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ABSTRACT The description of structure and complex interactions in Multi-agent-based Industrial Cyber-
physical (MAS-ICPS) systems has been elusively addressed in the literature. Existing works, grounded on
model-based engineering, have been successful at characterizing and solving system integration problems.
However, they fail to describe accurately the collective and dynamic execution behaviour of large and
complex industrial systems, particularly in more discrete production domains, such as: automotive, home
appliances, aerospace, food and beverages, etc. In these domains, the execution flow diverts dynamically
due to production disturbances, custom orders, fluctuations in demand in mixed model production, faults,
quality-control and product rework, etc. These dynamic conditions require re-allocation and reconfiguration
of production resources, redirection of production flows, re-scheduling of orders, etc. A meta-model for
describing the structure and complex interactions in MAS-ICPS is defined in this paper. This contribution
goes beyond the State-Of-The-Art (SOTA) as the proposed meta-model describes structure, as many other
literature contributions, but also describes the execution behaviour of arbitrarily complex interactions. The
previous is achieved with the introduction of general execution flow control operators in the meta-model.
These operators cover, among other aspects, delegation of the execution flow and dynamic decision making.
Additionally, the contribution also goes beyond the SOTA by including validation mechanisms for the
models generated by the meta-model. Finally, the contribution adds to the current literature by providing a
meta-model focusing on production execution and not just on describing the structural connectivity aspects
of ICPSs.

INDEX TERMS Industrial cyber-physical systems, multiagent systems, complex interaction flows,
modeling.

I. INTRODUCTION
Multiagent systems have historically been proposed, across
a wide range of industrial application domains, as a solution
for the creation, management and development of intelligent
industrial systems [1]–[6]. However, despite the documented
success cases, the adoption of agent concepts and technolo-
gies has been limited. While an in-depth discussion on the
reasons for the elusive adoption is beyond the scope of this
article, there is a consensus in the community that the lack
of maturity of the supporting technologies is one of the main
aspects [7], [8].
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In the context previously described, the industrial automa-
tion domain, particularly at field level, is dominated by the
programming languages described in the IEC61131-3 stan-
dard [9] and its progressive improvements which, recently,
have come to include a form of object oriented programming.
Simultaneously, the advent of Industry 4.0 is based in design
principles that cannot be entirely satisfied by today’s preva-
lent automation languages. The new design metaphors, Dig-
ital Twins (DTs) [10] and Industrial Cyber-Physical Systems
seek to address the pressing need of producing sustainability
while providing increasing personalized products.

Producing sustainability, under the mentioned circum-
stances, poses many challenges from a production execution
perspective: increase of custom orders and less predictable
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ordering patterns, the need to produce different products in
the same system while attaining high quality standards, the
need to dynamically re-use production resources as a func-
tion of the lesser organized ordering patterns, being able to
react quicker to systems faults and mitigate their impact in
production either by rescheduling or re(allocating) resources
or even by procuring and integrating temporarily resources
from third parties, etc. Research in DTs and ICPSs has proven
very fruitful in the development of models that characterize
the structure of machines and systems that are statically
interconnected. However, in quite many systems, relevant
information is not semantically organized and will gener-
ally lack structure [11]. Contributions that define arbitrarily
complex production execution flows have been relatively
elusive in the literature. The authors concentrate essentially
on discrete production systems and this contribution does not
tackle the simulation or execution at the level of the phys-
ical continuous processes. In this sense, it is not a replace-
ment for languages such as Modelica [12]. Furthermore, the
authors briefly address DTs because quite many production
system organizational models have been contributed under
that design metaphor. Nevertheless, this paper will focus on
ICPSs, without a loss of generalization of the contribution to
DTs. It considers the ICPS scope discussed in [10] and [13]
where the connection between the cyber dimension and the
physical dimension is discussed and, hard real-time vs. soft-
real time execution opportunities are modelled, respectively.

The known candidates for the implementation of Indus-
trial Cyber-Physical Systems (ICPSs) are Service Oriented
Architectures (SOA) [14], Multiagent-based Systems (MAS)
and, most likely, a combination of both [15]. These have
been in and out of the spotlight in the past two decades
following different technological hypes and trends. ICPSs are
seen as a specialization of the more generalized concept of
Cyber-Physical System (CPS) [16]. ICPSs share the same
challenges and problems of CPSs particularly the need to
effectively orchestrate software and physical processes. This
orchestration encompasses many computational levels [16]
including the one where control transitions from an hard-real
time process to a soft-real time one. It is at this interface
that MAS and SOA may contribute the most. SOA advocate
the use of semantically defined web-service endpoints, which
are often stateless, and can be aggregated in multiple ways
to create more complex services. MAS, on the other hand,
provide the concepts and technologies for adaptive intelligent
execution and the management of state information which is
crucial in complex execution scenarios which may include
negotiation and the harmonization of conflicting goals.

The need to process information in a more semantically
harmonized way led several researchers to combine semantic
and agent based technologies to address system modelling
and integration, (self)reconfiguration and manufacturing exe-
cution problems. The use of semantic technologies solves
many of these problems by providing the means to formally
describe dictionaries and complex, non-obvious, relations
between different entities in a system. It also allows the

harmonization of data from multiple sources in a consistent
and machine interpretable way. However, the description
of complex interactions in a MAS, in industrial contexts,
has not been adequately supported, particularly at the level
of the cyber-physical interface. This challenge has been
partially addressed, in discrete production systems, by rec-
ognizing that agent logic should be decoupled from the
controller logic [17]. Some harmonization techniques have
been developed between agents, programmed in JADE, and
the IEC61499 [18], [19]. However, the definition of this
interface remains largely ad hoc. The IEEE P2660.1 initia-
tive [20] has collected and categorized a diversity of practices
and introduced a scoring algorithm to access the suitability
of a specific practice in different application contexts. The
analysed practices do not provide, in a platform independent
way, a generic model that relates the capabilities exposed
by agents and their complex interactions, that often include
several agents, to their low level execution.

This is one of the main challenges that this work seeks
to address which is of significant importance for all the
other works described in the literature that seek to address
dynamic system reconfiguration in the scope of sustainable
production, as discussed before. Most of them assume that
the capabilities of cyber-physical resources can be described
simply by the name of a function. This assumption, on the
one hand, simplifies reconfiguration algorithms, on the other
hand, is fairly unrealistic since industrial equipment functions
require the definition of many parameters. The name alone
cannot be used in capability matching. Another common
assumption is that systems have a fixed functional granular-
ity, connected to the previous simplification. This is clearly
not the case for most modular industrial systems as it has
been demonstrated that different levels of granularity impact
important characteristics of the system such as: diagnosabil-
ity, flexibility, re-configurability, running costs and mainte-
nance, etc. [21].

While addressing the problem of describing complex inter-
actions and articulating this agent-based execution consis-
tently with field level execution, the proposed approach
also creates the opportunity to describe the functions of a
cyber-physical resource at an abstraction and with a granular-
ity level useful for these other dynamic reconfiguration and
optimization approaches. In this context, this paper focuses
on providing a meta-model, in a platform and technology
agnostic way, that addresses the identified challenges. In par-
ticular, it focuses on describing the system from an execution
perspective using the concept of skill as the main executable
element. In doing so, the meta-model does not prescribe
or restrict any particular organization, search or matching
strategies, but provides additional features that should be used
to assess whether different skills are equivalent or may be
combined. Such features include the parameters of the skills,
and their types, and the expected execution flowof aggregated
skills. These provide additional information that can be used
for precisely locating, aggregating and executing functions
beyond just their name.

VOLUME 9, 2021 153127



L. Ribeiro, L. Gomes: Describing Structure and Complex Interactions in MAS-ICPS Systems

The meta-model presented and discussed has been instan-
tiated in concrete models and tested in a physical pro-
totype using an experimental multiagent-based runtime
environment, which is not detailed for the sake of brevity.
Simultaneously, the model can be adapted to many differ-
ent technologies and runtime environments. These potential
adaptations do not alter its value and, on the contrary, attest
its usefulness and inter-operable nature by allowing multiple
implementation strategies, for example using service oriented
technologies combined with agents. This is the main moti-
vation for expressing the key details and directions of the
meta-model in a platform agnostic format provided by UML.

In this previous context, the threemain contributions of this
work are:

• a new meta-model to describe arbitrarily complex inter-
actions in Multi-Agent-based ICPSs;

• the introduction of validation mechanisms for the mod-
els created using the proposed meta-model;

• a meta-model that can combine structural system orga-
nizational aspects with behavioural ones.

The following details are organized as follows: Section II
discusses related work and positions the current contribu-
tion in that context; Section III is the main contribution
and describes the Light Mechatronic Agent Design Meta-
Model (LMADE), discusses its requirements and rationale
and describes the main components of the meta-model in
UML; Section IV discusses a didactic modelling exam-
ple; Section V discusses the methodology for validating the
generated model as instance of the proposed meta-model:
Section VI positions and discusses the main results and,
finally, Section VII reflects on the main conclusions.

II. RELATED WORK
In recent years, the number of models and meta-models,
either formalized as ontologies or other representations, for
supporting different manufacturing activities has increased.
Despite the different proposals, the great majority has not
been distributed publicly, their industrial usage has been
limited and the focus has been on characterizing machining
or assembly, with an under-representation of process indus-
tries [22]. While a relatively high number of ontologies and
descriptive models for production processes have focused on
describing components, operations and materials included in
the production process, the industrial agents community has
been historically attempting to combine the more descriptive
models, provided by ontologies, with manufacturing execu-
tion aspects. This paper is part of these latter efforts but
focuses on describing complex interactions at the cyber-
physical interface. Model-based engineering of industrial
systems is a large and multidisciplinary field and different
models will capture many different views of many different
stakeholders. This section focuses therefore on works whose
nature brings them closer to the ICPSs’ problems/challenges
space. In this context, the works mentioned, and compared
to, focus on describing production processes’ or product’s

characteristics, directly address execution aspects, or support
system performance assessment and reconfiguration. Such
dimensions and works have important contact points to the
proposed contribution as detailed later. Many of the related
works tend to follow or promote an agent-based system orga-
nization with strong similarities with the PROSA architec-
ture [23], [24]. This means that the idea of products, resources
and orders as active agents that manipulate the knowledge of
the different models, or as agents that can be derived from
the models themselves, is common to almost all the works
mentioned. This is an important point because the proposed
work also encourages such organization which is largely
based on distributed, modular and intelligent cyber-physical
components.

The contribution described in [25] proposes a method
for generating, in a platform independent way, common 3D
geometries in CAD tools. A similar approach is described
in [26] where digital twins are used as a concept to capture
and model product and process information in a machin-
ing context. The work described in [27] follows a similar
approach but focuses on generating 3D printing instructions
from a cloud environment. These contributions are relevant
because, in their specific domains, they actively transform
product data into execution data.

While the proposed contribution allows for something very
similar, it differs, generally, from production domain specific
contributions as [25]–[27] in that it does not address any
specific domain. Instead, it provides a meta-model that can
be used to model arbitrarily complex execution flows in any
domain. The particular semantics of a domain can be included
by using domain naming conventions on the elements of the
model.

In [28] an ontology for automatic reconfiguration of a
flexible mechatronic system is discussed. The ontology is
updated and used by the system’s agents to define the flow
of operations, available resources, matching between oper-
ations, resources and controllers. This knowledge is then
used to support execution and configuration by deploying
and activating the appropriate system resources. Industrial
controllers expose their fixed and pre-existing capabilities
through IEC61499 function blocks that implement the con-
figuration and execution protocols. A similar approach is
considered in [29] where the focus was on generalizing the
function blocks to allow safe runtime system reconfiguration.

In contrast to these previousworks, this contribution differs
from [28], [29] as it does not specifically address system
reconfiguration but rather provides a model to describe com-
plex interactions and, as such, can be used as a language upon
which reconfiguration algorithms can be enacted.

Code generation has been considered in [30] where
an extension of the GAIA methodology [31] for creating
multiagent-based systems was used for design and gener-
ation of industrial-oriented agents. The proposed ontology
allows the creation of an agent-based system composed by
resource agents, and their capabilities, as well as order man-
agers that coordinate the execution in respect to the available

153128 VOLUME 9, 2021



L. Ribeiro, L. Gomes: Describing Structure and Complex Interactions in MAS-ICPS Systems

functionalities. The work in [32] also targets code gen-
eration through the modAt4rMS approach which is based
on structural, execution and behavioural models of a Pro-
grammable Logic Controller (PLC)-based system and its
functions, parameters and execution states. Tools for trans-
forming system models into PLC function blocks, in the
scope of Industry 4.0 applications using the RAMI4.0 refer-
ence architecture, have also been considered in [33] and [34].
Still in the scope of the RAMI4.0 reference architecture, the
work detailed in [35] discusses a digital tool box to translate
information across the different viewpoints of the RAMI4.0
architecture.

This contribution differs from [30]–[34] as it does not
entail code generation but instead provides a specification
that can be interpreted by an agent platform for the purpose
of (re)configuring and executing complex interactions. The
elements in the proposed model, describing operations and
parameters of components of any given system, have some
similarity with [32] but, in particular, the parameters are not
restricted to PLC types.

In [36] a formal specification for Manufacturing Execution
Systems (MES) is detailed. The model provides a structural
and detailed overview of complex industrial PLC-based sys-
tems as collection of activities, elements, events, gateways,
data objects and the relations between them. While [36]
provides a language and representational elements more suit-
able for engineering PLC systems, the present work seeks to
address agent-based architectures where PLCs may be used
as supporting controllers but do not necessarily have to.

Models for agent-based local planning and deliberation
are considered in [37], [38] and [39]. Both works pro-
vide comprehensive models for coordinating the execution
between intelligent products and the available manufacturing
resources. In [40] a model for characterizing products and
their corresponding agent-based representation is discussed.
The model defines the operations and materials included in
the production process and the resulting products of these
operations. Similar approaches are considered in [41], [42].

In comparison to [37]–[42], where deliberative processes
are used to support execution, or the focus is on selecting
appropriate operations but not necessarily on describing the
execution details, the proposed work would act as a base
language to describe these details or, at least, to harmonize
the description of available system functions to a level where
the parametrization complexity can be encapsulated.

Ontology-based event driven manufacturing strategies, for
network of manufacturing units are discussed in [43] where
an architecture to manage relevant production events is
presented.

The proposedwork differs from [43] since it does not target
the interactions between different manufacturing facilities but
rather supports the execution interactions within one facility
and its components. Even if the proposed approach canmodel
interactions between manufacturing facilities and its execu-
tion operators are event driven, the work in [43] focuses more
explicitly in defining the producers and consumers of relevant

events, while this work supports additional operations such
as the definition of dynamic decisions and other less linear
execution flows.

A visual-based notation for describing and visually
analysing complex automation solutions is discussed in [44].
The proposed notation allows the definition of hard real-time
constraints and requirements in PLC-based systems consid-
ering their hardware capabilities, from the model it is then
possible to understand how to dimension the automation solu-
tions and evaluate performance issues. The integration of this
work with software aspects, and potentially agent oriented
code, and its impact in performance assessment is considered
in [45].

In contrast to [44] and [45], the proposed work does not
seek to model performance aspects of the system, however it
has been used as a basis for developing the work in [45] which
may act as a complement of it. Furthermore, the proposed
contribution also relies on a visual notation to describe both
the meta-model and the models derived from it. In particular,
it uses UML for this purpose as documented later.

An architecture to assess Multi-Agent-based ICPSs in
respect to their reconfigurability potential is detailed in [46].
The proposed architecture explicitly relates the existence to
the availability of functions in specific system resources. That
architecture has been recently generalized to support any
large and complex technical system using hetero-functional-
graph theory for which a digital toolbox is available as
described in [47].

In comparison to [46], [47] this work focuses on the defi-
nition of the execution of skills which is not tackled in [46],
[47]. This work can therefore be seen as an implementation
extension of the work defined in [46].

Overall, in the community developing Multi-agent-based
Industrial Cyber-physical Systems, quite many contributions
have been proposed for the structural modelling of ICPSs.
However, much of this modelling has concentrated on orga-
nizational aspects or on the creation of domain/machine spe-
cific production instructions. This work differentiates itself
by providing a mechanism for platform agnostic definition
of systems with arbitrarily complex execution flows. It is
not a replacement for the other efforts described but rather
a complementary framework.

Overall this work differentiates itself by providing a mech-
anism for platform agnostic definition of systems with com-
plex execution flows. It is not a replacement for the other
efforts described but rather a complementary and missing
tool.

III. LIGHT MECHATRONIC AGENT DESIGN META-MODEL
This section introduces the main contribution of this work
which is the Light Mechatronic Agent Design meta-model
(LMADE).

Before describing the technical details, it is worth men-
tioning that ICPS is a large and roughly defined domain. The
number and nature of requirements that needs to be satisfied
to support its desirable characteristics is unbounded.
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A. LMADE REQUIREMENTS AND RATIONALE
Industrial requirements predate the emergence of CPSs, are
linked to the need to create re-configurable industrial sys-
tems [48], [49] and include: universality, mobility, scalability,
modularity, compatibility and, as importantly, the need to
create metrics to evaluate system reconfigurability as a func-
tion of these characteristics.

Cyber-physical requirements reflect the need to articu-
late logical aspects of system organization and behaviour
with its physical aspects. Cyber-physical adaptability is
a central requirement for ICPSs [50]. Adaptability, how-
ever, is required at many levels, from the computational
platforms and supporting programming and modelling lan-
guages [16], up to the cyber-physical formulation of industrial
systems [51]. This paper concentrates on the latter which dis-
cusses ICPSs along the following dimensions: control path,
granularity & modularity levels and aggregation strategy.

Within these previous dimensions the LMADEmeta-model
seeks to address the following requirements formulated in
accordance with the structure and degree of obligation pro-
posed in [52]. The LMADE meta-model shall:
• R1: describe, in an harmonized way, heterogeneous
capabilities of industrial resources.

• R2: describe the aggregate capabilities of industrial
resources.

• R3: describe the logical structure of the system as a
function of its agents, their skills, and their deployment
characteristics.

• R4: describe the logical execution behaviour of the sys-
tem in respect to its skills while identifying the agents
responsible for their execution statically or dynamically
through negotiation processes.

• R5: not include assumptions about the application
domain.

• R6: support the customization of structure and behaviour
to specialized domains.

• R7: be specified in a language that allows its implemen-
tation using different technologies.

• R8: be possible to validate.
Previous developments in ICPS have produced contribu-

tions at different abstraction levels from high level design
principles to hardware in the loop implementations [5], [46]
with a predominance of the first where several well-known
reference architectures have been subject to a few proof of
concept implementations.While these reference architectures
are sufficiently defined, their intermediate models leading to
hardware in the loop prototypes have seldom been discussed.
Requirements R1 - R8 address specifically these intermediate
models.

R1 andR2 reflect the need to further generalize the descrip-
tion of industrial resources. Most reference architectures
detail the main actors and their high level functions but rarely
provide a language to describe the technical functions of the
resources with sufficient detail and in a platform agnostic
way. In other cases, these functions are described only by their
name which has a limited semantic value.

R3 and R4 address the need to simultaneously describe
the structure and behaviour of the system. Linked to R1 and
R2 most architectures do not provide intermediate models
for this and tend to focus in structural aspects. Furthermore,
execution in an industrial context is frequently defined as a
sequence of steps. However, as systems need to become more
reactive to production or market disturbances, defining pro-
cesses as simple sequences can be limiting. The skill concept
used in LMADE allows the incorporation of dynamic deci-
sion making processes whose behaviour can be customized
for different applications.

R5 addresses the need to not constrain the model to spe-
cific application domains. There is a predominance of ICPS
models for manufacturing systems, however, it is possible
to further generalize beyond manufacturing and enlarge the
applicability scope to other ICPSs.

R6 recognizes that different application domains have
non-generalizing characteristics and thesemust find their way
into the model, without disrupting it.

R7 motivates the description of the meta-model in a way
that is as technology agnostic as possible, so as to pave the
way for it to be implemented in as many different technolo-
gies as possible.

Finally, R8 covers an inherent need of all models. The
ability to validate structural and behavioural aspects of a
system is of paramount importance for ICPSs.

The LMADE meta-model adheres to these requirements
and is given using UML notations.

B. OVERVIEW
An LMADEmodel, as explained in greater detail henceforth,
envisions a technical system, particularly an ICPS, as a col-
lection of agents and their skills. An agent behaves as the
cyber counterpart of a physical system, a process within it or
both. When an agent abstracts a physical component/system
it describes the functions that said system exposes to other
agents (abstracting themselves other components/systems)
and that may be used by these other agents collaboratively
to control the execution of production in an ICPS. When
an agent abstracts a process, it describes the dynamic inter-
actions between other agents in the system. As mentioned
before, an agent may also do both simultaneously, acting as
an aggregator of processes and production resources, while
acting as the cyber counter-part of a larger section of a tech-
nical system or even the whole system. Principles of Holonic
organization as detailed in [53] and emanating from Arthur
Koestler’s definition of Holon apply directly.

Agents, in their different roles, will describe their functions
as skills. A skill is what an agent knows how to do and
details how it is done in the system, which other agents may
be involved in the execution of the skill and which skills
within these agents shall be used. Furthermore, a skill may
be activated by sending the agent that owns the skill a recipe
that details the values of the input parameters of the skill.

Collectively, agents and their skills completely describe
the structure and behaviour of a multi-agent-based ICPS
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defined with the LMADE meta-model. The previous is cap-
tured through an hierarchical meta-model with the concept
of LmadeAgentSpecification as a central component (Fig. 1).
The LMADE meta-model and its instances are specified
using UML without any relevant deviation from its norm.
In the forthcoming text, complementary information about
how to read the UML diagrams will be provided, however,
readers are referred to the formal UML specification for
the language details (https://www.uml.org/). Rele-
vant meta-model concepts are described as UML classes,
denoted by squared symbols where the name of the class
occupies the top compartment of the symbol. Additional com-
partments may refer to properties of the concept, denoted by
attributes, or functions of the concept, denoted by operations.
Attributes have a name and a type. Operations have a name,
parameters’ list and may have a return value. The relations
between the entities in the model are represented using the
standard visual notations for describing different types of
associations, their direction, nature and arity (this is denoted
by the lines connecting the classes and the additional symbols
related to them). Generally, throughout the meta-model def-
inition, aggregations (lines with a white diamond) are used
over composition associations (not represented in any of the
figures discussed) to make very explicit the decoupled nature
of the instances. The previous is intentional and promotes re-
usability. Indeed, many different agents may have the same
skill, the skill does not cease to exist just because the agents
do (the skill exists but is simply not available or instan-
tiated), the same applies for all the identified aggregation
associations. It is therefore possible to maintain a storage of
LMADE concepts that can be cyber-physically instantiated
upon convenience.

All the instances of concepts from the LMADE
meta-model have a Global Unique Identifier (GUID) and
a friendly name that are not represented in (Fig. 1). These
attributes make every instance uniquely identifiable. While
uniqueness is provided by the GUID, the friendly name
provides a human readable name for the instance. Friendly
names are case insensitive in LMADE. Unique identification
of components in the meta-model’s instances is important
from a traceability point of view. Any change to a instances
results in new unique identifier being assigned to the instance
which, in turn, enables the tracking of the evolution of the
model over time, as every evolution of an instance will have
an uniquely identified ancestor, and ensures that different
versions of the instances can co-exist but never be mistakenly
confused during usage. This is a general characteristic of the
meta-model that applies to all the instances of its components.

An LmadeAgentSpecification aggregates a set of skills
(denoted by the directed line with the white diamond and
the arity specification which describes that 1 agent has 0 or
more skills). A Skill is an abstract class (denoted by the name
of the class written in italic), with a set of specializations
detailed later (Fig. 2), that models a capability that an agent
provides to its surrounding environment. Abstract classes are
not stand-alone concepts but rather contain, from a modelling

FIGURE 1. View of the LMADE meta-model focusing on parameterization
of agents and skills.

perspective, a set of attributes and operations that are common
to all their specializations. A specialized class is connected to
a more generic class by a line with an white triangle. The
concept of skill has been widely used in the agent-based
literature and has become a de facto designation for the
functions of an agent in an industrial context. However, its
implementation has varied slightly to incorporate different
requirements. In the LMADE context, a Skill has, zero or
many, input and output parameters.

A Parameter is characterized by a type, which identifies its
data type, and a unit, which identifies the magnitude of the
quantity of the parameter. Parameters may have boundaries.
A Boundary is a restriction to the admissible set of values of
the parameter. It is also an abstract class that allows further
extensions. The current implementation requires sub classes
to implement two operations. The contains operation returns
true if a particular value of a boundary or another boundary is
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contained in the set of possible values of an existing bound-
ary. Currently, the model supports two specializations. The
NumericBoundary allows the definition of numeric upper and
lower values and the AlphanumericBoundary allows restrict-
ing string literals to specific values.

A Skill also aggregates symbolic links. A SymbolicLink
defines a relation between the values of different parameters
(ParameterToParameterLink) or between a particular value
and a parameter (ValueToParameterLink). The purpose of the
ParameterToParameterLink concept is to relate changes in
the value of the originating parameter (fromParameter) to
the value of the destination parameter (toParameter). A Val-
ueToParameterLink asserts a similar relation but between a
particular value, defined as a ParameterValue, and a destina-
tion parameter and can be used for initializing parameters.
In runtime, symbolic links are used to copy and map values
between parameters of the same or different skills. One may
intuitively think of links as wires between parameters and
values. Because any instance of the model, be it an agent or a
parameter, has its own unique id a symbolic link can connect
any pair of ParameterValue and Parameter or any pair of
Parameters. A ParameterValue is defined by a unit, a value
and a valueType that describe, respectively, the magnitude
of the quantity of the parameter, the value, expressed in that
quantity, and the data type of the value.

Finally, an LmadeAgentSpecification aggregates a set of
serialized software libraries that are required to support its
operation after it has been deployed. These libraries con-
tain the domain specific implementations that specialize the
behaviours of Atomic, Alternative and Loop skills, later
detailed.While these libraries aremainly relevant in a runtime
context they need to be attached to the instanciated model
during the design phase. Since the agent definition aggregates
all the skills whose behaviours may be customized for a
specific domain, and some of these behaviours may use the
same library, the supporting libraries are stored at agent level.

C. SKILL SPECIALIZATIONS
Fig. 2 provides additional details regarding the speci-
fication of skills in LMADE. The Skill abstract class
contains six specializations: AtomicSkill, AlternativeSkill,
LoopSkill, SequentialSkill, SimultaneousSkill and Delega-
tionSkill. These specializations act as operators that control
the flow of the execution of the skill as described next.

Skills also require a way of specifying an interface the
physical world and for system specific execution semantics.
For example, the LoopSkill, detailed next, will execute a skill
cyclically until a certain condition is met. The condition is
system specific and can be an arbitrarily complex decision
making algorithm that needs to be harmonized with the
LMADE model. A similar situation can be found in other
skills, for example the AtomicSkill whose execution must
activate native functions on the physical system its agent
control. Here the translation between the LMADE execu-
tion semantics and the native system execution semantics is
again system specific. These skills, that interface with native

system/domain functions implement the LibraryDeployer
interface which defines the minimal set of functions that
a library class must implement to describe and locate its
resources. This is the case of Atomic, Alternative and Loop
skills that, as mentioned before, can be customized to differ-
ent application domains. Their libraries are stored at agent
level as SerializedLibrary class objects.
The AtomicSkill class models skills that integrate with

external systems. Atomic skills traverse the cyber-physical
barrier by integrating, for example, an agent with a physical
asset. They may also integrate with other systems (other
IT systems, libraries, algorithms, etc.). They implement the
LibraryDeployer interface because they reference the low
level libraries containing their implementations. These trans-
late the execution of atomic skills (agent domain) into a
particular action in the systems it interfaces with (physi-
cal/external system domain).

The AlternativeSkill class models an execution flow
whereby one skill, among many alternatives, is scheduled
for execution depending on a user defined condition. The
list of possible alternatives eligible for selection and execu-
tion is represented by the Alternatives, one-to-one-or-many,
aggregation. The user defined algorithm that performs the
selection must implement the AlternativeSkillDecisionMaker
interface that contains the selectAlternative operation. The
implementation of the said operation must, given the set of
the skill’s input parameters’ value and the list of the alterna-
tives, return the skill selected for execution. The user defined
implementation of the selection process requires the Alter-
nativeSkillDecisionMaker to implement the LibraryDeployer
interface.

The LoopSkill class models an execution flow whereby a
skill runs in a loop until a given user defined condition is met.
Similarly to the AlternativeSkill, the user has the opportunity
to define the particular conditions that cause the loop to
continue. This requires the implementation of the LoopDe-
cisionMakerInterface and, in particular, the operation contin-
ueLoop which, based on the values of the input parameters
of the skill, returns true if the loop should continue for a
subsequent cycle or false otherwise.

The SequentialSkill class models an execution flow where
all the sub-skills aggregated in the Sequence association are
executed, one after the other, from the head to the tail of the
list. The order should be strictly enforced and one skill must
not start its execution before the previous has finished. The
last skill must finish its execution for the sequential skill to
finish its own.

The SimultaneousSkill class models an execution flow
whereby all the skills aggregated in the Simultaneous associa-
tion see their execution started at the same time. The simulta-
neous skill will follow-up the execution of these sub-skills
and terminates its execution when all the sub-skills have
finished their execution. All the sub-skills must therefore
terminate, otherwise, the simultaneous skill does not termi-
nate. The simultaneous skill does not enforce or preclude any
kind of synchronization between the sub-skills. Furthermore,
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FIGURE 2. View of the LMADE meta-model focusing on skills.

this skill does not prevent an agent from executing several
skills simultaneously. Its purpose is to allow simultaneous
execution within a specific skill aggregate and to guarantee
that, within that scope only, the subsequent execution flow
is not started before the simultaneous execution block ter-
minates. Depending on the runtime implementation an agent
may simultaneously execute an arbitrarily high number of
skills but if these skills contain simultaneous skills within
their flow, their execution follows the rules stated above.

Finally, theDelegationSkill class models an execution flow
whereby one agent can delegate the execution of a skill on
another agent. The agent to which the skill is delegated must
contain a skill that is compatible with the first skill. Being
compatible means that the name of the skill and its parameters
are the same in the delegation and the delegated skill and
that the parameters match in number and type. Furthermore
if boundaries are specified, the ones of the skill where the
execution is delegated must be more general or equal than the
ones on the delegation skill. For example if the delegate skill
specifies a numeric parameter restricted between 0 and 10,
with all the other requirements fulfilled, the skill that carries
out the execution must restrict that parameter on the same or
on a larger interval. A -10 to 10 interval would work but a 5
to 10 would not.

This skill contains two private members that are relevant to
control the delegation procedure:
• preferedDelegate - stores the name of the agent to whom
this agent delegates the execution of the recipe.

• negotiationCriteria - stores a value that enables or dis-
ables a negotiation procedure to determine the agent to
whom this agent delegates the execution of the recipe.

The value of the negotiation criteria can only take
one of the following constants defined in the class:
ALWAYS_NEGOTIATE, ALWAYS_NEGOTIATE_USE_
PREFERED and NEVER_NEGOTIATE.

The first defines unconditional negotiation and, if enabled,
the value of the preferedDelegate should be ignored. The sec-
ond enables negotiation in the unavailability of the prefered-
Delegate. The last enforces the use of the preferedDelegate.

D. SYSTEM AGGREGATION DEPLOYMENT AND
EXECUTION
LMADE also provides support for aggregating and deploying
whole systems and for specifying execution recipes (Fig. 3).
As mentioned before, the LMADE meta-model enables the
description of the behaviour of the system through the com-
position of agents and skills, collectively they ‘‘are’’ the
system. A collection of agents and skills can be further aggre-
gated by the concepts hereby specified. This is particularly
important for deploying the system and bringing it into opera-
tion. The LMADE runtime environment, not described in this
paper, contains specialized agents, calledDeployment Agents
(DAs), that are able to process the SystemDeploymentSpec-
ification and AgentDeploymentSpecification described next.
The DAs are therefore runtime entities that are active on
the computational targets where the LMADE models can be
deployed. Sending a SystemDeploymentSpecification to a DA
will cause it to validate the specification and instantiate and
deploy all the agents within it in its computational platform.

The SystemDeploymentSpecification class aggregates all
the AgentDeploymentSpecification required to deploy a
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FIGURE 3. View of the LMADE model focusing on recipes and deployment.

particular system. The AgentDeploymentSpecification class
requires the definition of two important attributes. The first
is a reference to the parent system deployment specification,
in the form of its unique id parentSystemDeploymentSpecU-
UID, and the second is the name of an agent, targetDe-
ploymentAgentName. This name identifies the target agent
that will be responsible for deploying the specified agent.
This deployment agent is a runtime concept and should be
able to receive the serialized version of the AgentDeploy-
mentSpecification deserialize, process, and finally deploy
it in an appropriate computational platform. Finally, the
AgentDeploymentSpecification is associated to a particular
LmadeAgentSpecification that fully describes an agent, its
skills and supporting libraries to be deployed.

LMADE provides a model for the format used to send a
request to an agent for the execution of a particular skill. The
approach is to use recipes, a concept also widely explored
in the specialized agent-based literature. A Recipe has a
rather simple definition, akin to a remote procedure call.
It contains the name of the skill to be executed and a set of
ParameterValue that includes the concrete parametrization of
the skill parameters. The recipe does not include any flow
control modifiers or instructions. These are contained in the
skill definitions themselves as explained before.

IV. WORKING EXAMPLE
To illustrate the usage of a model instantiated from the
LMADE meta-model one shall use the system in Fig. 5. The
system consists of two rolling conveyor belts. The conveyors
transfer parts between each other in a unidirectional way. If a
conveyor is full, it should not accept parts from the other. Each
conveyor contains a presence sensor that detects if a part is
on it. This is not visible in the model and is abstracted by the
conveyor’s atomic skills.

The general model instantiation process is described in
Fig. 4. The process starts with a decision on the level of
granularity of agents and their skills. As discussed in [21] the
level of service (in this case skill) granularity is a system spe-
cific decision that entails important trade-offs. In the example
described next there was no specific technical criteria for the
selected level of granularity, instead the example was devised

to showcase the highest amount of entities from the LMADE
meta-model. However, from an instantiation point of view
regarding real systems this is a crucial step that needs to be
carefully carried out. From that moment on, the user of the
system, in charge of defining it, may start to define the agents
and their skills. Because these elements are independent their
development can happen in parallel and can involve many
different users. At any step in the entire process any of the
models can be validated and stored. With a first definition of
agents and skills these need to be integrated (i.e. skills need to
be attributed to specific agents). The previous is an iterative
process and any number of skills may be added, removed or
modified from existing agents. When an agent specification
(LMADEAgentSpecification) is complete and is ready for
deployment its agents and system deployment specifications
can be created or modified. After these have been validated
theymay be sent to the deployment agent for instantiation and
deployment on the target computational platform.

In the present case, each conveyor will be controlled and
abstracted by an agent which constitutes the cyber-part of
the cyber-physical aggregate. The discussed example has a
didactic value only as mentioned before, it would not be the
best technical solution for the problem at hand. However,
it was designed to demonstrate, in a compact way, a large
number of the features in the meta-model.

The instantiation of the conveyor agent is depicted in Fig. 6.
The instantiation of the second conveyor is similar and omit-
ted for brevity. In all the meta-model instantiation examples,
in this section, the paper uses UML Object diagrams. Such
diagrams are similar to the class diagrams earlier presented
but, as the name suggests, provide a specific instantiation
for the classe’s attributes and operations. Each conveyor con-
tains four skills: startProductRelease, stopProductRelease,
reserveIfFree and acceptProduct. One takes advantage of
this instantiation exercise to introduce some additional model
parameters that have not been discussed in the model before,
namely sharesInstance and new instanceOnExecution which
apply to all the entities that are library deployers. The first
refers to the ability of the skill, or the agent, to share an
instance of the same library while executing if more than one
agent, or skill, in the specification refer to the same library.
The second refers to the need of creating a new instance
of the library every time a skill or an agent is executed.
Collectively, they allow the specification of the supporting
libraries in different ways and may suit different execution
and implementation needs.

In the present case, one assumes that there will be just
one library instance controlling each conveyor and that the
different skills are all defined in the same library. This makes
sense since, at supporting library level, there may be the need
to share global variables that capture the overall status of
the conveyor. For that reason, the skills share the instance of
the library. The library keeps track of its state and therefore
should not be re-instantiated for every execution. Two of the
skills have output parameters of Boolean type. In particular,
the reserveIfFree skill will reserve the conveyor for a product

153134 VOLUME 9, 2021



L. Ribeiro, L. Gomes: Describing Structure and Complex Interactions in MAS-ICPS Systems

FIGURE 4. Instantiation procedure.

FIGURE 5. Example system.

handover procedure if the conveyor is free. If the reservation
is successful the skill returns the value true in this output
parameter. This means that the conveyor is now reserved and
therefore not free Similarly, the acceptProduct skill, which
is activated at the start of the handover procedure in the
receiving conveyor to initiate its motion, returns truewhen the
product has been completely handed over and terminates the
handover procedure in the receiving end. The skill startPro-
ductRelease starts the motion and stopProductRelease stops
the motion of the providing conveyor.

Note that the conveyors do not specify the actual handover
procedure. This is a shared operation. In this scenario one
chooses to model this operation as an additional skill on an
additional agent called HandoverAgent (Figs. 7 and 8).
Figure 7 shows that the skill handoverProductBetween-

Conveyors is actually a complex flow of other skills. It is
a sequence comprising a loop skill in step 0 (the first step
in the execution of the sequential skill) and a simultaneous
skill (defined in Fig. 8). Furthermore, Fig. 7 shows that the
loop skill cyclically executes a delegation skill that delegates,
in the agent Conveyor2, the execution of skill reserveIfFree.
Additionally, the loop skill contains three input parameters
two Boolean control and reference and one of type string
operator. In this didactic example, the user specific imple-
mentation for the continuation of the loop (not represented
in the figure) assumes that, for as long as the value of
the control parameter differs from the value of the refer-
ence parameter, the loop continues. The user implementation
will have access to the value of the parameters through the
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FIGURE 6. Instantiation of the conveyor agent 1.

LoopSkillDecisionMaker interface earlier detailed (Fig. 2).
This shows the possibility of customizing the skill with
domain specific requirements. The inequality as a condition

for the continuation is expressed using the corresponding
value to parameter links that initialize the control parameter
with the value true, and the reference and operator parameters
with the values false and != respectively. Finally, the param-
eter to parameter link establishing a dependency between the
result of the delegated skill and the value of the control param-
eter ensures that, as soon as a reservation can be accepted
by the second conveyor, the loop stops and the execution
continues to step 1 (Fig. 8).
The continuation of the execution (Fig. 8) describes the

simultaneous execution of a delegation skill and a sequential
skill. The first delegates the acceptProduct skill in conveyor 2
while the second, first activates the release of the product, also
by delegation in conveyor 1, and then uses a loop skill, in a
pattern similar to what has been described before, to actively
wait for the productAccepted to change its value to true.
When the loop finishes, the handover is completed and the
agent delegates the stopProductRelease skill in conveyor 1.
This causes the overall handover procedure to terminate after
all its skills have terminated their execution.

The instantiation of the Product Agent is now trivial and
omitted for brevity. It requires the definition of an appropriate
set of skills that would describe the production flow for that
product. In the present case, it would associate the delegation
of the handover skill to the specification of the product agent.

Finally, Fig. 9 shows an example of the deployment spec-
ification where, in the present case, a system deployment

FIGURE 7. Instantiation of the handover agent—part 1.
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FIGURE 8. Instantiation of the handover agent—part 2.

FIGURE 9. Full system instantiation.

specification would deploy the two conveyors (omitted for
brevity) and the handover agent (depicted). Additional system
deployment specifications would deploy an arbitrary number
of products when needed, as well as additional resources
being added to the system.

V. MODEL VALIDATION
Instances of the proposed model are validated using two
procedures.

Firstly, Petri nets [54] can be used to validate the over-
all model of the multi-agent system, in terms of its main

properties, namely completeness, deadlocks and livelocks
freeness. For that, each of the six skill specializations is indi-
vidually modeled. The Petri net model of each skill has one
input place to allow the activation of the skill, and one output
place denoting the completion of the activities associatedwith
the skill, as illustrated in Fig. 10 b). Overall, the modeling
of the whole system includes a source transition to activate
the execution of the model, as well as a sinking transition
to allow the confirmation of the conclusion of the execution,
as presented in Fig. 10 a).

For a complete modeling of the system, namely of the
parameters associated with the agents’ execution and associ-
ated data transformations, high-level Petri nets are necessary
to support full analysis of the system’s properties. However,
without loss of validity of the whole modeling strategy, low-
level Petri nets are used in this paper for the modeling, still
supporting completeness and liveness analysis.

The composition of individual skill models can be achieved
through asynchronous composition obtained through fusion
of input and output places [55], relying on the net addition
operation, as proposed in [56].

Fig. 10 c) presents the model for AtomicSkill, where the
transition models the completion of the skill. The Sequential-
Skill results from the sequential composition of several skills
through the fusion of the output place of one skill with the
input place of the adjacent skill, as illustrated in Fig. 10 d) for
a composition of a sequence of three skills. Fig. 10 d) right
shows the resulting skill after fusion of input/output places
of the individual skills. Fig. 10 e) presents the model for
AlternativeSkill, where output places of the alternative skills
and output place of the AlternativeSkill are fused together
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FIGURE 10. Skills modeling and their composition.

(using the net addition operation), as explicitly presented at
Fig. 10 e). Fig. 10 f), and g) present the models for Loop-
Skill, and SimultaneousSkill (using fork and join constructs
common in Petri net models), accordingly with behaviour
descriptions previously presented in Section III-C.
The behavioral model for the handover agent of the work-

ing example is presented in Fig. 10 h), composed by a sequen-
tial composition of a LoopSkill waiting for availability of
Conveyor 2 with a SimultaneousSkill having two concur-
rent skills, one to accept product on Conveyor 2, and other
composed by the sequential composition of skills associated
with Conveyor 1. Property verification of this model can be
achieved building the associated reachability tree (the state-
space associated with the execution of the Petri net model).
Using the IOPT-Tools framework [57], it is concluded that
the reachability tree has 19 states, and the model exhibits one
deadlock associated with proper finalization of the execution.

Secondly, model instances are additionally validated recur-
sively and, in addition to the conditions prescribed by the
model itself in respect to the multiplicity of the associations,
the following is checked for consistency. All the friendly
names must be non-empty strings. The lower limit in numeric
boundaries must be lower or equal to upper limit. The value
of alphanumeric boundaries must be a non-empty string.
Recipes must have a non-empty skill name. The type and

unit of the parameters must have a value. The same happens
for parameter values where, additionally, the value must also
be non-empty. If a parameter value contains a type that is
numeric then the value must also be valid within that type.
Symbolic links may not have null values on their parameters.
Parameter to parameter links are only valid if they connect
two existing parameters with the same type and compatible
constraints. Value to parameter links are only valid if the
parameter value and the parameter they connect follow simi-
lar rules. Alternative, sequential, simultaneous and loop skills
must contain sub-skills, as expressed by the 1 to 1 or many
directed associations in Fig. 2. Serialized libraries must have
non-empty filenames and libraries. Agent deployment spec-
ifications must contain non-empty target deployment agent
names and agent specifications.

Collectively, these two validation procedures attest the
fitness of the model for runtime deployment and execution.

VI. RESULTS AND DISCUSSION
The paper now address the three main contribution of the
work as defined in the introduction:

1) a newmeta-model to describe arbitrarily complex inter-
actions in Multi-Agent-based ICPSs;

2) the introduction of validation mechanisms for the mod-
els created using the proposed meta-model;
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3) a meta model that can combine structural system orga-
nizational aspects with behavioural ones.

Multi-agent-based system are, as a concept and technology,
one of the most promising media for the implementation of
the next generation of industrial automation solutions. Such
systems have be subject to intensive research in the past.
However, the existing models fall short of systematically
describing complex execution flows in large industrial sys-
tems in a scalable way.

In respect to contribution 1), The proposed meta-model
contributes to the body of knowledge by providing the con-
cepts required to describe arbitrarily complex interactions in
systemswithmultiple autonomous entities. It does so in a lan-
guage that is independent from the system but that can be cus-
tomized to fit system specific semantics. Flow control skills
supporting cycles, dynamic decision, parallel or sequential
execution can be used to describe the flow of execution of
virtually any engineered systemwith more or less granularity.
At the same time, the ability to be able to name skills and
their parameters, units and constraints, according to system
specific semantics and to be able to redirect system specific
decision-making to particular decision making algorithms
that make use of that semantic information ensures that, using
the LMADE meta-model, all generalizable execution aspects
are harmonized in a transparent way with system specific
execution.

The previous is shown in the didactic example discussed in
Section IV where the different execution flows are described
as different skills from the meta-model and their names and
units use system specific semantics. Non-generalizable exe-
cution is deferred by the atomic skills to the corresponding
implementation libraries. The same happens to the loop skills
that rely on system specific semantics to break or continue the
loop. Because the outcome of the deferred executions either
succeeds of fails it is possible to analyse the behaviour of the
system in a system independent way.

To the best of the authors knowledge no other agent-based
meta-model has openly provided such functionality.

The second contribution is a direct consequence of the first.
Because the meta-model allows the definition and generaliza-
tion of arbitrarily complex execution flows, it then becomes
possible to use validation mechanisms on the models. Valida-
tion is of extreme value here because it attests the correctness
of the execution flows. The discussed validation mechanisms
cover both syntactic and semantic validation aspects. For
example, a skill model is only valid if any set of connect
parameters used the same units. Simultaneously, a skill is also
only valid if the execution flow it describes has a start and an
end, while not introducing unintended deadlocks.

This is detailed in Section Vwhere the process of analysing
a model using Petri nets is described and the discussed
example is analysed. Furthermore, the LMADE meta-model
generates models whose structure can be recursively parsed
and validated, with the advantage that different sections of
the model can be individually and locally validated and then

potentially re-used in other models and subjected to a wider
validation.

Given the state-of-the-art literature in the domain in which
we position our work, the authors believe this is an important
contribution to the body of knowledge.

Finally, the third contribution results from the meta-model
seamlessly articulating the system structure with its
behaviour. This is a key aspect for cyber-physical sys-
tem modelling as understood in the context of this paper.
The existing literature includes proposals for structural and
behavioural meta-models. However, meta-models combin-
ing both, in addition to the two previous contributions are
extremely elusive in the available literature.

VII. CONCLUSION AND FUTURE WORK
This work provides ameta-model for defining and associating
the structure of a multi-agent-based cyber-physical industrial
system with its complex interactions. The existing literature
has been somehow elusive in supporting such models. Works
describing the structure of systems generally fall short of
modelling how that structure relates to the many complex
interaction/execution flows that are required to run these
systems. Simultaneously, quite many works try to optimize
the usage of system resources by planning their execution.
However, most of these works assume a unrealistically sim-
ple representation of the capabilities and functions of the
cyber-physical resources in an industrial context.

The focus of the LMADE meta-model is to provide a
framework for describing arbitrarily complex interaction in a
generalizable way, while deferring system specific execution
to appropriate system specific handlers. This allows models
to be comparable and validated. It also allows models to be
seamless integrated with each other and validated in different
scopes and contexts.

Collectively, all the facets that the meta-model transposes
to the models it generates make it quite useful in filling in
the gap between the high heterogeneity of physical indus-
trial resources and the much needed harmonization required
for enacting intelligent and autonomous decision-making
processes.

The present meta-model is not without limitations. By its
nature it applies generally to Industrial Cyber-Physical Pro-
duction Systems that operate on discrete production systems.
Its application to continuous processes requires a much more
careful assessment of the design of the skills and the agents.
The skills, in particular, must entail functions that have a clear
start and finish cycle, or that otherwise generate events that
can be easily integrated into the skills. In its current version,
the execution environment for the models also follows this
principle and is event-driven.

On discrete production systems the meta-model and the
models it generates apply directly with very little limitations.
The most obvious limitation is the ability to follow-through
hard-real-time processes. This is due to the nature of the skills
controlling the flow of execution and the need to defer certain
execution moments to system specific libraries. While the
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skill structure could, in principle, execute in a predictable
time, from the moment the execution is deferred to a system
specific library, the meta-model does not have the tools to
predict the outcome of such execution in respect to its success
or timing.

In its current form the LMADE meta-model has been suc-
cessfully demonstrated in a few industrial systems at a proto-
type level. Future workwill focus on the automatic translation
of the model in to Petri net frameworks for an instantaneous
validation of the execution flows and small improvements to
the meta-model in respect to defining parameter boundaries.
The latter will go in the direction of allowing better extension
mechanisms that enable setting constraints on parameters
with non-native types.
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