is plagued
by the smoothness effect being an L2-norm regularization.
The sparse reconstruction method with L1-norm, having
wide application in compressed sensing [16]–[18], was used
to solve the electrical tomography (ET) inverse problem.
Tehrani et al. proposed a new L1 regularization method
combining the basis pursuit denoising and the least absolute
shrinkage and selection operator (LASSO) for electrical
impedance tomography [19]. Ye et al. presented a new
sparsity regularization algorithm for electrical capacitance
tomography (ECT) using an unconventional basis to improve
the image quality [20]. Fan et al. proposed an improved
method based on the separable approximation method
by using adaptive step size to improve the calculation
speed of sparse regularization [21]. Zhang et al. [22]
presented a modified orthogonal matching pursuit method
for the ERT inverse problem. Shi et al. [23] developed
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a Landweber-based non-convex L1 regularization method
for the ERT image reconstruction to get high quality
images. Zhang et al. applied Barzilai-Borwein gradient
projection for sparse reconstruction (GPSR-BB) to ECT
image reconstruction [24]. The experimental results show
that the quality of the images can be enhanced obviously.
However, the L1 method is a substantially time-consuming
method due to the need to solve large-dimensional matrix
equations repeatedly.

An effective way to reduce the computational cost for the
image reconstruction is the projection method, i.e., the TSVD
method. The idea of the method is to project the solution
into a lower dimension subspace by omitting the unimportant
part in the subspace. The projection method can be combined
with other methods to improve the quality of reconstructed
images. The projected conjugate gradientmethod is presented
and applied to the image reconstruction of ECT, which
improves both image quality and real-time performance [25].
Zhao et al. proposed a hybrid reconstruction algorithm for
ERT by combining two regularization algorithms to improve
the imaging quality and reduce the computational time [26].
In this paper, a novel method based on GPSR-BB is proposed
for ERT, which is combined with the GPSR-BB and the
projection method. The proposed method consists of two
parts: part 1 is the projection transformation, part 2 is the
sparse reconstruction, which is solved by the GPSR-BB in
the Krylov subspace. To the best of our knowledge, it is
the first time that this new sparse regularization method has
been applied to ERT image reconstruction. Both numerical
simulations and experiments on liquid/solid two-phase flow
measurement are conducted to verify the new method’s
effectiveness.

This paper is organized as follows. In section II, we intro-
duce the principle of ERT. We present GPSR-BB for ERT,
GPSR-BB based on the TSVD method, and GPSR-BB based
on Krylov subspace in section III. In section IV, we discuss
the simulations and experiments of the proposed method.
Finally, the conclusions are provided in section V.

II. PRINCIPLE OF ERT
An ERT system consists of sensing electrodes, a data acqui-
sition system, and an image reconstruction and visualization
unit, as shown in Fig. 1.

The mathematical model of ERT can be represented by

∇ · (σ · Oφ) = 0, (1)

where ∇ is the gradient operator, σ is the conductivity
distribution, and φ stands for potential distribution in the
control volume. The relationship between σ and measured
voltage ϕ on boundary sensors can be described as

ϕ = f (σ ;D), (2)

where D is the injected current density. If there is a slight
change of conductivity, equation (2) can be written as

1ϕ =
df (σ ;D)
dσ

∣∣∣∣
σ=σ0

1σ. (3)

FIGURE 1. Configuration of ERT system.

For the convenience of calculation, equation (3) can be
described as follows:

y = Sx, (4)

where S ∈ Rm×n is the Jacobian matrix, x ∈ Rn×1 is
the change in conductivity, and y ∈ Rm×1 is the changes
of measured voltages. In ERT, S is usually calculated by a
sensitivity method.

The inverse problem of ERT is ill-posed. Tikhonov
regularization replaces the inverse problem of (4) with a
minimization one. It leads to the expression

x̂ = argmin
x
‖Sx− y‖22 + λ‖x‖

2
2, (5)

where λ is the regularization coefficient, ‖.‖2 stands for
the L2-norm. To overcome the excessive smoothness of the
L2-norm method, the L1 regularization method is set up as

x̂ = argmin
x

1
2
‖Sx− y‖22 + λ‖x‖1, (6)

where ‖.‖1 stands for the L1-norm, i.e., ‖x‖1 =
∑ n

i |x i| and
λ is the regularization coefficient. This optimization form is
widely used in compressed sensing theory and sparse approx-
imation theory. The modified GPSR-BB, comparatively an
effective method for dealing with this problem (6), is adopted
in this paper.

III. METHODS
A. NORMALIZATION
In order to improve the image quality and reduce systematic
errors in the measurement system, the sensitivity needs to
be normalized. The sensitivity for each electrode pair is
normalized by summing sensitivity’s all elements as follows:

SN ,ij =
Si,j∑m
i=1 Si,j

. (7)

B. GPSR-BB FOR ERT
The approach is to express (6) as a quadratic program
which is worked by splitting image gray matrix x into
positive and negative parts. We introduce vectors p and q
and make the substitution of x, enforcing a nonnegativity
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constraint on each part [27].{
x = p− q,p ≥ 0,q ≥ 0
‖x‖1 = 1Tn p+ 1Tn q,

(8)

where 1n = [1, 1, 1 · · · , 1]T . And the quadratic program of
equation (6) can be described as follows:

min
p,q

1
2
‖y− S(p− q)‖22 + λ1

T
n p+ λ1

T
n q,

s.t. p ≥ 0,q ≥ 0. (9)

From [27], the equation (9) can be written in the standard
bound-constrained quadratic program (BCQP)

min
z
cT z+

1
2
zTBz ≡ F(z), s.t.z ≥ 0, (10)

where

z =
[
p
q

]
, b = ST y, c = λ12n +

[
b
−b

]
and

B =
[
STS −STS
−STS STS

]
.

To solve equation (10), we first choose a scalar parameter
α(t) > 0 and let

θ (t) = (z(t) − α(t)∇F(z(t)))+. (11)

After that, we choose a second scalar parameter
η(t) ∈ [0, 1] and let

z(t+1) = z(t) + η(t)(θ (t) − z(t)). (12)

In theGPSR-BB algorithm, it calculates each step by δ(t) =

−H−1t ∇F(z(t)), whereHt is the approximation to the Hessian
of F at z(t). In the Barzilai-Borwein method, a simple choice
for the approximation Ht is to set Ht = ξ (t)I, where ξ (t) is
chosen so that the approximationHt has the similar behavior
to the true Hessian, that is

∇F(z(t))−∇F(z(t−1)) ≈ ξ (t)[z(t) − z(t−1)]. (13)

The update equation under the unconstrained condition can
be shown:

z(t+1) = z(t) − (ξ (t))−1∇F(z(t)). (14)

α(t) = (ξ (t))−1 should be restricted to the interval
[αmin, αmax].

The GPSR-BB algorithm can be defined as follows:
Step 0 (initialization): Selecting parameters αmin, αmax ,

α(0), setting t = 0 and z(0);
Step 1: The step length calculation:

δ(t) = (z(t) − α(t)∇F(z(t)))+ − z(t); (15)

Step 2 (line search): On the condition of the scalar
parameter η(t) ∈ [0, 1], finding the η(t) that can minimize
F(z(t) + η(t)δ(t)), and setting z(t+1) = z(t) + η(t)δ(t);

Step 3 (update scalar parameter α): Let

γ (t)
= (δ(t))TBδ(t), (16)

if γ (t)
= 0, we set α(t+1) = αmax , otherwise

α(t+1) = mid

{
αmin,

‖δ(t)‖22
γ (t) , αmax

}
;

Step 4: Perform convergence test and terminate when
|
F(z)(t+1)−F(z)(t)

F(z)(t) | ≤ tolP, where tolP is a small parameter;
otherwise, we set t ← t + 1, and then return to Step 1.

The values of αmin = 10−30 and αmax = 1030 are set
as the default values as suggested in [27] to implement the
GPSR-BB. In order to ensure convergence of the solution,
the iterations are limited to 104. The choice of λ is important,
which determines the image quality and computation speed.
The selection of λ can be determined by the sparse degree
of the problem which ‖STy‖∞ reflects. In this paper, we set
λ = 0.01‖STy‖∞.

C. GPSR-BB BASED ON TRUNCATED SINGULAR VALUE
DECOMPOSITION METHOD (TGPSR-BB)
A solution to the problem can be found effectively through
projection in a low-dimensional subspace. A TSVDmethod is
a commonly used projection method, which directly modifies
the problem into the rank deficient approximation [10].
An ERT solution is usually unstable, which is sensitive to the
measured noise. Using the SVDof S = U3VT , we can obtain
a truncated operator

Sw = Uw3wVT
w,

where Uw = [u1, · · · ,uw],Vw = [v1, · · · , vw], and 3w =

diag(σ1, σ2, · · · , σw). The small singular values of S can be
neglected for the noise involved.

The GPSR-BB based on the TSVD method (TGPSR-BB)
is as follows:

Step 0 (Normalization): SN ,ij =
Si,j∑m
i=1 Si,j

, let SN → S;

Step 1: Computing S = U3VT , S is m × n matrix.
Selecting the maximum w singular values and calculating
3w = diag(σ1, σ2, · · · , σw), σ1 ≥ σ2 ≥ · · · ≥ σw;

Step 2: The realization of the new sensitivity matrix

Snew = U
[
3w 0
0 0

]
VT

and then the adoption of new objective function
min
x
F(x) = 1

2‖Snewx− y‖22 + λ‖x‖1;
Step 3: Getting the solution based on the GPSR-BB

algorithm.
The selection of w is important to the solution of the

TGPSR-BB algorithm. The singular values for the Jacobian
matrix S are shown in Fig. 2. In this paper, we set w = 50.

D. GPSR-BB BASED ON KRYLOV SUBSPACE (KGPSR-BB)
A novel GPSR-BB method based on Krylov subspace is
presented for the real-time performance improvement of ERT.
To reduce computational time, the KGPSR-BB can project
S and y into the Krylov subspace. The Krylov subspace of
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FIGURE 2. Singular values for S.

dimension k is set up as [10]

Kk
(
STS,STy

)
≡ span

{
STy,

(
STS

)
STy,

(
STS

)2
STy,

· · · ,
(
STS

)k−1
STy

}
. (17)

To get the orthonormal subspace Wk , a Lanczos bidiag-
onalization method is utilized to complete the orthonormal
decomposition of Kk [28]. The method creates a lower bidi-
agonal matrix and two orthogonal matrices. The relationship
is

SVk = Uk+1Bk , (18)

where Uk+1 ∈ Rm×(k+1) stands for an orthogonal basis of
Kk+1

(
SST, y

)
, Bk ∈ R(k+1)×k stands for a lower bidiagonal

matrix, and the matrix Vk ∈ Rn×k is an orthogonal
basis of Kk

(
STS,STy

)
. Then the objective function can be

transformed to

g = argmin
g

{
‖SWkg− y‖22 + λ ‖Wkg‖1

}
, (19)

x = Wkg. (20)

We setWk = Vk , the equation (19) can be written as

‖SVkg− y‖22 + λ ‖Vkg‖1
= ‖Uk+1Bkg− y‖22 + λ ‖Vkg‖1

=

∥∥∥UT
k+1 (Uk+1Bkg− y)

∥∥∥2
2
+ λ ‖Vkg‖1

=

∥∥∥Bkg− UT
k+1y

∥∥∥2
2
+ λ ‖Vkg‖1 . (21)

The alternative form of the equation (19) is

g = argmin
g

{∥∥∥Bkg− UT
k+1y

∥∥∥2
2
+ λ ‖Vkg‖1

}
. (22)

In equation (22), Vk and Uk+1 can be calculated by the
Lanczos bidiagonalization method. The GPSR-BB based on
Krylov subspace (KGPSR-BB) solves the inverse problem of
ERT by four steps:
Step 0 (Normalization): SN ,ij =

Si,j∑m
i=1 Si,j

, let SN → S;
Step 1: Projecting S and y to low dimensional subspaces;
Step 2: Solving g by the GPSR-BB method;

FIGURE 3. Singular values for S and Bk on a logarithmic scale.

Step 3: The inverse projection transformation of the
solution in Step 2 to obtain the real solution x = Vkg.
It is worth noting that the first two steps can be done before

iteration to cut the computational time. The singular values of
S decay quickly to zero owing to the ill-posedness. According
to Fig. 3, we can see that the first 55 singular values of the
bidiagonal matrix Bk and the matrix S are almost the same.
Therefore, we set k = 55.

IV. RESULTS
The proposed method was proved effective by simulation and
experimental results. A brief introduction on TIK, TGPSR-
BB, KGPSR-BB for the Tikhonov regularization, GPSR-BB
based on TSVD method, and GPSR-BB based on Krylov
subspace method is included.

A. NUMERICAL SIMULATION
The simulations were carried out in a COMSOLMultiphysics
and Matlab environment on a PC equipped with an Intel
Core i7 CPU of 2.7 GHz. The result of the forward problem
calculation in the 3D model is more accurate than that in a
2D model. Thus, a 3D ERT sensor model is constructed in
COMSOL to solve the forward problem. As shown in Fig. 4,
the radius of the model is 10 cm, and the height is 10 cm.
16 circular electrodes with a radius of 1cm are located around
the cylinder at the central height. A mesh with tetrahedron
of the homogeneous field is generated for the forward
problem, as shown in Fig. 4(a). Fig. 4(b) shows that the mesh
with 812 square elements is used for the inverse problem.
The five 3D models of the ERT sensor are established in
Fig. 5. The tetrahedral mesh number can be obtained in the
forward problem, which is 67473, 68747, 70120, 67520, and
64419 inmodels (I), (II), (III), (IV), and (V), respectively. The
measured voltages on boundary sensors are simulated by the
complete electrode model made to have adjacent stimulation
andmeasurement patterns. In the simulation, the conductivity
of the background and the objects are set as 1 S/m and 3 S/m,
respectively.

The Landweber, TIK, TwIST [29], GPSR-BB, TGPSR-
BB, and KGPSR-BB were used to image the middle part
of the ERT sensor, as shown in Fig. 6. Selections of λ
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FIGURE 4. Meshes. (a) Mesh for the forward problem of ERT. (b) Mesh for
the inverse problem of ERT.

FIGURE 5. 3D modeling of ERT sensor.

TABLE 1. Values of λ for different methods.

FIGURE 6. Section of 3D modeling.

for different methods are listed in Table 1. The number
of iterations for the Landweber and the TIK is selected as
100 unanimously.

The criteria adopted for a quantitative evaluation of the
result are the correlation coefficient (CC) and the mean
square error (MSE) between the image and the model. The
definition of CC and MSE can be seen in (23) and (24),
respectively [20]. The higher the CC and the lower the MSE

FIGURE 7. Image reconstructions of simulated data with 1% noise,
in conductivity contrast of 1:3.

mean, the more favorable results of image reconstruction.

CC =

∑N
i=1 (xi − x)

(
xi∗ − x∗

)√∑N
i=1 (xi − x)2

∑N
i=1

(
xi∗ − x∗

)2 , (23)

MSE =
‖x− x∗‖22

N
, (24)

where x∗ is the real conductivity, x is the calculated one, x
and x∗ are the mean values of x and x∗ respectively. N is the
number of image pixels.

1) EFFECT OF NOISE INTENSITY
The reconstruction images are sensitive to measurement
noise. This section tests the influences of different levels
of noise on the six methods. Since the noise is inevitable
in practical cases, the Gaussian random noise is added to
the measured voltages in actual experiments as a noise
simulation. The five conductivity distributions are shown in
Fig. 7. The reconstruction results in Fig. 7 are conducted from
the simulated data against 1% noise. The edge-preserving
performance of KGPSR-BB is better than the other methods.
3% noise is added to the measured voltages to examine the
noise robustness of the six methods. The reconstructions of
the six methods are shown in Fig. 8. A few disturbances are
seen in the reconstructed images compared with the images
in Fig. 7. It can be seen from the results that the reconstructed
image quality of TGPSR-BB is improved compared with
GPSR-BB, and the KGPSR-BB presents the best quality of
the reconstructed image. Fig. 8 shows that the results of
reconstructed images based on KGPSR-BB are more stable,
offering better quality in consideration of relatively high-level
noise added to the measured voltages. Thus the KGPSR-BB
is robust to noise.

For a quantitative evaluation of the reconstructionmethods,
the CC and MSE as defined in (23) and (24) are calculated
corresponding to the images displayed in Fig. 9 and
Fig. 10, respectively. Fig. 9 illustrates the CCs of the results
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FIGURE 8. Image reconstructions of simulated data with 3% noise,
in conductivity contrast of 1:3.

TABLE 2. The computational time of the methods for simulation with 1%
noise.

in Figs. 7-8, which shows that the CC of a particular
conductivity distribution decreases with the increase of noise
level. Furthermore, the CC value obtained by KGPSR-BB
changes minimally. With the increase of noise intensity, the
CC value of KGPSR-BB is significantly higher than that
of other methods. It can be seen that the added noise has
no significant adverse effect on the image quality of the
KGPSR-BB for all models. Fig. 10 shows the MSE value of
KGPSR-BB is usually the smallest among the six methods
with the noise of different levels. Consequently, the result of
MSE is another evidence for the effectiveness and robustness
of the KGPSR-BB. Comparison between Fig. 9 and Fig. 10
shows that the CC and MSE changes of the KGPSR-BB are
the smallest. Hence, the method has the highest tolerance.

Table 2 and Table 3 show the computation time for different
methods employed in Figs.7-8. It can be seen from Table 2
and Table 3 that the KGPSR-BB has a shorter imaging time
than Landweber, TIK, and GPSR-BB methods, which means
improved real-time performance.

2) EFFECT OF ELECTRICAL CONDUCTIVITY CONTRAST
As the conductivity of background and inclusions can also
affect the image quality, different conductivity contrasts are
required to test the proposed method. The parameters for the
six methods are set the same as before. The conductivity of
inclusions are set respectively to 10000 S/m for model (I),
1000 S/m for model (II), 100 S/m for model (III), 10 S/m

FIGURE 9. The CCs of the six methods for simulation with different noise
levels, in conductivity contrast of 1:3. (a) with 1% noise (b) with 3% noise.

TABLE 3. The computational time of the methods for simulation with 3%
noise.

for model (IV), and 0.1 S/m for model (V). The background
conductivity is still 1 S/m for the five models.

The reconstructed images with 3% noise are plotted in
Fig. 11. The sixmethods can reconstruct the surrounding con-
ductivity distributions. It can be seen that the reconstructed
images of the KGPSR-BB are with the slightest changes.
Comparison between Fig. 8 and Fig. 11 indicates that the
KGPSR-BB is more robust to the noise of 3% intensity than
the other methods at these conductivity contrasts.

The quantitative results of the images are shown in
Fig. 12. It can be seen in Fig. 12 (a) that the CC value of
KGPSR-BB is usually the highest among the six methods
considering conductivity contrasts. Fig. 12(b) shows that the
MSE values of the proposedmethod are the smallest in the six
algorithms presenting the best image quality consequently.
A comparison among Fig. 9(b), Fig. 10(b), and Fig. 12 show
that for most cases, theMSE and CC obtained by KGPSR-BB
are nearly the same or within a slight range fluctuation.
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FIGURE 10. The MSEs of the six methods for simulation with different
noise levels, in conductivity contrast of 1:3. (a) with 1% noise (b) with 3%
noise.

FIGURE 11. Image reconstructions with 3% noise when the conductivity
ratios of background and inclusions are set as 1:10000, 1:1000, 1:100,
1:10, and 1:0.1.

The above analysis shows that the KGPSR-BB remains
efficient against the background of different conductivity
ratios.

3) EFFECT OF MESH SIZE
Another important factor, and one that influences the recon-
struction images quality is the mesh size. The reconstructed

FIGURE 12. The CCs and MSEs of the six methods for different
conductivity ratios with 3% noise. (a) CCs (b) MSEs.

mesh with 2472 square elements in a grid of 56×56 lines can
be used to test the method’s efficiency.

The simulated data from Fig. 8 are reconstructed in Fig. 13.
It can be seen from Fig. 13 that the images of the KGPSR-BB
have the best image quality. Comparison between Fig. 8 and
Fig. 13 indicates that the KGPSR-BB is more robust than the
other methods for different mesh sizes.

Table 4 and Table 5 show the CCs andMSEs corresponding
to images in Fig. 8 and Fig. 13, respectively. They also
indicate that the KGPSR-BB delivers better reconstruction
results than the other methods.

As the reconstructed pixel number increases, more com-
putation time is required. Table 6 shows the computation
time for the methods in Fig. 13. It can be found in Table 6
that KGPSR-BB still gives the best real-time performance.
Therefore, it is worth noting that the KGPSR-BB can strike
a great balance between the computational time and the
mesh size.

B. EXPERIMENTAL RESULTS
Static experiments on liquid/solid two-phase flow mea-
surement were carried out to evaluate the performance of
the KGPSR-BB. Fig. 14 shows the ERT system with the
16-electrode sensor designed by Tianjin University [30]. The
excitation current in the ERT system is 2.5mA, 64 kHz
sinusoidal AC. The size of the square electrode is 8×30 mm.
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TABLE 4. CCs for 812 square elements in Fig.8 and 2472 square elements in Fig.13.

TABLE 5. MSEs for 812 square elements in Fig.8 and 2472 square elements in Fig.13.

FIGURE 13. Image reconstructions with 3%noise by using a mesh with
2472 square elements.

TABLE 6. Computational time (s) of different methods in Fig. 13.

The parameters of the four experimental models are listed
in Table 7. Materials in experiments, including perspex rods,
the hollow tube, and Al2O3 particles, are placed in water (the
conductivity of the water is 2.8× 10−3 S/m). To facilitate

FIGURE 14. Experimental setup.

the positioning of perspex rods, we prepare a bracket via
a 3D printer. The dimensions of the bracket are shown in
Fig. 15. Six methods are used for image reconstruction.
The values of λ for the TIK, TwIST, GPSR-BB, and
KGPSR-BB methods are listed in Table 1. For TGPSR-
BB, the regularization parameters are λ = 0.01‖STy‖∞
(model I, II, IV), λ = 0.1‖STy‖∞ (model III). The dimension
of the Krylov subspace is set as 55.

The true distributions and reconstruction results from
experimental data, using six methods, are shown in Fig. 16.
The results show that the KGPSR-BB has superiority in pre-
serving the edges of discontinuous parts in the reconstruction
image. Compared to other methods, the reconstructed images
of the KGPSR-BB have the best quality in both position
and size.

152920 VOLUME 9, 2021



S. Li et al.: Fast Barzilai-Borwein GPSR Algorithm Based on 3D Modeling

FIGURE 15. Dimensions of the bracket (mm).

FIGURE 16. Reconstruction images from experimental data.

TABLE 7. Parameters of the practical models.

TABLE 8. Computational time (s) of different methods in Fig. 16.

The computational time is listed in Table 8. From the
results, it can be seen that the KGPSR-BB can effectively
reduce the computational time. Therefore, the KGPSR-BB
can achieve effective reconstruction and improve real-time
performance at the same time.

V. CONCLUSION
This paper presents an improved GPRS-BB method based
on 3D modeling for ERT for fast and accurate ERT image
reconstruction. Two regularization methods, the Krylov
and GPSR-BB, are combined to improve the real-time
performance of the method. A preconditioner based on
normalization promotes the quality of reconstructed images.

Another L1 regularization method (TGPSR-BB) plays a role
in comparison.

The KGPSR-BB method is found effective based on
simulations and experiments. Five other methods are used
to compare KGPSR-BB for different conductivity contrasts,
noise intensities, and mesh sizes. By projecting S and y to a
lower subspace, the KGPSR-BB reduces the computational
time and presents better images because the CCs of KGPSR-
BB are larger than the other methods. At the same time, the
MSEs of KGPSR-BB are lower than the other methods. Four
experimental models were adopted in the experiment, and the
imaging results prove that KGPSR-BB can maintain a good
balance between image quality and computational time.

In future work, the KGPSR-BB of this paper can be further
extended to the improvement of other L1-normmethods. This
effective sparse regularization method would work for 3D
image reconstruction in ECT and other kinds of tomography.
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