
Received October 10, 2021, accepted October 31, 2021, date of publication November 11, 2021, date of current version November 19, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3127499

Hadoop Data Reduction Framework: Applying
Data Reduction at the DFS Layer
RYAN NATHANAEL SOENJOTO WIDODO 1, HIROTAKE ABE 2, (Member, IEEE),
AND KAZUHIKO KATO 2, (Member, IEEE)
1Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba 305-8557, Japan
2Department of Computer Science, University of Tsukuba, Tsukuba 305-8557, Japan

Corresponding author: Ryan Nathanael Soenjoto Widodo (ryannsw(at)osss.cs.tsukuba.ac.jp)

ABSTRACT Big-data processing systems such as Hadoop, which usually utilize distributed file systems
(DFSs), require data reduction schemes to maximize storage space efficiency. These schemes have different
tradeoffs, and there are no all-purpose schemes applicable to all data. Users must select a suitable scheme in
accordance with their data. To accommodate this requirement, application software or file system (FS) have
a fixed selection of these schemes. However, these provided schemes are insufficient for all data types, and
when novel schemes emerge, extending the selection can be problematic. If the source code of the application
or FS is available, the source code could potentially be extended with extensive labor, but could be virtually
impossible without the code maintainers’ assistance. If the source code is unavailable, there is no way to
tackle the problem. This paper proposes an unexplored solution through a modular DFS design that eases
data reduction scheme usage through existing programming techniques. The advantages of this presented
approach are threefold. First, adding new schemes is easy and they are transparent to the application code
requiring no extensions to it. Second, the modular structure requires minimal modification to the existing
DFSs and performance overhead. Third, users can compile schemes separately from the DFS without the FS
or DFS source code. To demonstrate the design’s effectiveness, we implemented it by minimally extending
the HadoopDFS (HDFS) and named it the HadoopData Reduction Framework (HDRF).We designedHDRF
to work with minimal overhead and tested it extensively. Experimental results indicate that it has negligible
overhead over existing approaches. In a number of cases, it can offer up to 48.96% higher throughput while
achieving the best result in storage reduction within our tested setups because of the incorporated data
reduction schemes.

INDEX TERMS Data compression, data deduplication, distributed file system, Hadoop, HDFS.

I. INTRODUCTION
Big data processing systems utilize file systems (FSs) that are
scalable such as distributed FSs (DFSs) to hold large datasets.
These systems are often configurable to use data reduction
schemes such as compression and deduplication to maximize
storage space efficiency [1]–[3] at the cost of extra integration
time and processing overhead. These schemes have unique
characteristics that enable them to work better for specific
dataset types. For example, most deduplication schemes work
best on virtual machine images [4]–[8] and LogZip [9] per-
forms better on log file data than general-purpose algorithms
such as Lz4 and Gzip. In such cases, it is important to use the
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best data reduction scheme for each data type to maximize
storage space efficiency.

In a number of big data systems with a DFS such as
Hadoop [10], data reduction schemes can operate in three
different layers (application, DFS, and FS) on the basis of
how the DFS software works as a middleware as shown
in Figure 1. At the application layer, the applications can
directly generate and reduce the data before passing it to the
underlying layers. At the DFS layer, the DFS software pro-
cesses the data from the application with the schemes before
storing it in the underlying FS. At the FS layer, the FS receives
the data from the DFS software, processes it, and stores it in
the storage drives. Each of these layers has its advantages and
disadvantages depending on the ease of adding and enabling
the schemes, and the processing overhead of the schemes.
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FIGURE 1. Possible locations for data reduction scheme applications in
systems with DFS.

There are no perfect solutions that can combine all of the
advantages without any of the disadvantages.

At the application layer, the applications perform the data
reduction schemes, which can be a tedious process because
users must enable the schemes for each application. Hadoop
solves this issue by using Hadoop CompressionCodecs. The
user can simply add new schemes as CompressionCodecs and
integrate the base CompressionCodec library in the applica-
tion. Next, the users can change the applications’ configura-
tion to enable the application to load the CompressionCodecs.
However, this solution still depends on the support of Com-
pressionCodecs in the applications. When the applications
lack this support, users must modify each application to
include the support, which is only possible when the appli-
cation code is available, and even then, it could be a tedious
process. In regard to overhead, because the application gen-
erates the data, directly reducing the data in the application
also reduces the operational overhead in the lower layers.
For example, the DFS layer can operate on the reduced data,
minimizing the network traffic between the storage nodes.

Data reduction schemes at the FS layer operate conversely
to those at the application layer because the FS works trans-
parently from the point of view of the application. This
transparent operation requires no change in the applications’
code, which is simpler for end-users. However, adding new
schemes to the FS code is more challenging because the
FS code is often more complicated than the applications’
code. Directly modifying the FS code without any help
from the FS’s developers might be challenging andmay break
the existing DFS setup. In regard to the operation overhead,
the DFS and FS layers must process the original data with its
larger size. When compared with the application layer-side
data reduction, the DFS software may generate more network
traffic. An example of this approach is by using ZFS, an FS
that can perform compression and deduplication, as the base
FS for Hadoop DFS [3], [11].

To the best of our knowledge, DFS layer-side data reduc-
tion is an unexplored domain because of a lack of research
into the integration of data reduction schemes in the DFS
software. However, by considering the structure of existing
DFS designs and the role of the DFS in Hadoop, we can

hypothesize and compare the schemes’ operation in the DFS
layer with the other layers. Adding new schemes to the DFS
layer can be as challenging as modifying the FS code because
of the complexity of the DFS code. However, enabling the
schemes in the DFS layer is as easy as that in the FS layer
because it lies below the application layer, enabling it to
work on all applications’ data. Additionally, network traffic
reduction is possible because the DFS software is aware of
the schemes in it.

Figure 2 summarizes the challenges for the application,
FS, and DFS layers. Unlike the application and FS layer-
based reduction, these challenges are solvable with a clever
DFS design that is aware of and can use data reduction
schemes. However, existing DFS designs do not enable the
use of reduction schemes in the DFS layer because it may
increase the software complexity, which in a number of cases
is already more complex than the application code and under-
lying FS code. Additionally, directly modifying the existing
DFS code may break the DFS functionality and cause data
loss. We compiled a set of research questions for this study
to explore the feasibility and characteristics of data reduction
schemes in the DFS layer.

1) Is it possible to enable the data reduction schemes
in the DFS software without affecting most of its
functionality?

2) How easy is it to add and enable the schemes in the DFS
software?

3) How big is the performance overhead for the schemes
in the DFS software when compared with the existing
solutions?

To confirm these hypotheses and to answer the research
questions, this study proposes a new DFS design that can
apply data reduction schemes at the DFS layer. The design
uses existing DFS designs with slight modifications to the
storage portion. The benefits of this design are threefold.
First, users can easily add their favorite schemes to the DFS
software through programming techniques like dependency
injection or dynamic library linking. Second, it can enable
schemes transparently on all applications without any mod-
ification on the application side. Third, the schemes are not
limited to data reduction, which opens the possibility of data
processing at the DFS layer.

As a proof of concept, we created a framework that enables
data reduction schemes to work at an FS-level by directly
providing HDFS blocks to the reduction scheme called the
Hadoop Data Reduction Framework (HDRF) through HDFS
source code modification. HDRF handles all communication
between HDFS and a reduction scheme and enables the user
to implement their schemes in Java or C++ with minimal
knowledge of Hadoop Libraries. HDRF operates at the DFS
level, which provides data reduction for all applications with-
out depending on the application and FS layers. Our experi-
mental results show that HDRF has minimal time and space
overhead over a vanilla HDFS. It also enables data reduction
schemes for all applications without any modification to the
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FIGURE 2. Comparison of the application, DFS, and FS layers for applying
data reductions in a number of big data systems with a DFS.

application code. HDRF can enable CompressionCodecs on
all applications, which can be impossible through the appli-
cation layer without any application-side code changes.

Our previouswork [12] demonstrated that HDRF can apply
data reduction at the DFS layer on all applications. However,
because of time and space limitations, we were unable to
include a feature called block mirroring and do extensive
testings with newer hardware. In this paper, we extensively
discuss the design and implementation, add a feature called
block mirroring, and present our experimental testings’ result
with both the old and new hardware. In summary, the contri-
butions of this paper are as follows:

1) States the issues with existing methods for data reduc-
tion schemes in DFSs.

2) Proposes a DFS design that enables data reduction
schemes in the DFS layer.

3) Implements a proof of concept of the design based on
HDFS.

4) Evaluated the performance overhead over various
workloads on different cluster setups and compared it
with the existing solutions.

The rest of the paper is organized as follows. Section II
explores the existing approaches, challenges, and our solu-
tions. Section III discusses the design and implementation
of the proposed DFS design. In Section IV, we compare
the design with existing solutions over various workloads.
Finally, we summarize our paper in Section V.

II. BACKGROUND AND RELATED WORK
This section discusses the challenges of existing DFS designs
for data reduction schemes and our motivation to solve the
challenges.

A. DATA REDUCTION SCHEMES
Data reduction schemes like compaction, compression, and
deduplication can solve the data growth, which is a chal-
lenge for most storage systems, especially those that handle
large data like cloud storage systems [6], [13]–[15], virtual
machine images storage systems [4]–[8], and big data plat-
forms [16]–[20]. These schemes work by reorganizing the
data more efficiently to minimize potential redundancies at

the cost of computation, and thus minimizing the storage
footprint [20]. In a number of cases where the disk is signif-
icantly slower than the processing unit, the reduction in I/O
operations can improve the system performance from storing
or reading fewer data. In this paper, we focus on lossless
compression and deduplication.

Lossless compression is a reversible process that removes
redundancy within a file or data block. This type of scheme
can be found in many applications, including memory com-
pression [21]–[23] and file compression (e.g. Snappy [24],
Lz4, Bzip2, and Gzip). For file compression, most lossless
compression algorithms are based on a dictionary coder
algorithm.

A dictionary coder operates by finding redundancies
within a file. Let file f be a set of n blocks b, f =
{b1, b2, . . . , bn}, and each b is composed of m words w,
b = {w1,w2, . . . ,wm}. The dictionary coder uses a data
structure called a dictionary d , which is a subset of b, that
maintains i unique w, d ⊆ b. When it encounters a redundant
w, the dictionary coder replaces it with a pointer p to the
corresponding unique w in the dictionary. In summary, the
dictionary coder produces a compressed file f ′ with a total
size of f ′ =

∑
b′, where b′ = d +

∑m−i
x=1 px and b

′
� b for

best-case scenarios. However, whenm− i is close to 0, b′ can
be larger than b because of the overhead of d .

Deduplication is also a lossless process that maps files into
smaller files called chunks with chunking algorithms [25],
[26] and stores unique chunks in containers. Deduplica-
tion finds duplicate chunks by comparing the chunks’ fin-
gerprints, which are obtainable through mathematical hash
functions like SHA1. Storage-saving is achieved by replac-
ing duplicate chunks with pointers to the existing chunks.
To reconstruct the original file back, deduplication systems
use the file’s recipe, which lists the chunks that correspond
to the file. In comparison to compression, deduplication can
remove redundancies on a larger scale such as those among
files and storage devices. However, deduplication is usually
more memory-intensive because it needs to compare a larger
number of chunks. Deduplication works well for datasets that
share similar parts like virtual machine images [27] and large
storage systems [28].

Deduplication is similar to a dictionary coder, but it works
with a set of files, {f1, f2, . . . , fm} and f = {b1, b2, . . . , bn},
and at a more coarse granularity. It exploits the possibility of
duplicate blocks b, which are also called chunks in dedupli-
cation, within f and among files, fa ∩ fb ∩ fc = duplicate b.
Because comparing blocks with bit-by-bit comparison is slow
when considering the size of b, deduplication uses a mathe-
matical hash function to produce a hash hb or the fingerprint
of each chunk and uses it in the comparison process. If multi-
ple b have a matching hash value, then only a single instance
of b and its hash hb is stored in a data structure or databaseDB,
DB =

∑
(b+ hb). p. Finally, it replaces the file with a recipe

r that contains a list of hashes hb of the chunks in the original
file, f = {b1, b2, . . . , bn} → r = {hb1 , hb2 , . . . , hbn}.
In the best-case scenario, the total size, which is sumr +DB,
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is significantly smaller than sumf . However, in a number of
cases where the number of redundant b is too small, the space
overhead of the DB and r might be larger than the total size
of redundant b.

Several studies proposed the use of data deduplication
in a DFS through the application layer [29]–[31]. These
approaches are more beneficial for data size reduction
because data deduplication works best with a large dataset.
However, data read processing through the DFS is a chal-
lenge because the deduplicated data is not the same as the
original data. Directly processing the deduplicated data with
a platform-provided data access method like HadoopMapRe-
duce and Apache Spark may result in an inaccurate output.
In such cases, the application may not be able to leverage the
distributed computing capability of the DFS and it requires
extra processing to revert the deduplication process to pro-
duce an accurate result.

B. DISTRIBUTED FILE SYSTEM (DFS)
A DFS is a cluster of storage nodes that is scalable both ver-
tically and horizontally. Each storage node can be expanded
vertically by attaching more storage devices. Once the limit
of vertical scaling is reached, the DFS can still grow through
horizontal scaling or by adding more storage nodes to the
cluster. This approach enables the DFS to keep up with
data growth and increase storage I/O performance through
parallelization.

Although DFSs are scalable in every direction, data growth
is still a problem for all storage devices. To resolve this
problem, DFSs can be combined with data reduction tech-
niques like compression and deduplication. Because the DFS
is software or middleware that connects the application to
another FS, it can be split into three layers on the basis of
the location of the data reduction, which are the application,
DFS, and FS layers, as shown in Figure 1. At the application
layer [16], [32]–[34], the applicationmust support data reduc-
tion schemes to benefit from more efficient space utilization.
At the FS layer [3], [35], this is no longer an issue because
the data processing of the FS operates separately from the
applications in their layer.

C. HADOOP AND HADOOP DISTRIBUTED FILE SYSTEM
Hadoop [10] is a commonly used big data platform that uses
the Hadoop DFS (HDFS) [11] to store datasets in blocks.
HDFS has two nodes: the name node, which handles the
files’ metadata and blocks’ location, and the data node, which
stores fixed-sized blocks. HDFS saves these blocks through
another underlying FS like EXT4, NTFS, or ZFS. To ensure
the blocks’ reliability and availability, it uses a block replica-
tion scheme, which puts several copies of the same block in
different data nodes to prevent losing blocks during data node
failures. This replication process occurs when a node receives
a packet from a client or another node.

HDFS, unlike other DFSs like Lustre [36], supports the
MapReduce programming paradigm to parallelize data pro-
cessing in the cluster, and thus enabling data nodes to perform

data processing or compute. The MapReduce code can also
be combined with Hadoop CompressionCodecs to optimize
the storage usage in HDFS. The supported codecs are Gzip,
Bzip2, Lz4, Snappy, and Zlib. Adding new reduction schemes
as a codec is also possible. However, these codecs must be
included in the application code to enable them. A simpler
approach would be to use an FS like ZFS to enable compres-
sion or deduplication in HDFS or other DFSs, which do not
need any modification in the application code.

Another concern of using the codecs in combination with
MapReduce is split-ability, which is the possibility of inde-
pendently decompressing each block. It is crucial because
MapReduce may operate parallelly on each block. However,
a number of codecs produce non-splittable blocks, which
may require other blocks to decompress. In such cases, the
MapReduce application cannot run in parallel and the data
node may need to retrieve blocks that it does not have
from other nodes. The FS-based approach has no such issue
because each HDFS block is compressed independently from
the DFS layer.

D. RELATED WORK ON DATA REDUCTION SCHEMES IN
DFS AND HDFS
At the application layer, the users can add a scheme into the
application code or enable it through a platform-specific API.
For example, client-side compression can achieve a compres-
sion ratio of 1.5 in Lustre with Lz4 [37] and users of Hadoop
can use Hadoop CompressionCodecs to enable schemes in
their MapReduce [38] applications or directly add the scheme
code to the application when using Hadoop [16], [29]–[34] or
Lustre [36]. Applying the scheme at this layer also provides
benefits for a reduction in network traffic at other layers, and
thus speeding up the data transfer in the lower layers through
the network. Additionally, the receiving node does not need
to recompress the data independently when replication is set
to above 1-time for HDFS as shown by Widodo et al. [12].
However, application code modification, which may not be
possible if the code is not available, is mandatory to enable
the scheme.

Several studies [29]–[31] have proposed data deduplica-
tion applications at the application layer that store the data in
HDFS. Ranjitha et al. [29] and Sun et al. [30] studied dedu-
plication applications that manage the output data in HDFS.
Zhang et al. [31] explored the possibility of deduplication
through the MapReduce programming model that passes the
data to HDFS. The main drawback of these studies is that the
deduplication cannot be independently reversed by each data
node. These applications must revert the deduplicated data
back to the original data and store it back in HDFS or other
storage solutions before processing it to ensure consistent
results, increasing the cost of data processing for Hadoop
clusters.

Another common approach to enable data reduction
schemes in a DFS is through the FS layer [3], [35]. For exam-
ple, Zhou et al. [3] used ZFS as the FS for HDFS and enabled
deduplication and compression through ZFS configurations.
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This setup provides a transparent data reduction to the appli-
cation and DFS layers. However, there is no reduction in
network traffic because once the data leave the ZFS, the data
is back to its original structure and size.

Data reduction schemes at the DFS layer can solve these
challenges when the DFS is designed to run with the schemes.
However, enabling them at the DFS layer has yet to be done
because of a number of possible reasons. First, it adds com-
plexity to the DFS, which increases the cost of development
and the chance of breaking other components in the DFS.
Second, on the basis of our experience, directly modifying
the DFS source code to enable the schemes can be complex
and time-consuming. Because of these reasons, it is difficult
to compare reduction schemes at the DFS layer to the other
approaches on the basis of the benefits and development
costs.

In this paper, we proposed and tested a newDFS design that
eases the data reduction schemes implementation and usage
in a DFS. Users can use and enable the schemes through pro-
gramming techniques like dynamic library linking or depen-
dency injection. The DFS design is also transparent to all
applications, enabling data reduction schemes to run on all
applications’ data. With this DFS design, users can add and
enable these schemes at the DFS layer without modifying the
DFS code.

III. DESIGN AND IMPLEMENTATION
This section provides the details of the proposed DFS design
and the implementation of the design in HDFS.

A. THE DFS DESIGN
Implementing reduction schemes in the existing DFS design
requires careful handling in several aspects. First, the ease
of use from the user’s perspective. Second, the placement of
these schemes in the DFS may affect DFS functions like the
metadata system and data integrity checker. Third, the DFS
may not benefit from the network traffic reduction because
of its smaller data size.

To overcome these challenges, we proposed a DFS design
that supports data reduction schemes and extends existing
DFS designs as shown in Figure 3. The key features of the
design are: (1) it uses existing programming techniques to
link the schemes’ libraries to the DFS; (2) it runs the scheme
close to the host FS to minimize the changes to other DFS
components; (3) it can provide reduced and original data
streams to the DFS and schemes to avoid reprocessing within
the DFS.

1) EASE OF USE OF DATA REDUCTION SCHEMES
Adding and enabling data reduction schemes in the applica-
tion and FS layers have their limitations. At the application
layer, they depend on the capability of each application and
its availability of the source code. For example, in Hadoop,
the users can add new schemes through CompressionCodecs
and enable them in the code or configurations when the appli-
cation supports it. However, these can be difficult depending

FIGURE 3. Proposed DFS design. The data reduction scheme is placed
close to the host FS to minimize the changes in existing DFS designs. The
grayed parts are the new additions to the existing DFS components.

on the application’s source code’s availability. At the FS
layer, enabling the data reduction schemes is not an problem
because it is transparent to the applications. However, the
adding part is like the application layer because it depends on
the source code’s availability. Even when available, modify-
ing their code is difficult because its complexity is commonly
higher than the applications’ code.

The design of our DFS solves these problems through
common programming techniques and by exploiting the
nature of the DFS layer. The design uses the same approach
as Hadoop CompressionCodecs, which connects to the appli-
cation through independent Java jar files. Users can add new
data reduction schemes to the DFS by extending a template
data reduction class or by adding it through Compression-
Codecs and extending the template class. The application can
load these schemes through jar libraries. As for enabling these
schemes, the design benefits from the nature of the DFS layer,
which works transparently to the application layer like the FS
layer.

2) SCHEMES PLACEMENT IN THE DFS
The implementation of the schemes in the DFS may harm a
number of DFS functionalities depending on the placement.
For example, running the schemes before the metadata sys-
tem can generate errors because of the metadata mismatch
between the client’s and DFS’s generated metadata. The
design prevents such issues by activating the schemes before
storing the data in the underlying FS, similar to FS-based
reduction schemes like ZFS. This design also minimizes the
changes over the existing DFS design because once the data
leaves the storage part, it is back to its original form.

3) NETWORK TRAFFIC REDUCTION
One of the benefits of using data reduction schemes at the
DFS layer is that it can also reduce network traffic, speeding
up DFS operations that use the network. However, when
these schemes work at the storage part of the system, there
is no reduction in the network traffic because the networking
part of the DFS usually operates above the storage com-
ponents. Additionally, the DFS may also suffer from extra
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FIGURE 4. Proposed design on HDRF. The grayed parts are HDRF’s
components.

reprocessing during data replication. This reprocessing cost
can be expensive for older nodes with low processing capabil-
ity. To solve this design constrain, the proposed DFS design
provides a selection of data streams, which contains the
reduced and original data streams. Other DFS components
can access both versions of the data outside of the storage
portions of the DFS through these streams.

B. IMPLEMENTATION
As a proof of concept, we implemented the proposed design
in HDFS, which is the default DFS for Hadoop, and named
it HDRF. The implementation uses Hadoop 3.1.0 as the base
and requires around 1000 lines of additional code and modi-
fication. Additionally, it works well with HDFS and MapRe-
duce applications without any configuration or modification
to the application code.

1) HDRF
As the name implies, HDRF is a framework that enables data
reduction schemes in HDFS. HDRF operates within the DFS
layer and works with all applications without any modifica-
tion to their code. The data reduction schemes can be con-
nected to HDRF through Java’s dynamic library linking. This
approach is similar to Hadoop CompressionCodecs, which
works at the application layer, however, it works transparently
with all applications. It records separate metadata for each
block in Redis [39], [40] to ensure block integrity is not
affected by the schemes. As shown in Figure 4, it requires a
number of changes in HDFS’s source code and has a number
of features to minimize its processing overhead.

HDRF supports two types of streams: direct block array
and processed data. The block array stream buffers the whole

block data in thememory and can provide faster data access to
the application by prefetching the block data in the memory.
The processed data stream is similar to HDFS’s file streams,
which reads the data by chunks. Unless the user’s data pro-
cessing application requests the block array stream, HDRF
uses the processed data stream because it is closer to the
default code in the vanilla HDFS and minimizes the memory
usage.

2) LOCAL METADATA SYSTEM
HDRF maintains a local metadata system in each node. This
system functions as the translator for the addresses of each
HDFS block in HDRF. When HDFS checks the length of the
HDFS block file, HDRF queries this system and returns the
stored length. HDRF also uses this metadata system to get
the directory of the processed block fromHDFS’s blocks. The
key for the HDFS block is its ID, and the value is the its length
concatenated with the location of the processed block.

3) DATA INTEGRITY CHANGES IN HDFS
HDRF works within the storage part of HDFS by replacing
HDFS’s storage stream with its own stream, resulting in
empty block files. Without any changes to the data integrity
checker of the data node in HDFS, this will cause errors
because of the non-matching length between the block file,
which is zero bytes, and the metadata. HDRF prevents these
errors by replacing the length check by retrieving length
information from its metadata system and passing it to the
data node length checker. There is no change to the data
integrity check in the data node because HDFS performs it
after HDRF produced the original blocks’ data.

4) DEDUPLICATION THROUGH HDRF
To prove that users can implement their reduction scheme
through HDRF, we created a simple deduplication scheme
that splits the input data into small chunks, fingerprints
the chunks with a hash function, matches the chunks with
the hashes to find duplicates, and stores the chunks in a
drive. The chunks metadata is stored in Redis. The scheme
uses external libraries for chunking [26], hashing [41], and
communicating with Redis [40]; the metadata database. The
chunking algorithm is a content-dependent chunking (CDC)
algorithm, which can automatically align the cut-point on the
basis of the input data. However, it is still vulnerable to byte
change, which may shift the cut-point or chunk boundary.
In such cases, the affected chunk will be treated as a new
chunk because it does not match the old chunk’s hash. The
deduplication scheme is connected to HDRF through the data
reduction abstract class of HDRF. This scheme groups the
chunks and store them in a large chunk called Superchunk
to avoid random writes, which can be detrimental to most
storage devices.

Figure 5 illustrates the structure of the key and value for
the file’s and chunk’s metadata. This structure provides a
maximum of 4 GB for block size, 256 MB for Superchunk
size, and 16 MB for chunk length. ‘‘# of copy’’ is the number
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FIGURE 5. Key and value for: (a) file’s metadata and (b) chunk’s metadata.

of duplicates for a chunk, and the maximum is 4096. With
these tables, the deduplication scheme can rebuild the file
with a small amount of overhead. In our experiment, these
tables amount to less than 5% of the original data size.

C. FEATURES OF HDRF
HDRF has several features to make it easier for the user to
implement their preferred data reduction schemes in HDFS
and minimize its performance overhead.

1) EASE OF ADDING NEW DATA REDUCTION SCHEMES
HDRF has two approaches for adding new data reduction
schemes. First, through user configuration and dynamic link-
ing, which is similar to Hadoop CompressionCodecs in the
application layer. Second, by extending the data reduction
abstract class of the HDRF. The former is similar to how
Hadoop CompressionCodecs works in the application layer.
The latter is more challenging because it needs to be compiled
together with HDFS and HDRF. However, this solution is still
easier thanmodifying the FS source code because the user can
simply follow the abstract class to implement their new data
reduction schemes.

2) TRANSPARENT DATA REDUCTION
Application layer-side data reductions have several benefits
over other approaches. For example, data size reduction is
more effective at the application layer with schemes like
deduplication, which works better with a large dataset. Addi-
tionally, adding new schemes is easier through a few extra
lines in the code or through dynamic library linking, which
is used by Hadoop CompressionCodecs. Although the data
reduction library is only compiled once, the user must change
the code for each application to enable data reduction. In this
case, DFS- and FS-side data reduction is easier for the user
because it works for all applications with the tradeoff of less
effective data reduction. However, adding a new data reduc-
tion scheme to the FS and DFS can be challenging depending
on the availability of the source code and its complexity.
In this aspect, HDRF combines the benefits of the application
layer- and the FS layer-side data reductions. Adding new
data reduction to HDRF is possible through dynamic library
linking and changes in the configuration like the application
layer-side data reduction, and it works transparently for all
applications like the FS layer.

FIGURE 6. Block mirroring in HDRF. It checks the number of nodes in the
downstreams and send the reduced data to the target nodes.

3) BLOCK MIRRORING
When the user applies data reduction schemes at the appli-
cation layer, the lower layers like the DFS and FS layers can
benefit from the reduced data size, and thus minimizing data
transfer time during DFS operations that use the network. For
example, we can reduce the data transfer time in HDFS by
applying compression when replication is in use as shown
in Figure 11. However, such benefits may not exist when
applying them at the lower layers because the scheme must
reconstruct the data back to its original form to make the pro-
cess transparent at the upper layers. This limitation increases
the data transfer time when compared with application layer-
based schemes. An solution to this is to send the reduced data
instead of the original data, which is possible for the DFS
layer.

To minimize the network traffic, HDRF has a block mir-
roring feature, which disables the block replication part of
HDFS and sends the reduced block data to other nodes. It uses
scheme stacking to read the data from the data reduction
scheme and send it to another node through TCP communi-
cation at a latency like that of the vanilla HDFS and Com-
pressionCodecs. Figure 6 illustrates how the block mirroring
works in HDFS. During a block write, HDRF performs a
check on the downstream number. If the number is more
than 0, it will start block mirroring and contact the target
nodes. Once the process is completed, the block is registered
and accessible in the other nodes.

4) SEAMLESS DATA ACCESS
A number of data reduction schemes can only process com-
plete data, while others can process data block by block.
To support these various methods of processing, HDRF has
two block access modes: direct block array and direct stream
access. In the block array mode, HDRF buffers the block
data into an array and passes it into the scheme. HDRF
can also revert the block array into a stream and pass it
to HDFS for read-operations. However, block array mode
requires highermemory consumption to buffer the block data.
In the direct stream access mode, the HDRF directly passes
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HDFS’s stream data to the reduction scheme to minimize
memory consumption and possibly latency from buffering
the data. Additionally, HDRF can provide either the original
or processed block data to the user’s scheme for scheme
stacking.

5) SCHEME STACKING
Additional processing of the blocks is often crucial to prepare
them before or after they have been processed by the data
reduction scheme. Although preprocessing can be done in the
application layer through MapReduce code, this approach is
inefficient because it must be enabled multiple times when
applied to different applications. HDRF supports such pro-
cessing through schemes stacking, which can connect a pre-
processing scheme to a data reduction scheme or vice versa.
This feature is possible because HDRF enables each scheme
to request the original data or the scheme’s processed data.

6) BLOCK FILTER
Processing MapReduce job files can be wasteful for the
node’s resources because MapReduce job files are often
short-lived and discarded after job completion. Additionally,
a number of data types may not benefit from data reduction
schemes. For example, data reduction schemes may have a
low reduction ratio when processing encrypted data.

HDRF has a block filter that searches for user-defined
keywords in the content of the first received packet for each
block. These blocks are then stored without any additional
processing, and thus minimizing the node’s resource usage.
With the block filter, users can exclude blocks through HDRF
configuration files and potentially save some performance.

7) BLOCK QUEUE
A vanilla HDFS can parallelly process multiple block
requests, which speeds up the block-read process by not
waiting for other requests’ completion. However, not all
data reduction schemes can work in parallel. For example,
a number of deduplication schemes are limited to one thread
to maximize their deduplication ratio [42]. In such cases,
users can use the block queue system to limit parallel block
accesses.

8) FAILURES HANDLING
System crashes and hardware failures are common and
expected in production systems. HDFS handles this through
block reporting. When a block is corrupted or has a mis-
matched length, the data node will report the block to the
name node. Additionally, the name node will attempt to
replace the block with one from other available nodes. HDRF
takes the same approach as HDFS with a few changes. For
the block size, a number of HDFS blocks in HDRF have
0-byte lengths. In this case, we made changes to the HDFS
block length management system to check the length from
the HDRF’s metadata.

Another possible failure point of HDRF is the meta-
data server, which is isolated in each data node. When the

metadata server fails, HDRF will report that the current node
is broken to the name node. The name node will attempt
to recover the data through the block replication of HDFS,
which is similar to how HDFS handles node failures. HDRF
handles other types of data corruption, node failures, and
other unexpected events similarly to HDFS.

IV. EXPERIMENTAL RESULTS
This study answers the research questions presented in the
Introduction by proposing and comparingHDRF to two exist-
ing setups, which are data reduction in the application and
FS layers, respectively. For data reduction in the application
layer, we used a vanilla HDFS setup where HDFS uses an
ext4 FS and enables data reduction schemes through Hadoop
CompressionCodecs in the applications. For data reduction in
the FS layer, we used a ZFS setup where HDFS runs on top
of ZFS and enables the schemes through ZFS.

We evaluated the proposed design by extending HDFS’s
code, whichmay affect its functionality when running various
workloads. To show that the implementation can operate
without any issue, we ran various workloads and observed
HDFS’s log in each data node. We ensured no errors such
as mismatch checksum, missing blocks, or other related Java
errors occurred in all setups. Additionally, for data processing
results, we checked and compared the output.

Supporting new data reduction schemes is important to
maximize the efficiency of the storage solutions. HDRF
solves this through a data processing module that can load
these schemes. HDRF can load any schemes that extend
HDRF’s data reduction scheme class or Hadoop Compres-
sionCodecs class, which is similar to how Hadoop Compres-
sionCodecs operates in the application layer. To demonstrate
the operation of the solution, we implemented a local data
deduplication scheme described in Section III-B, which
extends HDRF’s data reduction scheme. We also tested it in a
series of tests to compare it with ZFS’s deduplication scheme.

The difficulty of enabling the data reduction schemes may
vary among setups. Enabling these schemes for the vanilla
HDFS setup is the most challenging because a number of
applications do not support them. As for the ZFS setup,
enabling the schemes is as easy as changing configurations
of ZFS because the data processing in ZFS is transparent to
the applications. To confirm the difficulty of enabling these
schemes for HDRF, this study used different applications on
the three different setups, discussed the difficulty of enabling
these schemes on these setups based on our experience, and
observed the data processing and storage overhead.

The cost of operation is also important because if it is
too big, it might deter users from using the setups. To show
this cost, we ran several applications and data access tests to
measure and compare the overhead of the setups. The goal
for HDRF is to have a negligible difference from the best
approaches.
Applications:TheHadoop applications that we used for the

data access tests are Hadoop DistCP and Hadoop Streaming,
which are both MapReduce-based and cannot and can use
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TABLE 1. Specification for the test nodes.

TABLE 2. Datasets used in the storage overhead tests.

Hadoop’s CompressionCodecs, respectively. With Hadoop
DistCP, a user can define the number of mappers and reduc-
ers in the configuration when running. Hadoop Streaming
can read and process the input data by using an input for-
mat before storing it in HDFS. The default input format is
TextInputFormat, which reads a file line by line. However,
it is not as useful for our testing because it adds a line number
at the beginning of each line, increasing the storage space
and making it difficult for us to compare it with Hadoop
DistCP. To solve this, we made a custom input format based
on TextInputFormat but without the extra line numbering.
The number of mappers and reducers for Hadoop Streaming
is defined by the split size. In the tests, we maintain the
number of splits to match the number of mappers for Hadoop
DistCP to ensure the fairness of the tests.

Additionally, we included Intel’s big data benchmark
called Intel HiBench, which can test the performance of the
cluster when running MapReduce and Spark workloads. The
workload that we used is Wordcount, which loads and reads
the datasets directly from HDFS and then store the results
back in HDFS. HiBench can generate the dataset by using a
MapReduce application with a configurable size.
Cluster Specifications: Table 1 lists the specification of

the clusters. We used two clusters, A and B. Cluster A has
more nodes, higher compute power, more I/O performance,
and more importantly, a higher network speed. Cluster B
consists of nodes with older hardware and a slower network
speed, which is only 1-Gbps maximum. We ran all tests on
Cluster A except for the network scaling test, which was run
on both clusters to show the impact of replication scaling on
older hardware. All tests were run three times and the results
provided here are the average of the three runs.
Datasets: The evaluation used three different types of

datasets to measure the storage overhead of the tested setups.
The first dataset is the Wikipedia dump dataset with a

size of almost 400 GB and represents a human-readable
dataset. The second dataset is the medical dataset from Phy-
sioNet [44] with a size of almost 100 GB and contains
log data from machines like electrocardiograms (ECGs) and
patient activity records. The third dataset is an image dataset
from Cocoimages with a size of around 35 GB and con-
tains JPEG-compressed training and unlabeled images for
machine learning applications. Table 2 shows the details of
the datasets. We chose these datasets to show the storage
overhead of HDFS when storing various dataset types. This
test uses 3-times replication, which is the default for HDFS.
The Structure of the Tests: This study answers the research

questions presented at the beginning of this Section through
several tests with the described applications, clusters, and
datasets. Because directly answering the first (1) and second
(2) questions is difficult, we structured the tests to observe
the overhead of the tested setups and answered the questions
through the data presented in the results. The test structure is
as follows. First, this study measures the throughput of the
clusters when uploading and downloading the dataset from
the cluster in Subsection IV-A. Second, this study evaluates
the storage consumptions in Subsection IV-B. Next, this study
shows the performance of the tested setups inMapReduce and
Spark workloads. Finally, this study discusses the network
overhead when replication is enabled in Subsection IV-D.

This study shows the ease of adding new data reduc-
tion schemes in Subsections IV-A and IV-B through the
implementation of the data deduplication scheme in HDRF.
The ease of enabling the schemes can be observed in
Subsection IV-A where we attempted to enable data reduc-
tion schemes in Hadoop DistCP and Hadoop Streaming and
in IV-C where we attempted to use Lz4 on the tested setups
for MapReduce and Spark workloads. The overhead is shown
throughout the test results by comparing the results from the
different setups.
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FIGURE 7. Throughput for dataset transfer between the client and Cluster A. DistCP on the vanilla HDFS cannot use any
CompressionCodecs, and the vanilla HDFS does not officially support deduplication. Higher values are better.

A. DATA TRANSFER OVERHEAD TEST
To confirm the overhead of HDRF in data transfer, which is
a basic and crucial task for DFSs, we compared HDRF with
the vanilla HDFS and ZFS in a data transfer test. This test
uses 50 GB of theWikipedia dump dataset in the form of split
1-GB files to measure the data transfer speed for the tested
setups. For the test configuration, we chose 1-time replication
to show the compute overhead without being affected by
the network during the replication. We simulated the 1-Gbps
network by usingWonder Shaper 1.4.1 [49]. The applications
used in these tests are Hadoop Streaming and DistCP.

Figure 7 presents the throughput recorded when trans-
ferring the dataset between the cluster and the client.
In this test, we used the deduplication scheme described in
Subsection III-B. Adding the scheme to HDRF is fairly easy
through the provided abstract class. Throughout this test,
we noticed no errors when the HDRF and ZFS setups ran the
schemes in both Hadoop DistCP and Streaming. In contrast,
for the application layer setup, the vanilla HDFS, we were
unable to enable Hadoop CompressionCodecs on Hadoop
DistCP through the command-line interface. DistCP ignored
the CompressionCodec configuration in the command line
and stored the data as if no CompressionCodec was specified.

For the write throughput, the differences between the
vanilla HDFS, HDRF, and ZFS are less than 1%with the same
reduction scheme, which shows that the overhead of HDRF
is insignificant. Additionally, HDRF with deduplication
enabled had close to a 50% higher throughput compared with
that of the vanilla HDFS with Hadoop Streaming. The reason
is that the deduplication scheme inHDRF uses the block array
mode, which buffers the data in the memory before storing it
in the disk, and thus maximizing the client’s disk read band-
width and network throughput. For the read overhead, the
results depicted in Figure 7 show that the overhead is almost
non-existent because the results for the vanilla HDFS, HDRF,
and ZFS are negligible. In the best-case scenario, HDRF
can eliminate the storage footprint by more than 50% while
transferring the data at a higher throughput when compared
with the vanilla HDFS without any reduction scheme.

Another observation we made from Figure 7 is that DistCP
is up to 25% faster than Hadoop Streaming for write opera-
tion with most schemes because DistCP does not have extra

processing. Additionally, DistCP reads and writes the data in
chunks unlike Hadoop Streaming, which reads and writes in
lines. However, with deduplication, the difference is less sig-
nificant because HDRF absorbs small writes in memory for
block array stream mode, used by the deduplication scheme.
These results suggest that HDRF can provide many options
to the users to minimize the data transfer time when applying
data reduction schemes.

B. STORAGE OVERHEAD TEST
In this test, we uploaded three different datasets into Cluster
A with Hadoop Streaming and measured the storage space
usage of the tested setups. We chose Hadoop Streaming
because it supports Hadoop CompressionCodecs Lz4, which
is important when comparing the HDRF and ZFS setups.
We then evaluated the storage overhead by comparing the
space usage for the three different setups. We did not test
the vanilla HDFS with deduplication because of the strict
specification of Hadoop CompressionCodecs that requires
the scheme to have stream support, which is missing from
the described deduplication scheme in Subsection III-B.

Figure 8 shows the results for the storage used by each
setup with no processing, Lz4 compression, deduplication,
and the combination of the two. From this figure, we learned
four facts. First, the overhead of HDRF is small and less
than 1% of that of the vanilla HDFS across the three datasets
with Lz4. Second, even though Hadoop CompressionCodecs
and ZFS use the same Lz4 algorithm, they use different
configurations. The Lz4 CompressionCodec in the vanilla
HDFS and HDRF has a better compression ratio than that
in ZFS. Third, HDRF’s deduplication can reduce up to 15%
of the dataset storage consumption, which is better than the
deduplication scheme used in ZFS because HDRF’s scheme
uses a CDC algorithm. Fourth, neither Lz4 nor dedupli-
cation performs well across any of the datasets. Lz4 per-
forms best with the human-readable text in the Wikipedia
datasets with over 50% data reduction and reduces around
14% of the storage footprint for the log data in the Phys-
ioNet datasets. However, in the image dataset, neither Lz4
nor deduplication could reduce the dataset further. Even
worse, deduplication increases the storage footprint because
of the deduplication metadata. This last information also
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FIGURE 8. The storage space required to store the datasets with Cluster A. No processing means the dataset is directly stored as is.
Dedup means deduplication is applied to the dataset. The vanilla HDFS does not officially support deduplication. Lower values are better.

FIGURE 9. Throughput for the HiBench WordCount workload with Cluster A. Higher values are better.

shows the importance of the ease of adding new reduction
schemes, to enable users to use a new reduction scheme to
match their dataset’s type.

C. DATA PROCESSING TEST
This test utilizes a commonly used big data benchmark tool
from Intel called HiBench. It can measure the performance of
the cluster when running MapReduce and Spark workloads.
For this test, we generate a dataset with HiBench and run a
test for data processing. We chose WordCount as our data
processing task and ran it for all tested setups with 3-times
replication, which is the default for HDFS. The test has two
phases: prepare, which generates 32 GB of a ‘‘huge’’ dataset,
and process, which uses MapReduce to perform the word
count. The number of executors, mappers, and reducers is set
to 28. The prepare phase usesMapReduce to generate random
words and store them in HDFS.

With this test, we observed that HiBench’s Wordcount
MapReduce workload was unable to use Hadoop Compres-
sionCodecs. We tried the configuration ‘‘hibench.compress
.profile enable’’ and ‘‘hibench.compress .codec.profile ’lz4’’’
but it still consumes the same storage space. However,
adding compression options in the MapReduce command
line reduces the dataset from 96 to 93 GB, which is still far
larger than the other setups. In comparison, enabling Lz4 in
HDRF can reduce the dataset to 42 GB, which is over 50%
reduction in storage footprint. This observation indicates that
HDRF is transparent to all applications without the hassle of
configuring each application.

A similar situation also occurred when running the Spark
workload counterpart. When we prepared the dataset with
Hadoop CompressionCodecs, the process phase crashed

stating that the Lz4 native library could not be loaded.
We debugged the application for hours attempting to fix
the issue and noticed that IOCommon failed to load the
compressed dataset. Additionally, we confirmed with the
‘‘hadoop checknative -a’’ command that Lz4 is indeed
installed properly in our cluster and is available natively.
HDRF and ZFS can run the MapReduce and Spark work-
loads with Lz4 enabled without any issue. This experience
on enabling Hadoop CompressionCodecs on HiBench shows
that enabling the data reduction schemes can often be chal-
lenging and frustrating.

As for the overhead, the results shown in Figure 9A indi-
cates that the overhead for data processing applications like
MapReduce is around 3% for HDRF, and it can perform as
well as the vanilla HDFSwith and without compression.With
the Spark workload, HDRF is around 5% slower than the
vanilla HDFS because of the extra processing by the frame-
work when loading the data from HDFS. The overhead with
Spark is larger because Spark is much faster thanMapReduce
at processing the dataset, increasing the significance of the
dataset load operation from HDFS. With a more compute-
intensive workload, this overhead may become smaller.

D. NETWORK OVERHEAD TEST
One of the issues for lower-layer data reduction like HDRF
and ZFS is the lack of network traffic reduction and the
need to reprocess the data at each node during block repli-
cations, and thus increasing the data transfer time. For the
application layer data reduction, these issues are not a concern
because block replication occurs in the DFS layer and the data
there is already reduced, eliminating the need to reprocess
the data at the replication’s destination nodes. To confirm
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FIGURE 10. Data upload time from the client to the cluster with replication scaling on Cluster A with 1-Gbps, 2.5-Gbps, and 10-Gbps
network and Lz4 compression. The number behind R indicates the number of replication factors for each block. For example, R2 means
2-times replication. The result is relative to that of the vanilla HDFS. Lower values are better.

FIGURE 11. Time to upload with replication scaling for six nodes in
Clusters A and B on a 1-Gbps network. BM stands for Block Mirroring.
Lower values are better. The results are not scaled to the baseline to
show the difference between Cluster A and Cluster B.

this hypothesis, we scaled the network speed and replication
factor of HDFS with Clusters A and B. To show the overhead
of replication, each node has the dataset stored locally in
the solid state drive (SSD) to eliminate the overhead of the
network transfer from the client to the data nodes. The dataset
is the same as that used in the data transfer test, which is the
first 50 GB of the Wikipedia dump.

Figure 10 depicts the results for the network scaling test on
Cluster A. According to the results, the impact of replication
is more significant with a slower network and fewer nodes.
With slower networks, setups that reduce the data at lower
layers like HDRF and ZFS significantly consumed more time
to finish because they transfer the data without any data
reduction. Additionally, they need to recompress the data
at each replication’s destination nodes, which is inefficient
compared with the vanilla HDFS that reduces the data at
the application layer. With fewer nodes, the effect is more
significant because the amount of data is the same, meaning
each node nowmust processmore data.With blockmirroring,
HDRF can almost match the data transfer time of the vanilla
HDFS with faster networks because it transfers the reduced
data instead of the original data, and thus minimizing the

data transfer time and eliminating the need to reprocessing at
the destination nodes. With the slow 1-Gbps network, there
is around 13% of data transfer overhead for HDRF with
block mirroring enabled over the vanilla HDFS, which is
significantly smaller than that without block mirroring.

As data processing also depends on the node capability
of data processing, we also compared the newer nodes in
Cluster A with the older nodes in Cluster B. In this test,
we used the first 20 GB of the Wikipedia dump. As shown
in Figure 11, the data transfer overhead is more significant in
the newer nodes at around 23%when comparedwith the older
nodes at around 17% overhead for ZFS and HDRF without
block mirroring. The faster disks in the newer nodes decrease
the amount of time to read and write the data to HDFS,
increasing the importance of the data processing capability
for a task like data compression. With the block mirroring,
the overhead over the vanilla HDFS is smaller because the
destination nodes do not need to reprocess the data.

E. DISCUSSION
With these tests, we answered the research questions pre-
sented at the Introduction, which are:

1) Is it possible to enable the data reduction schemes
in the DFS software without affecting most of its
functionality?

2) How easy is it to add and enable the schemes in the DFS
software?

3) How big is the performance overhead for the schemes
in the DFS software when compared with the existing
solutions?

We answered the first question by adding the support for
data reduction schemes to an existing DFS called HDFS with
around 1000 lines of codes. We also tested it in various work-
loads and confirmed that there are no issueswith its operation.
We answered the second question by adding a deduplication
scheme to HDFS through HDRF and enabling schemes such
as Lz4 and deduplication in various applications. During the
implementation and experiments, we observed that adding
new data reduction schemes is fairly easy through the pro-
vided abstract class. Additionally, HDRF supports Hadoop
CompressionCodecs, making scheme implementation as easy
as those in the application layer. Enabling the schemes is
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similar to the FS layer approach. HDRF’s data processing
is transparent like that of ZFS in the FS layer. To answer
the third question, we compared HDRF with the existing
approaches in various workloads and observed the overheads.
The data transfer and storage space overhead is fairly low
at around 1%. With the Spark and MapReduce workloads,
the overhead is around 5%. These results indicate that the
proposed DFS design can combine the benefit of existing
approaches at a fairly low overhead cost.

With the test in IV-B, this work also demonstrates that not
all data reduction schemes are equal. A number of schemes
work better than others for certain data types. For example,
HDRF’s deduplication schemes can reduce more redundancy
than those of ZFS. Additionally, deduplication and compres-
sion do not perform well on datasets with log or image files.
This result shows the importance of having easy access to the
DFS to add and enable the schemes to the DFS.

V. CONCLUSION AND FUTURE WORK
This study explores the application of data reduction schemes
in big data systems with DFSs such as Hadoop. Existing
approaches have challenges in terms of the ease of adding
or enabling schemes in the system. These challenges might
discourage users from using these schemes to maximize their
storage space efficiency. This study proposes a new DFS
design that can combine the benefits of existing approaches
by applying the data reduction schemes directly in the DFS
layer. This advantages of this approach are threefold. First,
adding a new scheme can be as easy as doing so in the
application layer. Second, it can apply the data reduction
scheme transparently regardless of the application. Third,
the overhead is negligible compared with that of the other
approaches.

To show the effectiveness of the proposed design,
we implemented it in an open-source DFS called HDFS and
compared it with a vanilla HDFS and the data reduction
scheme in the FS layer through ZFS. Our results and expe-
rience dealing with the tested setups show that adding a new
scheme through HDRF is as simple as through the vanilla
HDFS or even easier; enabling the schemes is as easy as the
FS layer approach because it does not require any changes on
the application side. Our results also indicate that HDRF has
a small overhead of around 1% for data transfer and storage
space overhead, and less than 5% for compute workload.

The implementation currently only exists for Hadoop with
HDFS. Because other systems may have a different slightly
different design or structure, it is important to check the
feasibility of the design in other systems. Additionally, HDRF
has other potentials such as the data processing capability of
HDRF, which can improve the compatibility of HDFS with
other storage devices without relying on other solutions with
high processing overhead such as FUSE [50].
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