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ABSTRACT Diabetic Retinopathy (DR) is the most common and insidious microvascular complication of
diabetes, and can progress asymptomatically until a sudden loss of vision occurs. Although DR is prevalent
nowadays, its prevention remains challenging. The multiple aim of this study was to predict the risk of
developing DR as diabetic complication (task 1) and, subsequently, temporally stratify the DR risk (task
2) using electronic health records data. To perform these objectives, a novel preprocessing procedure was
designed to select both control and pathological patients, and moreover, a novel fully annotated/standardized
120K dataset from multiple diabetologic centers was provided. Globally, although the Extreme Gradient
Boosting model offers satisfying predictive performance, the Random Forest model obtained the best
predictive performance to solve task 1 and task 2, reaching the best Area Under the Precision-Recall
Curve of 72.43 % and 84.38 %, respectively. Also the features importance extracted from the best Machine
Learning (ML) models is provided. The proposed Artificial Intelligence-based solution was proven to be
capable of generalizing across different diabetologic centers while ensuring high-interpretability. Moreover,
the proposed ML solution is currently being adopted as a Clinical Decision Support System in several
diabetologic centers for DR screening and follow-up purposes.

INDEX TERMS Predictive medicine, diabetic retinopathy, machine learning, electronic health records.

I. INTRODUCTION
The diabetic retinopathy (DR) is themost common and insidi-
ous microvascular complication of diabetes, and can progress
asymptomatically until a sudden loss of vision occurs [1].
Almost all patients with type 1 diabetes mellitus and 60% of
patients with type 2 diabetes mellitus will develop DR during
the first 20 years from onset of diabetes [1]. With the rising
prevalence of diabetes and increasing numbers of people with
diabetes living longer, the number of people with DR and
visual impairment due to this disease is rising worldwide [2].
Early diagnosis of diabetic patients and appropriate timely
treatment has gradually become an effective measure to pre-
vent DR disease, with a positive economic impact on patients
and the healthcare system. Although DR is prevalent nowa-
days, its prevention remains challenging. Physicians typically
diagnose the presence and severity of DR through visual
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assessment of the fundus images by direct evaluation. Given
the large number of diabetes patients globally, this process is
expensive and time consuming [3], [4]. Furthermore, 75% of
worldwide DR patients live in underdeveloped areas, where
sufficient specialists and adequate medical infrastructures for
this purpose are unavailable [5]. Consequently, millions of
persons continue to experience vision impairment without
proper predictive diagnosis and eye care.

Screening tests are performed in asymptomatic persons to
assess for the presence of a particular disease or the risk
of that disease. An effective screening test program should
reduce morbidity and mortality in a population by detecting
disease at a stage at which treatment will make a difference.
Global screening programs have been created to counter the
proliferation of preventable eye diseases, but DR exists at
large a scale and its detection on individual basis is scarcely
effective. Additionally, given also the current cost-conscious
era of healthcare, a policy to reduce unnecessary screen-
ing for several retinal diseases is becoming necessary [6].
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The availability and the huge amount of Electronic Health
Record (EHR) data is exponentially growing, thus early diag-
nosis of patients with diabetes using EHR data has gradually
become an effectivemeasure to prevent DR disease [7]. Using
routine EHR data (i.e., demographics information, lab tests,
exams, pathologies), it is possible to predict whether diabetic
patients are going to develop DR. Comparing this approach
with conventional gold standard DR diagnosis (e.g., fundus
images), it does not only eliminate the time and money costs,
but also maintains an acceptable accuracy [8]. Conventional
diagnosis of DR requires a professional medical facility to
obtain the fundus image by advanced medical equipment and
then a professional physician to evaluate the single case of
study. Early diagnosis of DRwith convenient, easy-to-access,
free, routine EHR data may result a simple and convenient
alternative to manage and treat diabetic patients.

The multiple aim of this study was to i) predict the
risk of developing DR as diabetic complication (i.e., pres-
ence/absence of DR) [i.e., task 1] and, subsequently only
for DR patients, ii) temporally stratify the DR risk (i.e., in
0-2 years or in 2-5 years) [i.e., task 2] using EHR data.

The purpose of this work is to bridge the gap between
the ML research applied to EHR data and the develop-
ment of a Clinical Decision Support System (CDSS) while
keeping humans at the center of the design and evaluation
process [9]–[11]. It is worth noting that the task 1 predicts
the presence/absence of DR, while the task 2, if the pres-
ence of DR was predicted by the task 1, predicts when the
patients will develop DR (i.e., in 0-2 years or in 2-5 years).
The proposed two-stage hierarchical ML procedure can be
seen as a sequential predictive process within a Clinical
Decision Support System (CDSS) application. In particular,
main contributions to the biomedical informatics field can
be summarized as follows: (i) the employment of the novel
fully annotated/standardized 120k dataset from multiple dia-
betologic centers, thus leading to a higher clinical impact
procedure, (ii) the design of a novel preprocessing proce-
dure for selecting control and pathological patients (iii) the
application of a two-stage ML procedure to firstly predict the
presence/absence of DR and secondly to stratify the temporal
risk of the disease for each patient, (iv) the effectiveness of
the proposed experimental procedure for generalizing across
different diabetologic centers.

The rest of the paper is organized as follows: Section II
gives an overview of the state-of-the-art approaches for risk
prediction and risk stratification of DR; Section III describes
the 120K dataset and the preprocessing procedure; Section IV
describes the experimental and validation procedure of the
ML models comparison; Section V shows the predictive per-
formance and features importance results; Section VI and
Section VII discuss the experimental findings and conclude
the paper.

II. RELATED WORK
The gold standard of DR diagnosis is represented by
the assessment of fundus images. Thus, among all

diabetes-related complications, the DR is the most studied
field based on DL imaging techniques. Thus several DL
models based on fundus images were designed to identify
DR from a non-pathological condition [5], classify differ-
ent DR stages [4], and predict future DR progression [1].
Diagnostic studies for DR based on EHR data have been
still poorly explored, but something more has already been
attempted in terms of screening and risk prediction. Tar-
geted screening intervals based on EHR data analysis was
adopted to detect DR and to reduce the burden of unnecessary
screening examinations [12]. Increasing the interval between
screening visits for DR beyond 1 year in low-risk patients is
reasonable, since the data showed little difference between
the 1-year and 2-year screening frequency with respect to
clinical outcomes [13]; additionally, extending the time inter-
val between screening visits to every 3 or 4 years on the basis
of retinopathy status and glycated hemoglobin level might
effectively decrease the rates of screening adherence in the
population [6].

Individualized risk assessments were studied using both
epidemiologic and clinical data, including the type and dura-
tion of diabetes, glycated hemoglobin or mean blood glucose
levels, blood pressure, and the presence and grade of retinopa-
thy [14]. Almost a 30-year period of diabetic patients’ fundus
images were analysed to simplify individualized risk assess-
ments: an accurate assessment of the risk of proliferative DR
or clinically significant macular edema was possible with the
use of only the patient’s current retinopathy status and gly-
cated hemoglobin levels [12].Moreover, also a recommended
time until the next eye examination on the basis of these two
factors was estimated.

Focusing onML-based solutions using EHR data, in [8] the
predictive performance of several ML models (i.e., Logistic
Regression (LR), Decision Tree (DT), Random Forest (RF),
Support Vector Machine (SVM), and Naive Bayes (NB))
were compared with the aim to identify DR adopting features
engineering techniques. However, differently from our pro-
posed work, the temporal risk stratification task was not pro-
vided. Moreover, in [8] the classes of DR and control patients
were perfectly balanced, and this aspect, beyond that favoring
the predictiveMLmodel, unfortunately never reflects the real
clinical scenario. In [15] was presented a robust end-to-end
ML-based SaaS framework, consisting of a ridge regularized
survival SVMwith a clinical kernel, coupled with Chi-square
distance-based feature selection, to uncover relevant DR risk
factors associated with disease outcomes by exploiting the
weak correlations in EHRs. In our work we use neither fea-
tures selection [15] nor features engineering [8] because these
strategies require human effort and affects the standardized
EHR data not ensuring reproducibility and scalability. In [16]
a data-driven survival analysis approach was presented to
predict when a patient will develop complications after the
initial T2D diagnosis and to rank the associated risk. More-
over, to better capture the correlations of time-to-events of
multiple complications, a further multi-task version of the
survival model was developed. However, as in [8], [15], the
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observational temporal window of interest (TWOI) for DR
patients was selected considering only theDR diagnosis code,
but not also the non-DR diagnosis code. Instead to the best of
our knowledge, we did the first attempt to define a TWOI
for DR patients based on a double-check of DR and non-DR
codes. This conservative choice to avoid a misleading TWOI
for DR patients is motivated by the presence of frequent
typos, physician’s transcription errors, and EHR framework
faults or anomalies in real-world EHR scenario. On the con-
trary, differently from DL imaging techniques [1], [4], [5], all
the studies based on EHR data [8], [15], [16] gave much more
attention to model interpretability and pattern localization.

Previous breakthrough research findings rely on DL tech-
niques to diagnose DR in patients with medical imaging.
Although the medical imaging achieves reasonable recog-
nition accuracy, the application of mass, easy-to-obtain and
routine EHR data canmake an early diagnosis of the DRmore
convenient and suitable.

III. MATERIALS
A. DATASET
The 120K dataset, provided by Regione Marche, was col-
lected by aggregating patients of several Italian diabetologic
centers. The dataset consists of 120K diabetic patients and
was organized in the following 3 different fields:
• The demographics field stores the patient’s identificative
number (ID patient), gender, year of birth, and diabetes
diagnosis date. In particular, the first name and the sur-
name of the patients were anonymized and associated to
a random numeric ID patient.

• The pathological field stores the ID patient, the pathol-
ogy codes, and the pathology diagnosis date.

• The lab tests field stores ID patient, the lab tests codes,
the lab tests values, and the lab tests prescription date.

B. PREPROCESSING
In accordance with the diabetologist, all the pathology codes
associated with DR were identified and summarized in
Table 1. The first pathology code (i.e., -3001) indicates a non-
DR condition, while all the remaining codes indicate a DR
condition.

All the pathology codes that were not included in Table 1
were removed from pathological field. Then, for each patient,
both pathology codes and lab tests codes were removed if
pathology diagnosis date and lab tests prescription date were
earlier than diabetes diagnosis date. Finally, the inclusion
criteria to select the time-widow of interest (TWOI) were
presented for both control patients and retino patients as
depicted in Figure 1.

1) CONTROL PATIENTS - TWOI
A control patient must have at least 2 pathology codes (i.e.,
-3001) of non-DR and none of the remaining pathology
codes available in Table 1. A TWOI of a control patient
(see Figure 1 - upper side) is delimited by the earliest pathol-
ogy code of non-DR and the latest code of non-DR.

TABLE 1. Pathology codes associated to diabetic retinopathy (DR).

2) RETINO PATIENTS - TWOI
A control patient must have at least a pathology code (i.e., -
3001) of non-DR and at least one of the remaining pathology
codes available in Table 1. A TWOI of a retino patient (see
Figure 1 - bottom side) is delimited by the earliest pathology
code (i.e., -3001) of non-DR and the earliest pathology code
of DR available in Table 1. A patient was included in the study
only if the date of the earliest non-DR code (i.e., -3001) was
before the earliest date of DR code.

C. TASKS DEFINITION
During the task definition stage, the matrices X1 and X2 fed to
the MLmodel were defined both for task 1 and task 2, as well
as the ground-truth vectors Y1 and Y2

1) TASK 1
The task 1, defined as the prediction between control and
DR patients, was evaluated by taking the average of all the
lab tests values enclosed in the range of the TWOI. The
X1 = M1 × N1 matrix was obtained (see Figure 2), which
was composed by m1 = 1, 2, . . . ,M1 patients and n1 =
1, 2, . . . ,N1 − 3 unique lab tests codes (i.e., predictors).
In addition to the already existing predictors (i.e., unique
lab tests codes), also the information of gender, age, and
duration of diabetes was added, by obtaining the final M1 ×

N1 matrix. All the missing values of X1 matrix was filled
with an extra-values imputation (i.e., −999). Several stan-
dard data imputation techniques (i.e., median, mean, KNN)
were tested, but extra values imputation guaranteed the best
predictive performance. This benefit can be explained by the
fact that the extra value imputation allows to properly track
the missing value mechanism, thus exploiting a correlation
between the occurrences of missing values and the dependent
variables.
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FIGURE 1. Preprocessing: Observational time window of interest (TWOI) for control and
retino patients.

FIGURE 2. Task 1: X1 = M1 × N1 matrix, composed by m1 = 1, 2, . . . , M1
patients and n1 = 1, 2, . . . , N1 predictors.

TABLE 2. Task 1 statistics.

Figure 3 shows the missing values distribution of the X1
matrix. The ground-truth vector Y1 of sizeM1×1 is composed
of control patients, labelized as negative and retino patients,
labelized as positive.

2) TASK 2
The task 2, defined as the temporal stratification of the DR
risk, was evaluated only among the retino patients. For each
patient, the unique lab tests prescription dates enclosed in the
TWOI were pointed out. Each of those represented an obser-
vation of the patient. Thus, for each patient, starting from the
earliest observation close to the lower boundary of the TWOI,
the mobile averages of all the lab tests values inside the range
of the dynamic time-windows were taken, observation by

FIGURE 3. Missing values distribution of the predictors of X1 matrix. The
longer the bar is, the more missing values are present.

observation, until the latest observation close to the upper
boundary of the TWOI. AM2×N2 matrix was obtained (see
Figure 4), which was composed by m2 = 1, 2, . . . ,M2 total
observations of all patients and n2 = 1, 2, . . . ,N2−4 unique
lab tests codes. In addition to the already existing predictors
(i.e., unique lab tests codes), also the information of gender,
age, duration of diabetes, and incremental number of observa-
tions (seq) per patient was added, by obtaining the finalM2×

N2 matrix. All the missing values of X2 matrix was filled with
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FIGURE 4. Task 2: X2 = M2 × N2 matrix, composed by m2 = 1, 2, . . . , M2
observations and n2 = 1, 2, . . . , N2 predictors.

TABLE 3. Task 2 statistics.

an extra-values imputation (i.e., -999). The task 2 consisted
in the prediction of the temporal distance between the date of
each patient’s observation and the date of DR diagnosis. The
risk was defined ‘‘high’’ if the temporal distance is within
the range of 0 − 2 years, otherwise was defined mid-low
if within the range of 2 − 5 years. The ground-truth vector
Y2 of size M2 × 1 is composed of short-term risk patients
and long-term risk patients. Retino patients whose temporal
distance was greater than 5 years are excluded from the
study.

IV. METHOD
A. EXPERIMENTAL PROCEDURE
To perform the task 1, a Tenfold Cross-Validation (CV-10)
experimental procedure was chosen. CV-10was implemented
dividing all patients in ten folds, by selecting nine folds for
training and one fold for testing. During the training stage of
the CV-10 procedure, SMOTE [17] was utilized to equally
balance DR patients with respect to control patients. CV-10
procedure was implemented without considering the tempo-
ral evolution of predictors, providing an overall average of the
patient’s clinical history.

On the contrary, to perform the task 2, a Tenfold
Cross-Validation Over Patients (CVOP-10) was chosen.
CVOP-10 was implemented dividing all observations
grouped by patients in ten folds, by selecting nine folds
for training and one fold for testing. CVOP-10 procedure
was implemented considering the temporal evolution of the

TABLE 4. Laboratory tests codes (i.e., predictors) of the 120K dataset
used in task 1 and task 2 experiments. Each code of the 120K dataset can
be univocally associated to each ICD-9 (9th revision of the International
Statistical Classification of Diseases) code.

patient’s predictors and allowed to generalize across unseen
patients.
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B. METRICS
The proposed task 1 and task 2 were evaluated by considering
the following metrics for the classification task:

• Accuracy: the percentage of correct predictions;
• Macro-precision (Precision): the Precision is calcu-
lated for each class and then the unweighted mean is
taken;

• Macro-recall (Recall): the Recall is calculated for each
class and then the unweighted mean is taken;

• Macro-F1 (F1): the harmonic mean of precision and
recall averaged over all output categories;

• Area Under the receiver operating characteristic
Curve (AUC): the AUC represents the probability
that the classifier will rank a randomly chosen posi-
tive sample higher than a randomly chosen negative
one;

• Area Under the Precision-Recall Curve (PRAUC): The
PRAUC can be interpreted as the relationship between
precision and recall (sensitivity) and is considered more
informative than the AUC plot when evaluating binary
classifiers on imbalanced data [18].

C. VALIDATION PROCEDURE
For what concern the CV-10 and CVOP-10 experimental
procedures, the optimization of the hyperparameters of the
ML models was performed implementing a grid-search and
optimizing the Recall in a nested Fivefold Cross-Validation.
Recall was preferred over other optimization objectives,
because the minimization of false negatives has the most
clinical relevance for the task 1 experiment. Hence, each split
of the outer loop was trained with the optimal hyperparam-
eters tuned in the inner loop. Although this procedure was
computationally expensive, it allowed to obtain an unbiased
and robust performance evaluation [19]. In according with
the work in [8], the predictive performances of several ML
models such as XGBoosting (XGB), LR, DT, RF, SVM, and
NB were compared. Table 5 summarizes the range of the
hyperparameters optimized during validation stage for each
ML model. The features importance of the XGB model was
extracted in according to the logic of showing the number of
times the feature is used to split data, while for the RF model
in according to the logic of averaging the decrease in impu-
rity over trees. We decided to not explore model-agnostic
methods for showing the importance of each feature, because
we aimed to emphasize the model intrinsic dependency. For
that reason we show a global feature importance that is
intrinsic within the designed ensemble-based white box mod-
els. Future work could be explored in order to provide fur-
ther interpretability of the proposed approach by exploiting
post-hoc explainable AI methodology, specifically tailored
to clinician point of view. This methodology includes the
possibility (i) to provide local feature importance (SHAP [20]
and LIME [21]), (ii) to unraveled rules and laws (features
interaction) and (iii) to provide transparent risk equations
(model non-linearity) [22].

TABLE 5. Range of hyperparameters (Hyps) for each machine learning
model: XGBoosting (XGB), logistic regression (LR), decision tree (DT),
random forest (RF), support vector machine (SVM), and naive Bayes (NB).

V. EXPERIMENTAL RESULTS
Table 6 shows the predictive performance experimental
results and it is evident as RF and XGB have proved to be best
models for both task 1 and task 2. In accordance also with [8],
RF1 is the best model for task 1 (Recall: 73.91, AUC: 86.96,
and PRAUC: 72.43); while for task 2, XGB2 obtained the best
predictive performance in terms of Recall (75.66) and RF2 in
terms of AUC (86.76) and PRAUC (84.38).

Figure 5 shows the top-10 discriminant predictors for
task 1, while Figure 6 for task 2. Only the two best models
(i.e., XGB and RF) were considered in this evaluation.

VI. DISCUSSION
A. PREDICTIVE PERFORMANCE
Globally, XGB and RF models obtained the best predic-
tive performance to solve task 1 and task 2. Tree-based
models (i.e., DT, RF, XGB) obtained the best predictive
performance in both tasks and considerably overcome the
other ML models. However, the simple DT1 did not guar-
antee robustness against class imbalance, because PRAUC
(57.30)was significantly inferior thanRF1 (72.43) andXGB1
(71.26). Thus, only the more complex tree-based models (i.e.,
RF, XGB) achieved the best result to solve task1 and task
2. Differently from [8] we designed the experimental setup
using raw EHR data without employing features engineering
techniques. This aspect assumes a great relevance in terms
of data interpretability and algorithm scalability. Thus, the
possibility of extracting raw features from EHRs permits
the clinician to appreciate and interpret each single features
contribution, and moreover, this scenario could be more eas-
ily scalable and transferable to other standardized clinician
domains avoiding an hand-crafted human intervention.

B. CLINICAL SIGNIFICANCE
The contribution of the single predictors changes every
time in relation to different tasks and different ML models
(i.e., inter-task and inter-model variability). The common
intersection regards the strong correlation between features
importance and its associated missing value rate (mvr). The
higher the quality and the completeness of the data, the more
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TABLE 6. Experimental results (i.e., task1 and task2) for each machine learning model: XGBoosting (XGB), logistic regression (LR), decision tree (DT),
random forest (RF), support vector machine (SVM), and naive Bayes (NB). Predictive performance and standard deviation are reported for each metric.

FIGURE 5. Features importance for task 1: XGB1 and RF1. The legend of the features is reported in Table 4.

FIGURE 6. Features importance for task 2: XGB2 and RF2. The legend of the features is reported in Table 4.

important the predictor will assume. This suggests how a
high-quality data collection and representation always pos-
itively affects every AI-based solution.

Starting from task 1, the gender, diabetes duration, and
age (mvr = 0%) represented the most important predictors
for RF1, while microalbuminuria (mvr ≈ 30%), uric acid
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(mvr≈ 20%), and fasting glycaemia (mvr≈ 0%) for XGB1.
The common most important predictors selected by both
XGB1 and RF1 are the following: microalbuminuria (mvr
≈ 30%), fasting glycaemia (mvr ≈ 0%), BMI (mvr ≈ 0%),
glycated hemoglobin (mvr ≈ 0%), and systolic pressure
(mvr ≈ 5%).

Moving to task 2, the sequential number of observations
per patient (mvr = 0%), weight (mvr ≈ 0%), and gly-
cated hemoglobin represented the most important predic-
tors for RF2, while BMI, fasting glycaemia, and glycated
hemoglobin for XGB2. The temporal information as the
sequential number of observations per patient appears pre-
dominant in RF2, while the 3 most important predictors in
XGB2 were appeared in top-10 predictors in XGB1. The
XGB model tends to give importance to the same cluster
of predictors, on the contrary the RF model was able to
capture the very important temporal information represented
by sequential number of observations per patient to perform
the task 2.

Both ML models (i.e., RF and XGB), adopting the pro-
posed novel preprocessing procedure for selecting control
and pathological patients, were effective capable to gen-
eralize across different diabetologic centers, a necessary
requirement to transfer the AI-based solution to other clinical
scenarios.

The proposed AI-based solution represents the core of
a CDSS. In fact, Meteda srl, leading company in Italy for
innovative software solutions for diabetes, has already effi-
ciently integrated the proposed ML-based CDSS into the
EHR architecture of some diabetic centers for a pilot study.
The first release of the predictive medicine tool is focused
on DR and can be addressed to primary care levels or spe-
cialists for screening and follow-up purposes. Clinicians are
currently adopting the proposed ML-based CDSS trained on
120K dataset on new unseen patients from other different dia-
betic centers. The preliminary outcomes are proving that our
proposed solution is generalizable also across heterogeneous
clinical scenarios.

C. FUTURE WORK
Future work may be oriented to extend the operating range
and provide to predict also other diabetic complications
(i.e., cardiopathy, nefropathy, neuropathy, and vasculopathy).
In this direction, a full-version of the proposed CDSS will
be released to the whole clinical ecosystem. Another rel-
evant aspect to focus on could be enhancing the quality
of EHR data collection in clinical scenario; thus, the pro-
posed ML-based CDSS could help each diabetic centers to
reach baseline standards in the collection, completeness, and
quality of the data. Diabetic centers located below a certain
quality threshold could be alerted by the ML-based CDSS to
bridge the gap. Moreover, diabetic centers should be pushed
to achieve targeted data quality indicators (e.g., mvr, prescrip-
tion of a particular lab test, repetition of a particular lab test,
etc.), both to facilitate the predictive system and to improve
the diabetic patient’s quality of life. Future work may be

addressed to measure the generalizability of the model across
different healthcare infrastructure and lifestyle by collecting
and including diabetic patients from different geographical
areas.

VII. CONCLUSION
This work proposed a two-stage ML procedure as the core
of a CDSS to firstly predict the presence/absence of DR and
secondly to temporally stratify the risk of the disease for each
patient. For this objective, a novel preprocessing procedure
was designed to select both control and pathological patients,
and moreover, the novel fully annotated/standardized 120K
dataset from multiple diabetologic centers was provided. The
proposed AI-based solution was proven to be capable of
generalizing across different diabetologic centers and was
utilised as pilot study in several diabetologic centers for DR
screening and follow-up purposes.
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