
Received October 30, 2021, accepted November 9, 2021, date of publication November 10, 2021,
date of current version November 19, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3127393

GPU-Based Sparse Power Flow Studies
With Modified Newton’s Method
LEI ZENG, SHADI G. ALAWNEH , (Senior Member, IEEE),
AND SEYED ALI AREFIFAR , (Senior Member, IEEE)
Department of Electrical and Computer Engineering, Oakland University, Rochester, MI 48309, USA

Corresponding author: Shadi G. Alawneh (shadialawneh@oakland.edu)

ABSTRACT The Power system is getting larger and more complicated due to development of multiple
energy supplies. Solving large-scale power flow equations efficiently plays an essential role in analysis of
power system and optimizing their performance during normal or contingencies operation. The traditional
Newton-Raphson (NR) algorithm used for power flow calculations is computationally expensive due to
updating Jacobian matrix in each iteration. As alternative to update the Jacobian matrix repeatedly, this
paper presents a GPU-based sparse modified Newton’s method by the introduction of a fixed Jacobian
matrix, which integrates vectorization and parallelization technique to accelerate power flow calculations.
Moreover, this research in the paper also investigates the performance of the corresponding CPU versions and
a MATLAB-based library package, MATPOWER. The comparison of the results on several power system
and power distribution systems demonstrate that the GPU variant is more reliable and faster for power flow
calculation in large-scale power systems.

INDEX TERMS GPU, CUDA,modifiedNewton’smethod, compressed row storage (CRS), Jacobianmatrix,
vectorization.

I. INTRODUCTION
Power flow studies are one of the most important aspects
of power system planning and operation [1]. Nowadays,
the power system modeling and analysis have been chal-
lenging on power engineers due to the introduction of new
energy-supplies and heavier loading, which brings great pres-
sure for power flow calculation [2]. In practice, the conven-
tional NR solver always takes dense matrix format, which
consumes much computational resources and storage spaces
to calculate power flow. Because of these shortcomings, the
traditional NR solver always causes program crash and fail to
converge for power systems with over thousands of buses.

The introduction of Graphics Processing Units (GPUs) has
brought a revolution in the parallel computing arena [3]. With
the benefit of high floating-point processing performance,
huge memory bandwidth, and low cost [4], GPUs are not
only widely applied to many innovative areas such as arti-
ficial intelligence [5], scientific simulation [6]–[9], cryptog-
raphy [10], [11], integrated circuit analysis [12]–[14], and
medical imaging [15], but also many power system

The associate editor coordinating the review of this manuscript and

approving it for publication was Hazlie Mokhlis .

applications including optimal power flow [16], power
flow [17]–[26], transient stability simulation [27], [28], and
contingency analysis [29]. Computer Unified Device Archi-
tecture (CUDA), as a general-purpose computing architecture
platform, supports many languages including C++, Python,
Fortran, OpenCL, OpenMP, and more [30], which makes it
easier to explore salient feature of heterogenous computing
system at the low-cost of relearning new programming lan-
guage, eventually achieving dramatic speedups in computing
performance [3]. Furthermore, for the benefit of developers
working in other languages, NVIDIA CUDA provide us an
opportunity to utilize cupy to solve the power flow prob-
lem in a vectorization parallelization manner. With the help
of these features, one can explore Compressed Row Stor-
age (CRS) matrix format to save more memory and utilize the
GPU-based approach to accelerate the power flow calculation
for higher efficiency.

GPU-based parallel power flow calculation along with
methods to improve the performance has been addressed
in literature including [2], [3], [18]–[20], [23], [29],
and [31], [32]. Reference [3] suggested that a GPU-based par-
allel Newton-Raphson’s method can achieve a speedup ratio
of 3.27 times for a system with 300 buses. Reference [32]

153226 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-3360-9440
https://orcid.org/0000-0002-0879-0866
https://orcid.org/0000-0002-1166-1934

L. Zeng et al.: GPU-Based Sparse Power Flow Studies With Modified Newton’s Method

presented a speedup of 2.86 times for large power system
with GPU-based fast decoupled power flow (FDPF) method.
Reference [23] shows that a GPU-based parallel power
flow implementation of the conjugate gradient method with
Chebyshev preconditioner gives speedup of 10.8 times. Per-
formance comparison involved in GPU-based Gauss-Seidel
(GS), Newton-Raphson (NR) and Fast-Decoupled (FD)
method are discussed in [20], with speedup ratios of
0.05 times, 1.74 times and 1.30 times, respectively. The
GPU-based biconjugate method in [18] presented a speedup
of 2.1 times. The GPU-based parallel power flow calcu-
lation based Forward-Backward method in [19] gives a
speedup ratio of about 1.58 times. From the above findings,
GPU-based parallel methods could achieve noticeable accel-
eration effect in the power flow calculations, compared with
sequential executions on a single-core CPU.

Although several papers have been published on
GPU-based parallel power flow methods, due to their main
focus on densematrix to leverage the parallel feature of GPUs
and improve performance, they can fail to maximize the capa-
bility of the GPUs. Specifically, based on the CUDA plat-
form, Wang et al. proposed a GPU-based power flow solver
with continuous Newton’s method [2]. In [2], the method not
only needs a great amount of space to store zero elements
in admittance and Jacobian matrix, but also consumes much
computational resources to calculate many potential nonzero
fill-ins in non-coalescingway during the inverting of Jacobian
matrix. This can easily cause the programming performance
degradation and lead to out-of-memory errors, for the size
of Jacobian matrix increases rapidly following power system
bus growth. In addition, there also exists a few GPU-based
sparse power flow methods such as [33]–[36] and [37].
References [33]–[36] and [37] propose GPU-based parallel
sparse lower-upper (LU) factorization method to concen-
trate on accelerating the solving of linear equations of the
power flow, while some with optimized potential operations
in [33]–[36], are ignored such as calculating derivatives of
the magnitude and angle of bus voltages, creating a fixed
Jacobian matrix in a vectorization parallelization manner and
so on. In a word, these approaches just only concentrate on
optimizing sparse matrix factorization to solve power flow
equations and ignore to accelerate the rest parts of power
flow calculations. Although the method in [37] considers the
whole performance of power flow calculation, dense column
major storage in [37] can fail to fully utilize the sparsity of
Jacobian matrix in the power systems.

To address such challenges, this paper proposes
a GPU-based method with CRS format to save memory
for relieving the burden of GPU and CPU and enhance
scalability of large-scale power systems. Instead of updating
the Jacobian matrix repeatedly and reduce the cost of com-
munication between GPU and CPU in the NRmethod, a fixed
Jacobian matrix is introduced to calculate the unknown
state vector such as magnitude and angle of bus voltages.
Furthermore, creation of the fixed Jacobian matrix takes
the vectorization and parallelization manner, which utilizes

coalescing feature of the GPU platform. It can be clear seen
that the calculating time of the fixed Jacobian matrix approx-
imately keeps constant despite large-scale power system and
improve the performance of the whole power flow calcu-
lation. This will be explained in Section IV. The previous
work in [2] needs to solely calculate sparse Jacobian matrix
inversion, and in this paper, these time-consuming processes
are converted into solving of linear equations to avoid the
shortcomings of directly inverting large-scale sparse matrix.
To further reduce unnecessary memory-consumption and
computational overhead, the submatrix of the fixed Jaco-
bian matrix in power system is omitted according to a
fast-decoupled power flow (FDPF) method since large-scale
power system always has much fewer connections. The
GPU-based method in the paper is realized with salient GPU
libraries such as cupy. In addition, as for validating the
GPU-based method, the corresponding CPU programs are
designed. Instead of redesigning new linear equation solvers,
the Eigen library with QR solver and LU solver are utilized to
solve linear equations and compare with GPU-based solver.
This will be further elaborated in Section- V.

The rest of this paper is organized as follows: Section II
briefly review theGPU architecture and CRS format to under-
stand the basic concept about GPU and storage of sparse
matrices. In Section III, the GPU-based sparse modified
Newton’s method is proposed based on Runge-Kutta math-
ematical algorithm. Detailed implementation on the GPU is
explained in Section IV. Results and discussion are given in
Section V, and Conclusions are shown in the last section.

II. GPU ARCHITECTURE AND CRS FORMAT
In this section, the GPU architecture, a CUDA programming
model and CRS format are briefly reviewed.

A. GPU AND CUDA
The philosophy design of GPU architecture is commonly
based on throughput-oriented concept which means GPU
can invoke thousands of threads to execute simultaneously.
CUDA is a suite of technologies, which enable programming
on the NVIDA GPUs [34]. An array of streaming multipro-
cessors (SMs) is the critical hardware in a CUDA-capable
GPU. Each SM manages scheduling threads and executes all
threads in a warp following the Single Instruction, Multiple
Data (SIMD) model. Fig. 1 depicts a typical schematic of a
SM consisting of many streaming processors (SP), and each
SP contains an arithmetic logical unit (ALU) supporting inte-
ger and floating-point arithmetic operations [2]. A register
file in each SM has a very short access latency and drastically
higher access bandwidth, compared with the global memory.

Fig. 2 describes CUDA programming model called het-
erogenous programming architecture. The threads lay the
foundation of a parallel program and they are organized
in the blocks. Furthermore, blocks of threads are grouped
into grids, which makes programmers able to explore the
capabilities of GPU parallelism. CUDA also assume that
both the host (CPU) and the device (GPU) maintain their

VOLUME 9, 2021 153227

L. Zeng et al.: GPU-Based Sparse Power Flow Studies With Modified Newton’s Method

FIGURE 1. A typical architecture of SM.

FIGURE 2. The programming model of CUDA.

own separate memory spaces, which are referred to as host
memory and device memory respectively [33]. The program
flow is controlled by CPU and computationally intensive
tasks are offload to GPU by invoking multiple kernels [37].
Specifically, invoking each kernel every time, thousands of
threads in the grid are further divided into multiple thread
blocks and mapped onto SMs that are referred to as warps.
All threads of a warp eventually execute instructions in a
lock-step manner in accordance with the Single Program
Multiple Data (SPMD) concept [38]. Based on these salient
parallel features of NVIDA GPUs, power flow calculation
can be operated in a vectorization parallelization manner with
cupy.

B. CRS FORMAT
In practice, each bus in a power system has a few links [39].
Thus, it is a good choice to store the admittance and Jacobian
matrix in CRS format due to high sparsity of these matrices.
Specifically, the CRS format stores the nonzero elements of
the matrices in contiguous locations [40]. Unlike storage of
dense matrices, the CRS format only stores triple vectors,
with respective vectors of nonzero values, column indices
and locations. Assuming An×n is a general real square sparse
matrix. The first vector Ax denotes nonzero vectors in A as
the floating-point array and the second vector Aj contains
the column indices of the entries in Ax as integers. The last

vector Ap contains the location information of Ax . Hence the
matrix An×n is represented as triplet form:

An×n =
〈
Ax |Aj |Ap

〉
(1)

From above (1), it was clear that the storage spaces con-
sume less compared with dense matrix format. Instead of
storing n2 elements, just only 2nonzeros+ n+ 1 values need
to be stored in sparse matrix format [41].

III. GPU-BASED METHOD INTRODUCTION
In this section, the NR method is reviewed, firstly. Then, the
modification of NR method based on GPU is introduced.

A. REVIEW OF THE NR METHOD
This subsection briefly presents overview of the NR method
and explains the derivation of the method depending onmath-
ematical power flow model. For brevity, all the notion in the
paper are presented in Table 1.

TABLE 1. Notion for power system model and matrix operation.

The NR method is an iterative algorithm, which is based
on linearizing the power flow equations to find the unknown
state vector 1δ and 1V above, firstly, the network of power
system should be created. Supposing a power system with
n buses, the injection complex power, Si, at bus i can be
defined as [31]:

Si = ViIi = Vi(
∑n

k=1
YikVik)∗ (2)

153228 VOLUME 9, 2021

L. Zeng et al.: GPU-Based Sparse Power Flow Studies With Modified Newton’s Method

The admittance between bus i and bus j can be further
expressed by the conductance Gik and the susceptance Bik :

Yik = |Yik | (cosθik + j sinθik) = Gik + jBik (3)

From (2) and (3), the injection complex Si can be converted
to be rectangular form. Then the formulations can be written
as:

Pi =
∑n

k=1
|Vi| |Vk | (Gik cosθik + Bik sin θik) (4)

Qi =
∑n

k=1
|Vi| |Vk | (Gik sinθik − Bik cos θik) (5)

where θik is the difference of voltage angles between buses.
Since (4) and (5) are a set of nonlinear equations. Taylor series
are applied to convert these nonlinear equations to a linear
system, which can be expressed in matrix form as:[

1P
1Q

]
= J

[
1δ

1V

]
(6)

where Jacobian matrix J consists of the partial derivatives of
1P and 1Q with respect to the voltage δ and V [1].

J =

 ∂1P
∂δ

∂1P
∂V

∂1Q
∂δ

∂1Q
∂V

 = [J11 J12
J21 J22

]
(7)

For a linear system in (6), the NR method is used to
evaluate injection power at each bus in the power system and
update state vector in each iteration process. Equation (6) is
solved iteratively until the tolerance satisfies requirements of
the stopping creation.

B. MODIFICATION OF NR METHOD
From above inspiration, the nonlinear power flow are equa-
tions are also regarded as:

f (x) = 0 (8)

Equation (8) is expanded with first order Taylor series at
the fixed point depend on above NR method. Then, equa-
tion (8) can be changed into a set of iterative formulas, and
they can be expressed as:

xn+1 = xn +1xn (9)

1xn = −J (xn)−1 · f (xn) (10)

Suppose a set of autonomous ordinary differential equa-
tions, as follows:

ẋ = g (x) (11)

where ẋ = dx
dh , equation (11) can be solved for x by

integration: ∫ xn+1

xn
dx =

∫ hn+1

hn
g(x)dh (12)

Which yields:

xn+1 − xn =
∫ hn+1

hn
g(x)dh (13)

According to the Euler’s method, the integration in (13)
can be defined as:∫ hn+1

hn
g (x) dh ∼= 1h · g(xn) (14)

where 1h = hn+1 − hn, thus, substituting (14) into (13)
yields:

xn+1 = xn +1xn (15)

1xn = 1h · g(xn) (16)

The relationship between (10) and (16) is depicted like (17)
if the step size 1h equals one.

g(xn) = −J (xn)−1 · f (xn) (17)

because of ẋ = g (x), the nonlinear equations in (8) can be
eventually converted to:

ẋn = −J (xn)−1 · f (xn) (18)

Equation (18) is usually considered as the normal continu-
ousNewton’smethod for power flow [2]. In fact, if derivatives
of the state vector in (14) approach to zero, f (xn) should
have solutions xn, as long as J (xn) is not singular. Thus, the
Jacobian matrix in the modified GPU-based method does not
have to be updated on each iterative process. To reduce the
computational overhead, the work in the paper takes a fixed
Jacobian matrix J0, which is usually calculated when x equals
x0 at the beginning of programming. Thus, equation (18) can
be further written as:

ẋn = −J0−1 · f (xn) (19)

Since the transmission line has very small resistance, the
angle of admittance between buses approximately closes
to ±90

◦

and the adjacent buses tend to have a smaller phase
angle difference. Thus, J12 and J21 can be ignored as zero
matrices to reduce computational overhead and saves mem-
ory space, for the zero elements are not involved in calcula-
tion and storage in sparse format. J0 in (19) can be simplified
as:

J0 =
[
J11 0
0 J22

]
(20)

Although above modifications improve the performance,
inverting of the Jacobian matrix J0 solely is still computation-
ally expensive in the processing of (19). Because inverting
Jacobian matrix J0 needs to calculate the many potential
fill-ins and allocate much extra memory to store them dur-
ing inverting of sparse matrix. These steps of inverting the
Jacobian matrix J0 mainly includes three steps, below:
1) Allocate the extra memory for inverse matrix.
2) Implement LUDecomposition and fill the nonzero value

in the relative position.
3) Calculate the inverse matrix depending on decomposi-

tion in 2).
Steps from 1) to 3) traverse each location of entries in

the irregular decomposition matrix on the term-by-term way,
which usually introduces many conditional statements such

VOLUME 9, 2021 153229

L. Zeng et al.: GPU-Based Sparse Power Flow Studies With Modified Newton’s Method

as if-statements searching for the exact location of the entries.
Despite great computation capability of GPU, this way can
not only cause the divergence in awarp but also impose a huge
scheduling burden on the GPU, especially, when the Jacobian
matrix has a huge size. To mitigate the problem, calculation
of Jacobian matrix inversion can be converted into solving a
set of linear equations. Equations (19) can be viewed as:

−J0ẋn = f (xn) (21)

Weighing the precision and speed, the second order Runge-
Kutta formula is applied to (21); the iterative formulations are
defined as:

−J0 · k1 = f (xn) (22)

−J0 · k2 = f (xn +1h · k1) (23)

1xn =
1h
2
· (k1 + k2) (24)

xn+1 = xn +1xn (25)

hn+1 = hn +1h (26)

where k1 and k2 are intermediate values for updating the state
vector1xn. Reference [43], [44] suggest that local truncation
error and global accumulation error are O(hn+1) and O(hn)
respectively. For the viewpoint of speed and precision, the
step size 1h is chosen between zero and one, because the
error would be smaller as the order increases. Additionally,
the step size1h is also called the fixed time step [2], and the
value of 1h can not only determine the iteration number and
calculation time, but it also has some extent influence on the
convergence of power flow calculation. In general, the itera-
tion numbers and calculation timewould decrease as the fixed
time step increases. However, the optimal 1h in one power
system can probably cause the divergence in the other power
system. Weighing the calculation time and convergence of
power flow calculation, the compromised value of 1h is
chosen to satisfy the all the datasets in the paper. The time
step in this method is chosen in the similar way as the factorµ
in the reference [2]. Besides, max |1x| < ε is serving as the
stop creation in the GPU-based method. Though the method
in the paper might increase several iterative times because
a fixed Jacobian matrix cannot accelerate the convergence
in the process of the power flow calculation. Moreover, the
method belongs to the second order numerical methods,
which increase the burden of computation. But this high order
method is a good choice for GPU, for the fixed Jacobian
matrix can reduce the cost of communication between host
and device. Especially, in the process of solving (21), steps
from 1) to 3) can be omitted, and J0 just needs transmitting
to the device at the beginning of programming. Therefore,
these steps in the method can fully utilize the high computing
and parallel capability of GPU to compensate the overhead
of high order computation. Thanks to the J0 is a constant, the
complexity of high order method can be simplified because
the J0 does not have to be updated following each itera-
tion, compared with traditional NR method. Furthermore,
despite J0 would be involved in calculating state vector on

each iteration, the cost of computation is less than that of
inverting J0 directly in the reference [2].

IV. IMPLEMENTATION ON THE GPU
In this section, the heterogeneous architecture and flow chart
of GPU-based method are given. Then, creation of a fixed
Jacobian matrix in a vectorization and parallelization tech-
nique is elaborately discussed.

A. PROGRAMMING ARCHITECTURE
The architecture is a heterogeneous structure, for it consists
of CPU and GPU parts. The computationally intensive tasks
are offloaded on the GPU, while the rest parts are sequentially
executed on the CPU. Both the communication between GPU
and CPU is connected by PCI express (PCIe) bus. Hence, the
speed of data transmission between them heavily depends on
the bandwidth of PCI express. Although the way of trans-
mission has a little negative influence on the performance,
the extremely high floating-point processing capability and
huge memory bandwidth of GPU would compensate the
shortage. In addition, the time-consuming data transmission
just have occurred twice in the programming architecture.
The first is referred to as loading original datasets, and the
other is receiving the results of power flow calculation at
the end of programming. This architecture not only reduces
computation burden of CPU, but also avoids the cost of
repeatedly invoking the GPU’s kernel function for transmit-
ting data forward-backward between host and device. With
such features, the programming architecture maintains the
balance between CPU and GPU and maximizes the accelera-
tion effects, which is depicted by Fig. 3.

FIGURE 3. The flow chart of programming architecture.

153230 VOLUME 9, 2021

L. Zeng et al.: GPU-Based Sparse Power Flow Studies With Modified Newton’s Method

The process of solver in (21) consists of several steps,
as follows:

1) load the datasets and initialize them.
2) Calculate partial derivatives of power injection.
3) Calculate a fixed Jacobian matrix in a vectorization

manner.
4) Calculate the power mismatch by f (xn) in (21).
5) Evaluate the 1x and 1h.
6) Update the state vector x and h.
7) Check the stop creation.
8) Repeat the process from 4) to 7) until satisfying the stop

condition.

B. THE CALCULATION OF JACOBIAN MATRIX
This subsection explains the process of forming a fixed Jaco-
bian in a vectorization manner. This vectorized programs
can execute multiple operations concurrently via a single
instruction, whereas scalar one can only operate on pairs of
operands [50]. Forming a fixed Jacobian matrix consists of
two parts including calculating partial derivatives of magni-
tude and angle of bus voltages, and creation of the Jacobian
matrix. Specifically, calculating the partial derivatives such as
J11 and J22 in (20) can be converted to a group of vectorized
formulas, as follows:

I = Ybus · V (27)

∂Vm = d(Vnorm)∗ + d(I)∗ · d(Vnorm) (28)

∂Va = 1j · d (V)− Ybus · d(V)∗ (29)

where Ybus is the sparse admittance matrix and unit imagi-
nary number, 1j.

Algorithm 1 Calculation of Partial Derivatives
1: /∗ Form a sparse diagonal matrix∗/
2: diag_sparse(v1):
3: vec_size = size(v1)
4: vec_index = seq(size(v1))
5: vec_ptr = seq(size(v1) + 1)
6: diag_mat = csr_mat(flatten(v1), flatten(vec_index),

flatten(vec_ptr))
7: return diag_mat
8: /∗ Compute the partial derivatives ∗/
9: dva_dvm(Ybus, v):
10: Ibus = Ybus ∗v
11: diagV = diag_sparse(v)
12: diagIbus = diag_sparse(Ibus)
13: diagVnorm = diag_sparse(v/abs(v))
14: dVm = diagV∗ conj (Ybus∗ diagVnorm) + conj

(diagIbus)∗ diagVnorm
15: dVa = 1j∗ diagV∗ conj (diagIbus -Ybus∗ diagV)
16: return dVm, dVa

In the process of (27), (28) and (29), instead of accessing
data in a random manner, all threads in a warp executed the
same instruction at any timing point because the entries in the
sparse matrix is stored in a consecutive location.

In the case, the technique is usually referred to as coa-
lesces, which is leveraged by the GPU and integrated into
cupy libraries. The bold terms in the algorithm 1 respectively

denote that the corresponding arithmetic operations are oper-
ated on GPU in a vectorization parallel mechanism.

Specifically, Fig. 4 depicts the technique mechanism about
implementation of the programs in a vectorization manner.

FIGURE 4. The mechanism of vectorization parallelism.

Supposing the sparse admittance matrix D(4, 4) and four
threads in a warp, these entries in the matrix have a consecu-
tive location in the memory and are stored in row-major flat
mode. During the process, Dynamic random-access mem-
ory (DRAM) divides the sequential sixteen locations into
four burst sections. All threads in a warp would just cover
all entries, while only one DRAM request is executed. Thus,
the access is fully coalesced, and no other threads are left.
In practice, data from power system can be organized in a coa-
lesced way and the arithmetic operation in Algorithm 1 can
be implemented with the benefit of this technique.

The creation of a fixed Jacobian is based on the voltage
partial derivative vectors, ∂Vm and ∂V a. The computational
formulas can be written as:

J11 = real(∂Va[pvpq, pvpq]) (30)

J22 = imag(∂Va[pq, pq]) (31)

where pvpq and pq are respectively corresponding to index
vector of PVPQ-buses and PQ-buses. Similarly, the same
vectorized idea is also applicable to (30) and (31). However,
vectors in pvpq and pq, which contain information of bus
indices, are not consecutive. It causes the divergence in awarp
and decreases performance because of the irregular storage.
To relieve this part, extra memory is allocated to restore
the indices. The components in the allocated memory are
organized in a consecutive array. Thus, instead of traversing
all elements with for-loops on the term-by-term way, the
elements in the memory are managed in a coalescing manner
as a set of arrays. Despite this approach brings some expense
of space, the cost of space is well worth of increasing of speed.

Compared with reference [41], the computational com-
plexity can be reduced from O(n2) to O (n), for the
algorithm 2 and algorithm 1 in the paper replaces the travers-
ing with vectorization operation. Although the approach
in [41] takes the CRS format to reduce the numbers of
iteration, it still needs to traverse all nonzero elements by

VOLUME 9, 2021 153231

L. Zeng et al.: GPU-Based Sparse Power Flow Studies With Modified Newton’s Method

Algorithm 2 Creation of a Fixed Jacobian Matrix
1: /∗ Compute the components of a fixed Jacobian matrix∗/
2: Jaco_sparse(dVm, dVa, pv, pq):
3: pvpq = concate(pv,pq)
4: J11 = real (dVa[pvpq, transpose(pvpq)])
5: J22 = imag (dVm[pq, transpose(pq)])
6: Jaco = csr_bmt([J11, None], [None, J22])
7: return Jaco

two for-loops during the forming Jacobian matrix, which
causes a negative influence on performance as power systems
increase rapidly.

V. PERFORMANCE RESULT
In the section, firstly, the computing experiment setup and
test cases will be introduced. Then, the analysis of storage
between sparse format and dense format will be discussed.
Next, characteristic curve of forming a fixed Jacobian matrix
will be presented. The comparison of overall performance
and speed up will be presented. Also, the analysis of stability
about CPU-based QR and CPU-based LU method also be
discussed. Finally, the distribution networks are tested on the
GPU-based method in this paper.

A. TEST PLATFORM AND DATASETS
The computing experiments in the paper are carried out
on a workstation equipped with NVIDIA RTX4000 GPU
and 8GB DRAM. The workstation has an Intel(R)-i9 CPU
and 16 GB RAM. The version of cupy library is 10.2. Thus,
the CUDA driver version is also 10.2 in accordance with
cupy. The version of MATPOWER and Eigen are 7.1 and 3.4,
respectively. The parts of MATPOWER package have been
changed into generating a fixed Jacobian matrix instead of
dynamic Jacobian matrix. To assure the precision and speed,
the stop criterion is set to 1e − 4 for all the power flow. The
specification of requirements is shown on Table 2. The test
datasets are all fromMATPOWER, which can be categorized
into two groups as Table 3 and 4.

TABLE 2. Test platform.

B. ANALYSIS OF STORAGE
For a power system, most spaces are used to store the entries
of the admittance matrix and a fixed Jacobian matrix. In this
work, the comparison ofmemory usage between densematrix

TABLE 3. Test case based on IEEE system.

TABLE 4. Test case based on the other example.

format and sparse matrix format is show on the subsection.
Since all data in the whole programming are single float-point
data type, each element in the matrix would occupy four
bytes. In fact, memory is also regarded as a flat model.
Therefore, in the analysis of storage, admittance matrix and
Jacobian matrix can be combined as whole matrix for sim-
plicity. Therefore, the memory-consumption of admittance
matrix and a fixed Jacobian matrix can be cumulated at the
same number of power system buses. Table- 5 lists that spe-
cific memory-consumption between dense and sparse format.
The memory-consumption increases very quickly in dense
format. Besides, Fig. 5 explicitly shows that the sparsity of the
combined matrix as the numbers of bus increases. It suggests
that sparsity would be high when power system has large
scale.

TABLE 5. Memory usage (unit: byte).

In addition, Fig. 6 depicts the tendency of memory usage.
Considering the above results, memory-consumption almost
represents an exponential growth in dense format. Moreover,
most of values are zeros due to nature of power system struc-
ture. These values not only have no effect on computation but
also consume many spaces.

153232 VOLUME 9, 2021

L. Zeng et al.: GPU-Based Sparse Power Flow Studies With Modified Newton’s Method

FIGURE 5. The sparsity of the combined matrix.

FIGURE 6. The tendency of memory usage respectively in dense and
sparse format.

Compared with dense format, memory-consumption in
sparse almost keeps a linear increase. The speed of calcula-
tion will increase as the storage burden decrease. Moreover,
most of components are zeros due to the character of power
system. Thus, these zero components not only have no effect
on computation but also cause a large waste of memory.
Besides, the space complexity can be reduced from O(n2) to
O (n), which provides opportunity to operate a great amount
of data for the larger power systems.

C. COMPARSION BEWTEEN CLASSIC AND MODIFIED
METHOD
This subsection presents the difference between classic and
GPU-based method in the paper. For brevity, IEEE 4 bus
system is taken as an example. The speed of classic method
on the CPU is faster than the modified method on the GPU
because the power system is so small that theGPU takesmuch
time on transmitting Instead of utilizing the high computing
capability of GPU. Therefore, the calculation times are 0.6ms
and 246.8ms corresponding to the CPU and the GPU, respec-
tively. Table 6 and Table 7 specifically list that calculation
results and the norm of power mismatch on the different
platform on each iteration. Moreover, Fig. 7, Fig. 8 and Fig. 9
present the voltage magnitude and phase angle profiles based
on the classic NR, the FD and the GPU-based method on the
IEEE 14 bus system, respectively. Besides, all the Jacobian
matrices are taken CRS format in the process of power flow
calculation. These profiles of voltage magnitude and phase

TABLE 6. Execution results on the CPU (unit: per unit).

TABLE 7. Execution results on the GPU (unit: per unit).

angle also proved the point that the classic NRmethod can get
convergent solution faster other methods, when the dataset is
enough small.

VOLUME 9, 2021 153233

L. Zeng et al.: GPU-Based Sparse Power Flow Studies With Modified Newton’s Method

FIGURE 7. Convergence of voltage magnitude and angle for an IEEE bus 14 system based on the NR method.

FIGURE 8. Convergence of voltage magnitude and angle for an IEEE bus 14 system based on the FD method.

FIGURE 9. Convergence of voltage magnitude and angle for an IEEE bus 14 system based on the GPU-based method.

In addition, Fig. 10 depicts the convergent tendency
between the classic NR and the GPU-based method.

The classic method has the less iteration if compared with
the GPU-based method.

153234 VOLUME 9, 2021

L. Zeng et al.: GPU-Based Sparse Power Flow Studies With Modified Newton’s Method

FIGURE 10. Convergence comparison of IEEE bus 4 system between GPU
and CPU.

From Table 6 and Table 7, it can be seen that the GPU-
based method can work as precisely as the classic method
and has more exact value according to the value of norm.

Specifically, the local error of the NR method is O(h2)
because the true solution of (8) is taken a finite number of
terms from the Taylor series, and then it can be viewed as:

yi+1 = yi + ẏi · h+ O(h2) (32)

where h = xi+1 − xi and ẏi is the derivatives of power
flow equations. For the GPU-based method, the local error
is O(h3) because (8) can be evaluated based on the second
Runge-Kutta method:

yi+1 = yi + ẏi · h+
1
2
ÿi · h2 + O(h3) (33)

Fig. 11 and Fig. 12 simply explain the GPU-based method
in this paper can gain more exact values than the classic
NRmethod. Specifically, since the NRmethod takes the slope
at the point xi to evaluate the value of xi+1, therefore, the
value of xi+1 should be greater than the true value if f (x)
is concave function, as it is depicted by Fig. 8. In addition,
the Runge-Kutta method takes the average slope between xi
and xi+1 to evaluate the value of xi+1, as is simply described
by Fig. 12. Furthermore, (32) and (33) suggest that the
computational complexity of the classic NR method is less
than the GPU-based method. Therefore, it can provide bet-
ter performance than the method in this paper, especially
when the datasets is small. Although the classic NR method
seemed to have an advantage over the GPU-based method
when the power system is small, the GPU-based method can
provide performance improvement and exact results when the
power system is large enough to fully drive parallel potential
of GPU.

D. COMPARISION OF GENERATING JACOBIAN MATRIX
This subsection presents results of GPU-based method com-
pared with MATPOWER and CPU variants.

Fig. 13 and Fig. 14 show that the calculating time of creat-
ing a fixed Jacobianmatrix. For case 9241 and case 13659, the
GPU-based method performs better than those of other meth-
ods. Most importantly, the calculating time of the method in

FIGURE 11. An illustration of the original NR method.

FIGURE 12. An illustration of the GPU-based method.

FIGURE 13. The comparison of creating Jacobian matrix.

the paper focuses on data transmission rather than calcula-
tions. Thus, the GPU-based method can almost keep constant
even if power system is sufficiently large. Although forming
the fixed Jacobian matrix, it laid the foundation to accelerate
the whole power flow calculation.

On the contrary, MATPOWER and CPU-based methods
perform better than that of GPU on small-scale power sys-
tems, for they are not involved in communicating between
host and device. Once the power system become large
enough, computational overhead would degenerate the per-
formance. Therefore, the CPU-based method in Fig. 14

VOLUME 9, 2021 153235

L. Zeng et al.: GPU-Based Sparse Power Flow Studies With Modified Newton’s Method

FIGURE 14. The time-consuming tendency of creating Jacobian matrix.

presents a continuous and fast increasing tendency when
power system become large. The research building on the
above facts demonstrates that the GPU-based method can
enhance performance improvement when power systems are
large enough to fully drive the parallel potential of GPU.
Furthermore, as the power system become larger and more
complicated, the GPU-based method can not only maintain a
linear computational complexity, but also facilitate accelera-
tion and scalability for the large-scale system in the future.

E. POWER FLOW EQUATIONS SOLVER
In this subsection, the comparison results of different solvers
based on different hardware platform will be presented. Two
programs of CPU versions are provided in this work, for the
CPU-based LU solver is not stable.

Weighing speed and stability, CPU-based LU solver is
replaced by the CPU-based QR solver, and the analysis of
stability will be discussed.

Table 8 and Table 9 list all implementation results includ-
ing comparison of calculation time and speedup, respectively,
on the GPU and CPU platform. From the results, GPU-based
method can achieve outperformance since large systems
started around 7000 buses and have an obvious advantage
over other methods when the system become sufficiently
large.

TABLE 8. Execution results.

For case 13659, the speedup ratios of GPU-based method
are respectively 234.8, 2.68, and 1.39 compared with
CPU-based QR, CPU-based LU methods and MATPOWR
package. In addition, Fig. 15 and Fig. 16 intuitively suggest

TABLE 9. Speedup comparison.

FIGURE 15. Comparison of calculation time (MATPOWER, GPU, CPU-QR).

FIGURE 16. Comparison of calculation time (MATPOWER, GPU, CPU-LU).

that GPU-based method also perform better than two other
CPU-based methods. However, from Table 8 and Table- 9,
it is explicit to suggest stability of CPU-based LU method
is the worse one among them. For case 2848 and 6515,
the CPU-based LU method can fail to converge. Besides,
the Cholesky factorization requires the matrix to be positive
definition, which is stricter than the LU factorization. That is
why CPU-based QR solver is introduced to replace CPU-base
LU solver. In process of LU factorization, LU elimination
steps are usually twice as cheap in terms of operations, as QR
steps [45], and LU factorization update is based upon matrix-
matrix multiplications, where one can use lower triangular
matrices [46]. Specifically, the LU factorization is usually
depicted, as follows:[

l11 0
l21 L22

] [
u11 u12
0 u22

]
=

[
a11 a12
a21 A22

]
(34)

153236 VOLUME 9, 2021

L. Zeng et al.: GPU-Based Sparse Power Flow Studies With Modified Newton’s Method

where l11 = 1 is a scalar for simplification. All of matrices
in (33) are square and portioned identically; this setting leads
to a unit lower triangular L. Furthermore, the solving process
of (33) can be written as:

u11 = a11 (35)

u12 = a12 (36)

l11u11 = a21 (37)

l21u12 + L22U22 = A22 (38)

The above process of LU factorization suggests that if
the LU factorization exists only if each diagonal entry ukk
in (35) is nonzero elements during each LU decomposition.
Therefore, for CPU-based LU method, the solver might fail
to converge when pivot elements approach zero, because
the computer usually regarded these values as unknowns.
On the contrary, the QR factorization is always stable, but
it requires almost twice as many operations, and a more com-
plicated update step that is not as parallel as a matrix-matrix
product [46], [47]. Specifically, the QR factorization is to
decompose a matrix with linearly independent columns into
a product of an orthogonal matrix [48]. It can be written as:

A = Q× R (39)

where A is an m× n(m ≥ n) full column rank matrix, Q is an
m×m orthogonal matrix, and R is an m× n upper triangular
matrix [48]. For brevity, the Householder transformation is
employed in A to obtain Q and R. Reference [49] suggests
that Q and R can be obtained from Householder Reflection.
The formula can be written as:

R = Hn−1· · ·H2H1A (40)

Q = H−11 H−12 · · ·H
−1
n (41)

where H is a set of Householder Reflection matrices. The
QR factorization avoids the partial pivoting strategy during
the transformation process. Although the method of House-
holder transformation enhance stability, a set of transforma-
tion matrices are generated in QR steps, which causes a huge
computational overhead. Fig. 17 just shows that the perfor-
mance decrease between case 3120 and case 9241 due to the
time-consuming operations about matrix decomposition and
matrix-matrix multiplication of high order transformation
matrices in the process of (40) and (41). Thinking of stability
in power system, the tradeoff strategy is that the CPU-based
QR solver is introduced as alternative to GPU-based
LU solver.

Considering the results and analysis above, the GPU-based
method can maintain high speed and stability even if the
power systems become sufficiently large, which not only
has an overall performance improvement but also provides
an opportunity to improve scalability and compatibility for
increasing complicated power system in the future.

F. EXTENSION AND TEST OF THE MODIFIED METHOD
This subsection presents comparison of execution results
between the GPU-based method in this paper and the

FIGURE 17. Speedup (MATPOWER, CPU-QR, CPU-LU).

TABLE 10. Speedup comparison (CPU: matpower).

TABLE 11. Execution results.

GPU-FDPF method in the reference [32]. Furthermore, the
GPU-based method is also tested on the distribution networks
including IEEE 33bw, IEEE 85 and IEEE 141 bus systems.
Table 10 lists power flow calculation of these systems on the
GPU-based method.

Taking the fastest CPU-based power flow calculation pack-
age, MATPOWER, as a reference, the speedup of the GPU-
based method is greater than the GPU-FDPF method in
the reference [32]. Aside from case 1354, the GPU-based
method performs better than the GPU-FDPF despite the stop
criterion is 1e− 4 in the GPU-based method. Although the
proposed GPU-based method gives an advantage of almost
1.5 times over the GPU-FDPF method for a system with
over 9000 buses, the GPU-based method can provide better
performance improvement as the power systems increase in
the future.

From the above Table 11, the distribution networks per-
form better than non-distribution networks. Due to lacking
PV nodes, the cost of communication between CPU and GPU
is reduced. Therefore, the GPU-based method can fully focus
on the high computational capability of the GPU and utilize
the multi-threads to optimize the parallelism of the device.

VI. CONCLUSION
This paper presents a GPU-based sparse modified New-
ton method and demonstrates the accelerated effect for
large-scale power systems, which lays the foundation of

VOLUME 9, 2021 153237

L. Zeng et al.: GPU-Based Sparse Power Flow Studies With Modified Newton’s Method

large-scale power flow applications. Specifically, the contri-
butions of this work can be summarized as follows:

1) Instead of updating Jacobian matrix on each iteration,
a fixed Jacobian matrix is introduced in a vectorization
parallelization manner to relieve the computational burden.
Although the fixed Jacobian matrix has a negative influence
on convergence of power flow calculation, the parameter 1h
of Runge-Kutta formula can be adjusted to fix the issue.
Besides, the fixed Jacobian matrix might increase iterative
numbers, but the cost of communication between host and
device is greatly decreased, which computational overhead
of iteration can be compensated by the great float-point pro-
cessing capability of GPU.

In practice, Experiment proves that the time of creating
a fixed Jacobian in a vectorization parallelization manner
almost maintain a constant time even if the power system
is sufficiently large, which improves the efficiency for the
whole power flow calculation.

2) Instead of dense matrix format in [2], CRS format is
taken to store the elements of the nodal admittance and the
Jacobian matrix, which reduces much memory-consumption
by excluding storage and computation of zero elements dur-
ing the process of calculation and consequently, the compu-
tational complexity is reduced from O(n3) to O(n2).
3) compared with [2], inverting of the sparse Jacobian

matrix to update power mismatch is converted into solving
linear equations, for inversion of large-scale sparse matrix
always not only needs allocate extra memory to store subma-
trix, but also calculate many potential fill-ins in the inverting
process.

The results and analysis in this work demonstrate that
the GPU-based method has a great advantage over the ver-
sion of CPU-based method and MATPOWER, particularly,
when power system is sufficiently large. Specifically,
The GPU-based modified newton’s method, respec-
tively, achieves speedups of 234.8 times, 2.68 times and
1.39 times compared with CPU-based QR, CPU-based LU
and MATPOWR, as power system is over 13,000 buses.
It also demonstrates better performance results over the
GPU-FDPF method in the reference [32]. Furthermore, the
GPU-based method is also tested on the distribution networks
including IEEE 33bw, IEEE 85 and IEEE 141 bus systems.

In addition, the future improvement can be focused on
the GPU-based linear equation solver because creation of
Jacobian keeps constant time. Furthermore, based on the anal-
ysis of stability, the novel method about GPU-based LU-QR
hybrid solvers can be designed to improve performance and
stability in the future research, for the hybrid method can
combine the advantage of speed of LU method and stability
of QR method.

REFERENCES
[1] J. Grainger and W. Stevenson, Power System Analysis. New York, NY,

USA: McGraw-Hill, 1999, pp. 329–368.
[2] M.Wang, Y. Xia, Y. Chen, and S. Huang, ‘‘GPU-based power flow analysis

with continuous Newton’s method,’’ in Proc. IEEE Conf. Energy Internet
Energy Syst. Integr. (EI2), Nov. 2017, pp. 1–5.

[3] J. Singh and I. Aruni, ‘‘Accelerating power flow studies on graphics
processing unit,’’ in Proc. Annu. IEEE India Conf. (INDICON), Dec. 2010,
pp. 1–5.

[4] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A. E. Lefohn, and T. J. Purcell, ‘‘A survey of general-purpose computation
on graphics hardware,’’ in Computer Graphics Forum, vol. 34. Oxford,
U.K.: Blackwell, Mar. 2007, pp. 80–113.

[5] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, ‘‘Deep convolutional
neural network for inverse problems in imaging,’’ IEEE Trans. Image
Process., vol. 26, no. 9, pp. 4509–4522, Sep. 2017.

[6] J. W. H. Liu, ‘‘The multifrontal method for sparse matrix solution: Theory
and practice,’’ SIAM Rev., vol. 34, no. 1, pp. 82–109, 1992.

[7] Dense Linear Algebra onGPUs. Accessed:Mar. 2018. [Online]. Available:
https://developer.nvidia.com/cublas

[8] S. Jin, P. Grosset, C. M. Biwer, J. Pulido, J. Tian, D. Tao, and J. Ahrens,
‘‘Understanding GPU-based lossy compression for extreme-scale cosmo-
logical simulations,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp.
(IPDPS), May 2020, pp. 105–115.

[9] L. Lai, Q. Zhang, H. Tsai, and W.-T. Cheng, ‘‘GPU-based hybrid parallel
logic simulation for scan patterns,’’ inProc. IEEE Int. Test Conf. Asia (ITC-
Asia), Sep. 2020, pp. 118–123.

[10] W.-K. Lee, R. C.-W. Phan, G.-S. Poh, and B.-M. Goi, ‘‘SearchaStore:
Fast and secure searchable cloud services,’’ Cluster Comput., vol. 21,
pp. 1189–1202, Jul. 2017.

[11] M. Sabbagh, Y. Fei, and D. Kaeli, ‘‘A novel GPU overdrive fault attack,’’
in Proc. 57th ACM/IEEE Design Autom. Conf. (DAC), Jul. 2020, pp. 1–6.

[12] V. M. van Santen, F. L. F. Diep, J. Henkel, and H. Amrouch, ‘‘Massively
parallel circuit setup in GPU-SPICE,’’ IEEE Trans. Comput., early access,
Oct. 19, 2020, doi: 10.1109/TC.2020.3032343.

[13] X.-X. Liu, H. Yu, and S. X.-D. Tan, ‘‘A GPU-accelerated parallel shooting
algorithm for analysis of radio frequency and microwave integrated cir-
cuits,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 3,
pp. 480–492, Mar. 2015.

[14] C. Zhao, Z. Zhou, and D. Wu, ‘‘Empyrean ALPS-GT: GPU-accelerated
analog circuit simulation,’’ in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design, Nov. 2020, pp. 1–3.

[15] B. D. de Vos, J. M. Wolterink, P. A. de Jong, T. Leiner, M. A. Viergever,
and I. Išgum, ‘‘ConvNet-based localization of anatomical structures in 3-D
medical images,’’ IEEE Trans. Med. Imag., vol. 36, no. 7, pp. 1470–1481,
Jul. 2017.

[16] L. Rakai and W. Rosehart, ‘‘GPU-accelerated solutions to optimal power
flow problems,’’ in Proc. 47th Hawaii Int. Conf. Syst. Sci., Jan. 2014,
pp. 2511–2516.

[17] Z.-Q. Wang, S. Wende, V. Berg, and M. Braun, ‘‘Fast parallel
Newton–Raphson power flow solver for large number of system calcula-
tions with CPU and GPU,’’ CoRR, vol. 27, pp. 100–483, Sep. 2021.

[18] N. Garcia, ‘‘Parallel power flow solutions using a biconjugate gradient
algorithm and a Newton method: A GPU-based approach,’’ in Proc. IEEE
PES Gen. Meeting, Jul. 2010, pp. 1–4.

[19] D. Ablakovic, I. Dzafic, and S. Kecici, ‘‘Parallelization of radial
three-phase distribution power flow using GPU,’’ in Proc. 3rd IEEE
PES Innov. Smart Grid Technol. Eur. (ISGT Europe), Oct. 2012,
pp. 1–7.

[20] C. Guo, B. Jiang, H. Yuan, Z. Yang, L. Wang, and S. Ren, ‘‘Performance
comparisons of parallel power flow solvers on GPU system,’’ in Proc.
IEEE Int. Conf. Embedded Real-Time Comput. Syst. Appl., Aug. 2012,
pp. 232–239.

[21] X. Li, F. Li, and J. M. Clark, ‘‘Exploration of multifrontal method with
GPU in power flow computation,’’ in Proc. IEEE Power Energy Soc. Gen.
Meeting, Jul. 2013, pp. 1–5.

[22] X.-X. Liu, H. Wang, and S. X.-D. Tan, ‘‘Parallel power grid analy-
sis using preconditioned GMRES solver on CPU-GPU platforms,’’ in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2013,
pp. 561–568.

[23] X. Li and F. Li, ‘‘GPU-based power flow analysis with Chebyshev precon-
ditioner and conjugate gradient method,’’Electr. Power Syst. Res., vol. 116,
pp. 87–93, Nov. 2014.

[24] X. Li and F. Li, ‘‘GPU-based two-step preconditioning for conjugate
gradient method in power flow,’’ in Proc. IEEE Power Energy Soc. Gen.
Meeting, Jul. 2015, pp. 1–5, doi: 10.1109/PESGM.2015.7286544.

[25] H. Cui, F. Li, andX. Fang, ‘‘Effective parallelism for equation and Jacobian
evaluation in large-scale power flow calculation,’’ IEEETrans. Power Syst.,
vol. 36, no. 5, pp. 4872–4875, Sep. 2021.

153238 VOLUME 9, 2021

http://dx.doi.org/10.1109/TC.2020.3032343
http://dx.doi.org/10.1109/PESGM.2015.7286544

L. Zeng et al.: GPU-Based Sparse Power Flow Studies With Modified Newton’s Method

[26] C. V. Zabala-Oseguera, A. Ramos-Paz, and C. R. Fuerte-Esquivel, ‘‘Par-
allelization of the two-stage state estimation method using GPU-based
parallel computing,’’ in Proc. IEEE Int. Autumn Meeting Power, Electron.
Comput. (ROPEC), Nov. 2020, pp. 1–6.

[27] V. Jalili-Marandi, Z. Zhou, and V. Dinavahi, ‘‘Large-scale transient sta-
bility simulation of electrical power systems on parallel GPUs,’’ in
Proc. IEEE Power Energy SoC. Gen. Meeting, Jul. 2012, pp. 1–11, doi:
10.1109/PESGM.2012.6343968.

[28] Z. Yu, S. Huang, L. Shi, and Y. Chen, ‘‘GPU-based JFNG method for
power system transient dynamic simulation,’’ in Proc. Int. Conf. Power
Syst. Technol., Oct. 2014, pp. 969–975.

[29] A. Gopal, D. Niebur, and S. Venkatasubramanian, ‘‘DC power flow based
contingency analysis using graphics processing units,’’ in Proc. IEEE
Lausanne Power Tech, Jul. 2007, pp. 731–736.

[30] D. B. Kirk and W.-M. Hwu, Programming Massively Parallel Processors:
A Hands-on Approach, 3rd ed. Cambridge, MA, USA: Elsevier, 2010,
pp. 58–59.

[31] D. J. Sooknanan and A. Joshi, ‘‘GPU computing using CUDA in the
deployment of smart grids,’’ in Proc. SAI Comput. Conf. (SAI), Jul. 2016,
pp. 1260–1266.

[32] X. Li, F. Li, H. Yuan, H. Cui, andQ. Hu, ‘‘GPU-based fast decoupled power
flow with preconditioned iterative solver and inexact Newton method,’’
IEEE Trans. Power Syst., vol. 32, no. 4, pp. 2695–2703, Jul. 2017.

[33] R. Gnanavignesh and U. J. Shenoy, ‘‘Parallel sparse LU factorization
of power flow Jacobian using GPU,’’ in Proc. IEEE Region 10 Conf.
(TENCON), Oct. 2019, pp. 1857–1862.

[34] K. He, S. X.-D. Tan, H. Wang, and G. Shi, ‘‘GPU-accelerated parallel
sparse LU factorization method for fast circuit analysis,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 3, pp. 1140–1150,
Mar. 2016.

[35] S. Peng and S. X.-D. Tan, ‘‘GLU3.0: Fast GPU-based parallel sparse
LU factorization for circuit simulation,’’ IEEE Des. Test., vol. 37, no. 3,
pp. 78–90, Jun. 2020.

[36] W.-K. Lee, R. Achar, and M. S. Nakhla, ‘‘Dynamic GPU parallel sparse
LU factorization for fast circuit simulation,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 26, no. 11, pp. 2518–2529, Nov. 2018.

[37] X. Su, C. He, T. Liu, and L. Wu, ‘‘Full parallel power flow solution:
A GPU-CPU-based vectorization parallelization and sparse techniques
for Newton–Raphson implementation,’’ IEEE Trans. Smart Grid, vol. 11,
no. 3, pp. 1833–1844, May 2020.

[38] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Comput-
ingWith GPUs.Waltham,MA,USA:MorganKaufmann, 2012, pp. 84–89.

[39] J. Sanders and E. Kandrot,CUDA by Example: An Introduction to General-
Purpose GPU Programming. Boston, MA, USA: Addison-Wesley, 2010.

[40] M. M. A. Abdelaziz, ‘‘OpenCL-accelerated probabilistic power flow for
active distribution networks,’’ IEEE Trans. Sustain. Energy, vol. 9, no. 3,
pp. 1255–1264, Jul. 2018.

[41] F. Schafer and M. Braun, ‘‘An efficient open-source implementation to
compute the Jacobian matrix for the Newton–Raphson power flow algo-
rithm,’’ in Proc. IEEE PES Innov. Smart Grid Technol. Conf. Eur. (ISGT-
Europe), Oct. 2018, pp. 1–6.

[42] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Rommine, and H. van der Vorst, Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed.
Philadelphia, PA, USA: SIAM, 1994.

[43] R. L. Burden and J. D. Faires, Numerical Analysis. Boston, MA, USA:
Brooks/Cole, 2011, pp. 294–296.

[44] M. Faverge, J. Herrmann, J. Langou, B. R. Lowery, Y. Robert, and
J. Dongarra, ‘‘Designing LU-QR hybrid solvers for performance and sta-
bility,’’ in Proc. IEEE 28th Int. Parallel Distrib. Process. Symp., May 2014,
pp. 1029–1038.

[45] T. A. Davis, Direct Methods for Sparse Linear Systems. Philadelphia, PA,
USA: SIAM, 2006, pp. 89–91.

[46] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, ‘‘A class of parallel tiled
linear algebra algorithms for multicore architectures,’’ Parallel Comput.,
vol. 35, no. 1, pp. 38–53, 2009.

[47] G. Quintana-Ortí, E. S. Quintana-Ortí, R. A. V. D. Geijn, F. G. V. Zee,
and E. Chan, ‘‘Programming matrix algorithms-by-blocks for thread-level
parallelism,’’ ACM Trans. Math. Softw., vol. 36, no. 3, pp. 1–26, Jul. 2009.

[48] C. Luo, K. Zhang, S. Salinas, and P. Li, ‘‘SecFact: Secure large-scale QR
and LU factorizations,’’ IEEE Trans. Big Data, vol. 7, no. 4, pp. 796–807,
Oct. 2021, doi: 10.1109/TBDATA.2017.2782809.

[49] I. A. Olajide andM. O. Kolawole, ‘‘Examination of QR decomposition and
the singular value decomposition methods,’’ J. Multidisciplinary Eng. Sci.
Stud., vol. 7, no. 4, pp. 3834–3839, 2021.

[50] (2017). ArrayFire3.5.1 APIs and Documents. [Online]. Available:
https://arrayfire.org/docs/index.htm

LEI ZENG received the B.S. degree from the Col-
lege of Food and Bioengineering, Zhengzhou Uni-
versity of Light Industry, Henan, China, in 2014,
and the M.S. degree from the College of Electrical
and Information Engineering, Zhengzhou Univer-
sity of Light Industry, in 2018. He is currently pur-
suing the Ph.D. degree with Oakland University,
USA. His research interest includes GPU acceler-
ation for computationally intensive applications.

SHADI G. ALAWNEH (Senior Member, IEEE)
received the B.E. degree in computer engineering
from the Jordan University of Science and Tech-
nology, Irbid, Jordan, in 2008, and the M.Eng.
and Ph.D. degrees in computer engineering
from the Memorial University of Newfoundland,
St. John’s, NL, Canada, in 2010 and 2014, respec-
tively. Then, he joined the Hardware Accelera-
tion Laboratory, IBM Canada, as a Staff Soft-
ware Developer, in 2014. After that, he was with

C-CORE as a Research Engineer, from 2014 to 2016. He is currently an
Assistant Professor with the Department of Electrical and Computer Engi-
neering, Oakland University. He has authored or coauthored scientific pub-
lications (including international peer-reviewed journals and conferences).
His research interests include parallel and distributed computing, general
purpose GPU computing, parallel processing architecture and applications,
deep learning, numerical simulation and modeling, automotive applications,
and software design.

SEYED ALI AREFIFAR (Senior Member, IEEE)
was born in Isfahan, Iran. He received the B.Sc.
and M.Sc. degrees (Hons.) in electrical engineer-
ing and power systems from the Isfahan Univer-
sity of Technology, Isfahan, in 2001 and 2004,
respectively, and the Ph.D. degree in energy sys-
tems from the University of Alberta, Edmon-
ton, AB, Canada, in 2010. He was an NSERC
Visiting Fellow with the Natural Resources
Canada, CanmetENERGY, Varennes-en-Argonne,

QC, Canada, from 2011 to 2014. From 2014 to 2016, he was a Postdoctoral
Research/Teaching Fellow with the Electrical and Computer Engineering
Department, The University of British Columbia, Vancouver, BC, Canada.
Since 2016, he has been with the Electrical and Computer Engineering
Department, Oakland University, MI, USA, as an Assistant Professor. His
current research interests include renewable energies and optimizations in
planning and operation of smart grids and microgrids.

VOLUME 9, 2021 153239

http://dx.doi.org/10.1109/PESGM.2012.6343968
http://dx.doi.org/10.1109/TBDATA.2017.2782809

