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ABSTRACT Decentralized proportional-integral-derivative (PID) control systems are widely used for
multiple-input multiple-output (MIMO) control problems. However, decentralized controllers cannot sup-
press the plant interactions in multivariable systems, which are addressed in the controller tuning phase.
In this paper, a decentralized PID tuning method is proposed in order to minimize the undesirable effects of
the coupling between the inputs and outputs of the closed-loop system. For this purpose, the PID parameter
tuning method solves a nonlinear optimization problem. This optimization problem is formulated with the
criteria of the performance, robustness and multivariable stability of the closed-loop system. A single design
parameter is required to specify the trade-off between performance and robustness. Simulation studies are
conducted to demonstrate the effectiveness of the proposed method. The performance is compared to that
of alternative tuning techniques from the literature. Results show that the proposed approach is a feasible
candidate for industrial application, as it is simple to implement and capable of addressing robustness and

stability concerns of plant operators.

INDEX TERMS Decentralized controller, multivariable processes, optimization, PID tuning.

I. INTRODUCTION

Decentralized proportional-integral-derivative (PID) con-
trollers are frequently used in the regulatory control layer of
industrial process plants. Single-input single-output (SISO)
control is the dominating control structure in the industry for
many reasons: it maintains the simplicity of the control sys-
tem; it is easier to maintain; there are fewer tuning parameters
compared to full multivariable controllers; it provides flexi-
bility; and it can easily be made fault-tolerant [1]. Moreover,
even when multiple-input multiple-output (MIMO) control
strategies are used, such as model predictive control (MPC),
they typically operate in a supervisory mode with decentral-
ized PID controllers at the lower level [2].

Regardless of their practical benefits, single-loop con-
trollers cannot suppress the interactions between variables
in MIMO processes; thus, every system input affects every
system output to some extent, unless static and dynamic
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relationships between a given input-output pair are nonexis-
tent. Since the SISO controllers interact with each other, tun-
ing each loop independently is not recommended. Applying
SISO tuning methods for a MIMO system often leads to poor
performance and stability [3].

In this paper, a nonlinear constrained optimization problem
is proposed to compute decentralized PID parameters, con-
sidering the trade-off between performance and robustness.
The proposed problem consists of minimizing the distur-
bance effects in the output of each loop due to changes in
the operating point of coupled loops. For this purpose, the
chosen cost function is the sum of the integral of the absolute
error (IAE) from each output during a disturbance due to
step set-point changes. The robustness to modeling errors for
each loop is considered based on a constraint on the peak
of the sensibility function. Moreover, the overall stability is
guaranteed by a constraint based on the biggest log-modulus
criterion. Although we cannot guarantee that it finds the
globally optimal controller parameter values, through many
examples, the proposed method always meets the robustness
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requirements specified by the designer. To the best of our
knowledge, no studies in the literature combine these three
criteria into a single optimization problem to tune decentral-
ized PID controllers.

Some benefits of the proposed method, compared to other
approaches from the literature, are as follows: (i) this method
is not restricted to diagonally dominant processes, (ii) model
reduction is not necessary, (iii) high-dimensional processes
are not an issue, (iv) all controller parameters are computed at
once with guaranteed overall stability, (v) no detuning factor
is necessary, and (vi) a robustness and performance trade-off
is specified for each loop by only one tuning parameter, which
varies based on the operating settings of the process.

The remainder of this paper is structured as follows.
In Section II, a literature review of the main contributions
to decentralized PID tuning using optimization is discussed.
Section III outlines all assumptions regarding the multivari-
able system and the control system structure. Section IV
introduces the performance and robustness criteria used
together in the constrained optimization problem stated in
Section V. Simulation results are presented in Section VI,
followed by the conclusions in Section VII.

II. LITERATURE REVIEW
Several researchers have paid attention to the tuning of decen-
tralized PI/PID controllers over the years. The biggest log-
modulus tuning (BLT) method [4] is a well-known method
that considers the interactions among the loops. The BLT
method designs controllers by applying the Ziegler-Nichols
method to the diagonal transfer functions and then detunes
them by introducing a single detuning parameter to meet the
stability criterion of the biggest log modulus. This method
provides reasonable preliminary controller settings with guar-
anteed closed-loop stability. Chen and Seborg modified the
Ziegler-Nichols tuning rules based on the ultimate point for a
Gershgorin band in [5], but their method still uses a detun-
ing parameter, similar to the BLT method. [6] developed
an iterative method for decentralized PID controller tuning
based on the effective open-loop transmission from input
u; to output y; and phase/gain margin specifications. The
iterative procedure solves only one optimization problem for
each controller and is applied to all loops, and its solution
is obtained by linear programming. In the same vein, [7]
proposes an iterative design methodology of multiloop PID
controllers. The proposed method uses a frequency response
matrix representation of the system to avoid process approxi-
mations. Furthermore, different frequency domain robustness
margins are used as specifications. The EOP approach was
also used in [8] for high dimensional MIMO systems but was
restricted to PI controllers. Alternatively, to reduce the effect
of process interactions in a decentralized control system, [9]
proposed the use of the double-loop multiple scale control
scheme (DL-MSC).

Several studies from the literature have cast the PID tuning
problem as an optimization problem in order to improve
the performance of the closed-loop system by means of
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decentralized PID tuning. In [10], the concept of Gershgorin
bands was used, and a nonlinear optimization problem was
formulated with constraints on stability margins, but the
method was limited to weakly coupled processes. In [11],
a nonlinear optimization problem was formulated, but the
constraints were related to performance indices such as the
maximum overshoot and maximum controller limit deviation
for each loop; however, no overall stability was considered for
the MIMO closed-loop system. In [12], two linear program-
ming approaches were proposed to compute the PID param-
eters, where the loop interactions were taken into account
by the Gershgorin bands and the effective open-loop process
concept, but each loop had to be tuned independently.

Centralized PID approaches are also present in the litera-
ture, and in contrast to the previously discussed decentralized
approaches, they are often realized by means of a decou-
pler or some other mathematical tool that tries to mitigate
variable coupling effects. However, a decoupler makes the
structure of the control system more complex and highly
dependent on the plant models due to the need to know the
process model to design the decoupler. [13] studied central-
ized PID control of TITO (Two-Input Two-Output) systems.
The method proposed by the authors designs PI controllers
for the main diagonal based on [14] and decouplers for
the off-diagonal dynamics based on model approximations.
The combination of both effects can successfully control a
coupled tank system, delivering performance and robustness
in servo and regulatory operation. [15] extended the BLT
method to centralized control of MIMO systems. In [16],
the resulting controller is based on the internal model con-
trol (IMC) structure. The process is identified as a FOPDT
transfer function and can account for disturbances and model
uncertainty. In contrast, [17] presents a novel centralized
controller to MIMO industrial processes with heavy inter-
actions and significant time-delays. The main drawback of
implementing a centralized PID approach is that controller
stability is only guaranteed if all of the loops are permanently
closed. In industrial practice, this is a weak assumption since
keeping some loops in manual mode or out of service is
common due to maintenance procedures, while other loops
may be in regular operation. In this paper, only the design of
decentralized multivariable control systems is considered.

In the vein of multiobjective optimization, [1] utilized an
evolutionary algorithm (bat algorithm) to design a fractal
PI/PID controller for TITO. In [18], the design and tuning of a
PI controller for a nonlinear TITO process based on different
optimization approaches, such as a genetic algorithm (GA)
and particle swarm optimization (PSO), was investigated.
The authors demonstrated that for the nonlinear case, the
GA yields faster tracking performance and less overshoot
than the PSO-based solution. This result might indicate that
a GA is preferred for tuning purposes in the presence of
high nonlinearities and model mismatch. In contrast, [19]
presented an optimization method of tuning decentralized
PI/PID controllers based on GA. Simulation results demon-
strate that the decentralized PI control was compatible to the
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referenced method while the decentralized PID control was
better than the referenced method.

In [20], the authors recast the MIMO PID tuning problem
as the calculation of an optimal detuning factor by means
of a differential evolution algorithm. This strategy consid-
erably reduces the search space, making the method faster,
especially for larger order systems. The authors illustrated
the technique on a 4 x 4 system, highlighting its computa-
tional efficiency, which can lead to successful applications
in complex and time-sensitive industrial applications. The
fractal order PID approach works better for some processes
according to the authors. [21] utilized a GA to design fractal
PID controllers for MIMO systems; however, the resulting
optimization problem became computationally expensive due
to the high number of decision variables. Meanwhile, [22]
utilized a multiobjective variant of the PSO algorithm to
address the same problem. Results showed that obtaining
the set of Pareto optimal solutions is difficult for such a
problem. Also based on optimization problems, [23] pro-
posed a method to design decentralized and centralized PID
controllers. In this case, the objective is to minimize the
low-frequency sensitivity of the closed-loop system using
LMI. [24] developed a tuning technique for centralized and
decentralized PI controllers based on goal attainment. The
centralized approach dramatically increases the closed-loop
performance in an open-loop unstable TITO system, but the
drawback of the goal attainment method is that it requires a
priori definition of the goals, and the final solution is heavily
dependent on this definition.

Ill. PROBLEM STATEMENT
Consider the MIMO system with 7z inputs (actuators) and n
outputs (sensors) represented by the transfer function matrix

Gr(s) G Giu(s)
Goi(s)  Gaa(s) Gon(s)

G(s) = : : : ) (D
Gni(s) Gna(s) Gpn(s)

where Gj;(s) represents the system dynamics between the
input j and output i, which is assumed to be linear time
invariant and strictly proper.

The structure of the decentralized PID controller is given
by

Cis) 0 ... 0
0 Ca(s) ... 0

Co=| . L @
0 0 Cu(s)

The closed-loop system is shown in Figure 1. The vector
r denotes the set-points, u is the vector of system inputs
(manipulated variables), and y is the vector of process outputs
(controlled variables). The control structure is assumed to
have been correctly chosen in a previous design based on
some measure of interaction, for instance, using the relative
gain array (RGA) [25] or one of its variants.
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FIGURE 1. Decentralized control system.

The PID controller considered in this paper is formulated

as
ki- kd-S

qm=@+f+%iﬁ, 3)
where kp ;o k,'j, and kdj are the proportional, integral and deriva-
tive gains, respectively, for each j controller, j = 1,...,n.
The constant 7y; > 01s the derivative action time constant and
is assumed to be fixed. Although the PID formulation in (3) is
considered in this paper, the proposed method is not restricted
to this formulation. Therefore, different PID formulations
can be directly used without requiring parameter conversions.
This feature is particularly interesting for industrial practice
since commercially available PID packages might take dif-
ferent parametrizations.

The problem can be stated as follows: Under the sys-
tem structure shown in Figure 1, define the PID controller
parameters in order to minimize the disturbance effects on
the outputs due to set-point changes in coupled loops. For
this, the trade-off between performance, robustness and mul-
tivariable stability are considered into a single optimization
problem.

IV. EVALUATION CRITERIA

The proposed method is based on three criteria, each of which
is related to the essential performance and robustness charac-
teristics of the multivariable system. The aim is to reduce the
disturbance effects on the outputs due to set-point changes in
coupled loops. Each of the chosen criteria is presented in the
following subsections.

A. THE PERFORMANCE CRITERIA

Due to interactions in the MIMO process, a change in
the input of loop i affects not only its corresponding out-
put but also the other outputs of the process. This change
in loop i is considered as a load disturbance by the
other loops. For multivariable systems, disturbance rejec-
tion due to coupling is one of the main concerns since
the disturbances directly affect the performance of the
system.

The integral of absolute error (IAE) index is commonly
used to characterize the load disturbance response [26]. Here,
the IAE index is used to quantify the disturbance effects on
the loop outputs due to the set-point change in the coupled
loop. In particular, the IAE is computed for the load distur-
bance effects on the i — th output caused by a unit step change
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in the j — th set-point, i # j. Thus, the suggested criterion can
be defined as

IAE;; = /OO le;(t)|dt, “4)
0

where ¢;(t) = ri(t) — yi(t). The variable ¢ indicates the
time.

To illustrate the disturbance effect due to the set-point
change in the coupled loop, consider the Wood-Berry distil-
lation column [27]. This process is given by

128¢7  —18.9¢7
16.7s + 1 21s +1
G(s) = > | 5)
6.6~ "% —19.4¢77
10.9s + 1 14.45 + 1
The following PI controllers, proposed by [4], are used:
1
C; =037511
! < + 8.29s)
1
C=—-0075({1+——.
2 ( + 23.60s>

As shown in Figure 2a, a unit step change is applied in
the set-point of loop 1. Due to the transfer function G3, the
change in loop 1 also affects the output of loop 2. However,
the controller C; acts to reduce this disturbance. Similarly,
the controller C; acts to reduce the effect of a disturbance in
uy on yp due to a unit step change in the set-point of loop 2
(see Figure 2b).

Note that the TAE value, as defined in (4), is equal to
the area under the curve of the load disturbance response,
as illustrated in Figure 2. In this way, the IAE index
can be used to measure the disturbance effects on the
loop outputs due to the set-point change in the cou-
pled loops. The more aggressive the PID controller tuning
for changes in the set-point is, the higher the effects of
the disturbances in the coupled loop. In contrast, smooth
controller tuning produces a slow response to load dis-
turbances. Therefore, for all closed loops, the trade-off
between performance and robustness should always be
considered.

B. THE ROBUSTNESS CRITERIA
Robustness is an important feature of the closed-loop
system since industrial processes operate under a wide
range of operating conditions. In such cases, the controller
should be able to stabilize the system for all operating
conditions [28].

To define the robustness criteria, consider the loop transfer
function for the j — th loop given by

Lij(s) = Gj(s)C(s). (6

The sensitivity function for the j — th loop is defined as

Sj(s) = (N

1+ Lj(S).
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FIGURE 2. Responses to a unit step change in the set-point of the loops.

The maximum sensitivity is then given by
[Sjlloe = max [Sj(jw)| < Ms; Vo € RT, (8)

where w is the frequency in [rad /s] and Ms; is an upper bound
specification.

The maximum peak of the sensitivity function provides a
useful measure of the general robustness [29]. In this way,
the robustness criterion is defined as the largest value of
the sensitivity function and is applied as an optimization
constraint. This criterion provides good performance in terms
of robustness with respect to the uncertainties in both the
process model and disturbance. As a geometric interpretation,
the value of ||Sjll is the inverse of the shortest distance
from the Nyquist curve of the loop transfer function to the
critical point (—1, 0). Figure 3a illustrates the loop transfer
function from the same process for different Mg, values.
As shown in the Nyquist plot, for Mg, = 1.45, the loop
transfer function L;(s) is further from the critical point (-1, 0)
than that for Mg, = 2.0. Note that the circle expands with
decreasing ||S;|| oo, resulting in greater closed-loop robustness
and smoother output response to changes in the set-point,
as illustrated in Figure 3b. Thus, the robustness constraint is
fulfilled if the open-loop Nyquist curve does not enter the
Ms; circle. The closer the curve is to the critical point, the
more aggressive the control system response is. An overview
of frequency domain robustness constraints is presented
in [30].

From the restriction in (8), the robustness of the MIMO
system is not guaranteed. The main reason for establishing
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FIGURE 3. Loop characteristics for different Mg values.

the robustness criterion for the individual loops is that this
criterion is used to design a faster or smoother closed-loop
response depending on process requirements. Additionally,
the robustness is guaranteed in the case that one or more loops
are opened, which is a common practice in the industry, for
instance, for loop maintenance.

The trade-off between performance and robustness varies
depending on the control problem. Therefore, having a design
parameter to change the properties of the closed-loop system
is desirable. High values of Mj; lead to decreased robustness.
According to [26], typical values of Mg, are in the range of
1.2 t0 2.0. Ms; values larger than 4 lead to poor performance
as well as poor robustness. The selection of Mg, should
take into account the model uncertainty. If the model uncer-
tainty is significant, then Mg; should be small (conservative
closed-loop response).

For the proposed design method, the upper bound Ms; on
the peak of the sensitivity function is defined as the single
design parameter. Once the peak of Mg; is defined, gain and
phase margin specifications are unnecessary. For instance,
Mg; = 2 implies a gain margin of GM > 2 and a phase gain
of PM > 30. From a practical point of view, the definition of
only one value to indicate robustness for each loop might be
more acceptable by process control engineers.
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C. THE MULTIVARIABLE STABILITY CRITERIA
Guaranteed stability of the individual loops is not a sufficient
condition to ensure the stability of the multivariable closed-
loop system. Interactions between the loops may produce
undesirable control actions, which may lead to overall system
instability [29].

To ensure system stability when all single loops are closed,
consider the characteristic equation of the multivariable
closed-loop system:

det [1 + G(jw)C(jw)] = 0. )

To analyze the encirclements of the closed-loop process
with respect to the critical point (—1, 0), one must subtract 1
from (9) and obtain the scalar function

—1 + det [I + G(jw)C(jo)] . (10)

W(w) =

The function (10) can be plotted in the complex plane as a
function of frequency. The closer W (jw) is to the critical point
(—1, 0), the closer the multivariable system is to closed-loop
instability. Therefore,

W (jw)
— 11
1 + W(w)
is equivalent to the closed-loop servo transfer function for

SISO loops.

To achieve stability for the overall system, [4] proposed
the biggest log modulus, which is based on a multivari-
able stability criterion. This stability criterion is defined as
follows:

Wijew) } . (12)

14+ W(w)

The biggest log modulus is a measure of how far the system
is from closed-loop instability. In [4], it was suggested that for
I" equal to 2n (where n is the number of loops to be tuned), the
system provides reasonable responses for set-point changes
and load disturbances. In this paper, the criterion I' is
applied as an optimization constraint, and its upper bound
is 2n.

I'(jw) = max {20 log
w

V. THE OPTIMIZATION PROBLEM
Taking all three criteria described in Section IV, the con-
strained optimization problem is formulated as follows:

mlnlmlze Z Z IAE;;

-’ i=1j=1,
i#]

subject to [|Sj(jw)llcc < Ms;,

I'(jw) < 2n, (13)

which can be used to design all of the controllers Cj(s),
j = 1,...,n. Note that the only design parameter in the
proposed technique is Ms;, the upper bound on the peak of
the sensitivity function for each j — th loop.

The solution of the optimization problem in (13) is
obtained by using the active-set method (see [31] for details),
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which is implemented using the fimincon routine from the
MATLAB® optimization toolbox.

Due to the chosen cost function, the solution of the pro-
posed optimization problem is not trivial. Its degree of diffi-
culty depends on the number of control loops involved, which
defines the number of decision variables of the problem.
Additionally, high PID gain values may yield the fastest
closed-loop tracking responses, but they may also incur large
disturbances in the coupled loops. On the other hand, low PID
gain values may lead to a slow response to load disturbances.
Thus, the optimal solution is the one that better addresses the
trade-off between performance and robustness considering
the process as a whole.

The proper definition of the initial controller parameters is
essential for a fast convergence of the proposed optimization
problem. This initial controller ensures that the closed-loop
system is in the stability region. For this, we recommend
the use of the method formulated by [32]. However, other
methods of tuning PID controllers can be used.

VI. SIMULATION RESULTS

In this section, three examples are considered to demon-
strate the performance of the proposed method compared
with those of other well-known methods. To ensure a fair
comparison, the performance and robustness of the control
system are measured using the evaluation criteria described
in Section IV.

The examples share some common features. A grid of
1000 logarithmically spaced frequencies between w; =
1072 [rad/s] and Wy, = 10? [rad/s] is used in all examples.
The initial guesses of the controller parameters are defined
using the method proposed in [32]. For this, only the SISO
model of the main diagonal of the multivariable process is
considered.

In all cases, the IAE due to a unit step disturbance in the
set-point is computed considering the entire simulation time.
Additionally, the performance of the controllers is assessed
using the cost criterion given by

n n
W= "IAE.
i=1 j=1,

i#]

Another performance index used in all cases to evaluate
the designed controllers is the sum of the absolute input
increments (SII) of input i over the simulation horizon T,
calculated as

T
SH; = ) luik) — uik — D).

k=0

The greater the SII index, the more abrupt the changes in
the variable manipulated by the controller are. An aggressive
change of the manipulated variable may impair the lifetime
of the actuator, and the actuator cannot reach such rapid
variations in some cases.
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TABLE 1. Initial controller parameters - example 1.

Controller kp ki kq Ty
C1(s) 0.24 0.05 0.03 0.10
Ca(s) 0.43 0.22 0.04 0.10

TABLE 2. Controller parameters for the compared methods - example 1.

Controller Method kp k; kq Ty
BLT 0.22 0.10 0.00 0.00
C1(s) Chen-Seborg  4.77 3.27 0.00 0.00
Proposed 046 0.12 0.04 0.10
BLT 0.18 0.05 0.00 0.00
Ca(s) Chen-Seborg  1.19 0.54 0.00 0.00

Proposed 0.16 0.06 0.00 0.10

TABLE 3. Robustness and performance parameters - example 1.

Method [Silloo  IIS2]loo r v
BLT 1.23 1.20 4.03  1.59
Chen-Seborg 1.56 1.20 3.88 0.66
Proposed 1.60 1.18 274 0.95
A. EXAMPLE 1

Consider the following TITO process model of an industrial
scale polymerization reactor developed by [33]:

2280, —1164 .
_ 2289 op LG4
| @S+ (18075 + 1)
CO=1"4680 . 580 ow |

Q1745+ 1)° (1801s+ )¢

(14)

where the two outputs y; and y, are measurements represent-
ing the reactor conditions and the two inputs # and u; are the
set-points of two reactor feed flow loops.

The proposed tuning method provides the PID controllers
shown in Table 2. The upper bounds for this example are
Ms, = 1.60 for loop 1 and Mg, = 1.20 for loop 2. These
maximum sensitivity values are chosen to obtain a faster
response for loop 1 and a smoother response for loop 2. The
initial controller parameters are presented in Table 1.

For comparison, controller parameters are computed for
the BLT [4] and Chen-Seborg [5] methods, and the results
are also presented in Table 2. These methods are restricted
to PI controllers. Additionally, a decoupler D = G~1(0)
must be considered for the Chen-Seborg case. Although the
comparison is unbalanced when considering a decoupler for
just one method, it shows the competitiveness of the proposed
method even in this scenario.

The robustness and performance measures are provided in
Table 3. The IAE values of each loop subjected to a set-point
change are given in Table 4. As can be seen, the proposed
method presents lower values of the IAE index compared to
the other methods.

The Nyquist plots of the loop transfer functions are shown
in Figure 4 for loop 1 and loop 2. Note that for the proposed
method, the individual robustness index ||S||o is satisfied
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TABLE 4. Performance indices - example 1.

Overshoot  Settling
Controller Method (%) Time (h) IAE SII
BLT 23.59 3.96 2.18 0.62
Ci(s) Chen-Seborg 17.46 5.00 1.51 9.34
Proposed 11.51 2.68 1.06 1.28
BLT 0.00 16.04 11.60  0.46
Ca(s) Chen-Seborg 0.00 7.11 11.81  2.00
Proposed 0.00 12.11 11.46 0.41
Nyquist Diagram
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/ \
/ \
!
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\
-&% \
> ' /
I N\ /
% -0.5¢} N - ~
/
/
/
-1 , /
/ /
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(a) Loop 1(Ms, = 1.6).
Nyquist Diagram
0.5
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\
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2
x
<
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£ 057 \ /
£ N /
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Real Axis

(b) Loop 2 (Mg, = 1.2).

FIGURE 4. Nyquist plots of the loop transfer functions for the proposed
method (solid line), Chen-Seborg method (dashed line) and BLT method
(dashed-dotted line) of process G(s) in example 1. The robustness
constraint is shown by the blue circle.

for both loops. Moreover, the multivariable stability crite-
rion I' is lower than that of the compared methods, which
implies greater robustness when all loops are closed. The
lowest cost criterion W is achieved by the Chen-Seborg
method, which is not surprising because of the use of the
decoupler.

Unit set-point changes at time ¢t = 0 & for y; and at time
t = 10 h for y, are applied. The outputs y; and y, are shown
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FIGURE 5. Responses to a unit step set-point change for loop 1 (t = 0 h)
and loop 2 (t = 10 h) in example 1.
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FIGURE 6. Controller output due to a unit step set-point change for
loop 1 (t = 0 h) and loop 2 (t = 10 h) in example 1.

in Figure 5. For loop 1, the output response achieved by the
proposed controller has less overshoot and a shorter settling
time. The disturbance in loop 1 due to a set-point change
in loop 2 is better rejected by the proposed method than by
the BLT and Chen-Seborg methods. However, the disturbance
rejection in loop 2 due to a set-point change in loop 1 is better
for the Chen-Seborg controller; this is due to the fact that the
Chen-Seborg case is the only case in which a decoupler is
used. Figure 6 shows the controller outputs #; and up due to
unit step changes in the set-points. According to this figure,
the Chen-Seborg method has the most aggressive control
action (highest SII, see Table 4). Meanwhile, the proposed
method has a smoother control response, requiring less from
the actuator.

Note that although Figure 5 and the values of W in Table 3
indicate superior performance of the Chen-Seborg method in
terms of both output tracking and disturbance rejection due
to the coupling effects, the authors would like to emphasize
that a decoupler was used to achieve the calculated results.
The fact that the W achieved by the proposed method is
44 % greater than the W of the Chen-Seborg method with-
out a decoupler while, in similar conditions, the W of the
BLT method is 141 % greater than that of the Chen-Seborg
method exemplifies how competitive the proposed technique
is.
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TABLE 5. Initial controller parameters - example 2.

Controller kp k;
C1(s) 0.31  0.005
Ca(s) 0.42  0.006
C3(s) 0.21  0.011

TABLE 6. Controller parameters for the compared methods - example 2.

Controller Method kp k;
Lawal-Zhang  0.05 0.022
C1(s) Proposed  0.33  0.008
Lawal-Zhang 0.45 0.016
C2(s) Proposed  0.18  0.011
Lawal-Zhang  3.00  0.005
Cs(s) Proposed  0.52  0.008
B. EXAMPLE 2

In this example, the Shell heavy oil fractionator benchmark
developed by the Shell Company [34] is considered. This
multivariable process is highly constrained with strong inter-
actions among its control loops and large dead times. In [35],
the original system was modified by relaxing some of its
constraints. Thus, it used the transfer function matrix of a
3 x 3 system given by Eq. (15). The three output variable are
the top end point — y;, side draw end point — y, and bottom
reflux temperature — y3). Meanwhile, the three input variable
represent the top draw — i1, side draw — u» and bottom reflux
duty — u3. The physical details of this process can be found
in [35].

[ 4.05¢727  1.777¢7285  5.88e275 7]
505 + 1 60s + 1 505 + 1
Gls) = 5.39¢7185 57207145 6.90e~ 158 Cas)
505 + 1 60s + 1 40s + 1
4.38¢7205  4.42¢72% 7.20
L 335 +1 445 4+ 1 19s +1 -

The initial controller parameters are presented in Table 5.
The chosen upper bounds for the robustness constraint are
Mg, = 2.30, Mg, = 2.30, and Mg, = 1.20. For loops 1 and
2 the maximum sensitivity values are chosen to obtain a faster
response. Table 6 shows the controller parameters for the
proposed method as well as the PI parameters of the method
formulated by [35], which is referred to as the Lawal-Zhang
method in this work.

The measures of robustness and performance are presented
in Table 7. The performance cost function (V) obtains higher
values for the proposed method, 21.13 % higher compared
to the Lawal-Zhang method result. For both methods, the
multivariable stability criterion (I') is fulfilled, i.e., ' < 2n.
The IAE and SII values of each loop are given in Table 8.
Although the proposed controllers C; and C3 have higher IAE
values, note that the proposed method has lower SII values
for all loops. These results indicate that the control action
obtained with the proposed method is less aggressive than that
with the Lawal-Zhang method.

156864

TABLE 7. Robustness and performance parameters - example 2.

Method [Silloo IS2lloc [I93llcc T v
Lawal-Zhang 2.15 2.28 0.99 0.38  341.85
Proposed 2.29 2.28 0.99 4.01 414.09

TABLE 8. Performance indices - example 2.

Overshoot Settling
Controller Method (%) Time (min) IAE SII
Ci(s) Lawal-Zhan 29.52 386.12 193.30 4.21
LA Proposed 8.36 468.57 311.43 2.71
Ca(s) Lawal-Zhan 25.22 422.79 193.52  4.59
2 Proposed 15.69 465.71 190.01  2.40
Cs(s) Lawal-Zhan 0.00 1655.70 80.31 7.86
3 Proposed 0.02 530.09 163.75  2.46
TABLE 9. Initial controller parameters - example 3.
Controller kp ki kq Ty
Ci(s) 0.39 0.02 0.23 0.10
Ca(s) -0.13 —-0.22 —-0.01 0.10

The Nyquist plots of the loop gain transfer functions are
shown in Figure 7 for loops 1 to 3. According to the Nyquist
plots, the individual loop constraints are all satisfied for the
proposed method. Note that the Lawal-Zhang method does
not guarantee the stability of loop 1 individually. The stability
of loop 1 is guaranteed only with loops 2 and 3 closed. This
instability issue of loop 1 does not occur for the proposed
method. From a practical point of view, this is an advantage
of the proposed method.

Figure 8 shows the time responses to unit step changes in
the set-points. As can be seen, the proposed controller has a
smoother response than the Lawal-Zhang method. Figure 9
shows the controller outputs due to unit step changes in the
set-points. For all loops, the proposed method has a smoother
control response (lower SII) compared to the Lawal-Zhang
method.

C. EXAMPLE 3

Consider again the process given by (5). The Wood-Berry
binary distillation column plant is a multivariable system
that has been extensively studied. By applying the proposed
method, two PID controllers were designed for the robustness
constraints Mg, = 1.70 and Mg, = 1.70. These maximum
sensitivity values are chosen to obtain a similar robustness
condition for both loops. The initial controller parameters are
presented in Table 9.

For comparison, the controller parameters were also cal-
culated by the Boyd-Astrém method described in [23]. The
results of both methods are presented in Table 10.

The measures of robustness and performance are presented
in Table 11. The individual loop constraints are all satisfied
for the proposed method, which is also indicated in the
Nyquist plots in Figure 10. The performance cost function
of the proposed method is 42.25 % lower than that of the

Boyd-Astrom method. The log-modulus criterion (I') results
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FIGURE 7. Nyquist plots of the loop transfer functions for the proposed
method (solid line) and Lawal-Zhang method (dashed line) of process

G(s) in example 2. The robustness constraint is shown by the blue circle.

are similar for both methods. The performance indices of each
loop subjected to a set-point change are given in Table 12. For
both controllers, the proposed method results in lower values

of the TAE and SII indices.
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FIGURE 8. Responses to a unit step set-point change for loop 1 (t = 0),
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FIGURE 9. Controller output due to a unit step set-point change for
loop 1 (t = 0), loop 2 (t = 1000), and loop 3 (f = 1700) in example 2.

TABLE 10. Controller parameters of the compared methods - example 3.

Controller Method kp k; kq Ty
Ci(s) Boyd-Astrom 0.154 0.021 0.171 0.1
Proposed 0.327 0.050 0.173 0.5

Cn(s) Boyd-Astrom  —0.069 —0.014 —0.173 0.1
Proposed —0.104 —-0.016 —0.217 0.5

TABLE 11. Robustness and performance parameters - example 3.

Method [S1]loo  IIS2]loo r 34
Boyd-Astrom 1.17 1.33 3.46  12.87
Proposed 1.28 1.56 3.87 8.08

TABLE 12. Performance indices - example 3.

Overshoot Settling

Controller Method (%) Time (min) TIAE NI
C1(s) Boyd-Astrom 1.66 41.51 1549 2.34
Proposed 11.18 26.24 7.39 0.87

Ca(s) Boyd-Astrom 1.66 42.54 84.16 3.61
Proposed 1.84 26.18 83.99 1.24

The closed-loop responses to unit step changes in the
set-points for y; (at t = 0) and y, (at t = 80 min) are
shown in Figure 11. The simulation results indicate that the
set-point response in the y; output is faster for the proposed
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FIGURE 10. Nyquist plots of the loop transfer functions for the proposed
method (solid line) and Boyd-Astrém method (dashed line) of process
G(s) in example 3. The robustness constraint is shown by the blue circle.
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FIGURE 11. Responses to a unit step set-point change for loop 1 (t = 0)
and loop 2 (t = 80) in example 3.

method than that for the PID controller tuned using the Boyd-
Astrsm method. The disturbance response is significantly
better for the proposed method when the set-point of loop 2 is
changed. For the loop 2 output, the set-point and disturbance
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FIGURE 12. Controller output due to a unit step set-point change for
loop 1 (t = 0) and loop 2 (t = 10) in example 3.

responses are similar for both methods. Figure 12 shows the
controller outputs due to unit step changes in the set-points.
The proposed method has a smoother control response (lower
SII) compared to the Boyd-Astrom method.

VII. CONCLUSION

In this paper, we have proposed a method for tuning decen-
tralized PID controllers for multivariable systems. The tuned
parameters of the decentralized PID controllers are obtained
by solving a nonlinear optimization problem with two
robustness constraints. The proposed method can be applied
to higher-order multivariable processes that have complex
dynamics and considerable multiple time delays. Further-
more, in contrast to the design and implementation difficul-
ties of PI/PID controllers arising from decomposing MIMO
systems into single loops, the proposed algorithm does not
require such tedious work, and only one design parame-
ter is necessary to specify the trade-off between robustness
and performance. Three simulation examples are included to
demonstrate the effectiveness of the proposed controller, and
it can be observed that the aim of reducing the disturbance
effects on the outputs due to set-point changes in coupled
loops is accomplished.

Although the proposed technique yields strong robustness
and stability results for the examples presented here, it still
has room for improvement for industrial applications in the
sense that it does not directly consider the effects on input
and output constraints. In future works, we intend to extend
the proposed technique by including these constraints in
the optimization problem. This task is not trivial because
a detailed study must be carried out to consider whether
current constraints and additional process constraints overlap
or make the optimization problem unfeasible. In addition,
we intend to assess in which cases the designed controller
parameter values are globally optimal.
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