
Received October 22, 2021, accepted November 9, 2021, date of publication November 10, 2021,
date of current version November 17, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3127472

SuDaMa: Sustainable Open Government Data
Management Framework for Long-Term
Publishing and Consumption
ELENA SÁNCHEZ-NIELSEN 1, ALEJANDRO MORALES1,2, OMAR MENDO1,2,
AND FRANCISCO CHÁVEZ-GUTIÉRREZ 1,2
1Departamento de Ingeniería Informática y de Sistemas, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
2Unidad TIC, Parlamento de Canarias, 38002 Santa Cruz de Tenerife, Spain

Corresponding author: Elena Sánchez-Nielsen (enielsen@ull.edu.es)

This work was supported in part by the Spanish Ministry of Science and Innovation under I+D+i Contract PID2019-107228RB-I00,
in part by the Ministry of Economy, Knowledge, and Employment of Canary Islands, and in part by the European Social Funds (ESF)
through Canary Islands 2014–2020 Strategy Aim 3 under Project ProID2021010012.

ABSTRACT Sustainable open datamanagement systems are key elements to overcome long-term publishing
and consumption challenges on open data platforms. However, most existing solutions have not been
envisaged as sustainable approaches to cope with key data attributes such as timeliness, accessibility and
usability. In this paper, we present a framework that addresses these challenges and ensures the efficient
publication of dynamic data on open data platforms, as well as improving the consumption experience of
end-users. The framework describes the architecture of a sustainable system that can operate continuously in
an automated way. It involves: 1) introducing an evolvable and scalable ecosystem to guarantee the access to
dynamic data when they are made available; 2) tackling governance using an autonomous agent to provide
the capacity of dynamically publishing/unpublishing data resources on open data platforms. It ensures easier
accessibility and greater efficiency for data developers, facilitating the development of data-enabled products,
thus helping developers to seize the opportunities of the data economy; and 3) improving the consumption
experience by introducing conversational bots, which enhances the usability of open data. We demonstrate
the results and validity of the solution in practice through its implementation, evaluation and exploitation as a
practical system in the Parliament of the Canary Islands, Spain. The framework developed can be considered
a generic solution to manage open data publishing and consumption challenges in other domains.

INDEX TERMS Open data framework, open data sustainability, dynamic open data, open data publishing,
open data consumption.

I. INTRODUCTION
Open government data (OGD) refers to government-related
data that is made available in open and reusable machine
processable formats to the public and can be easily accessed,
freely used, and shared by anyone for any purpose [1], [2].
It includes different data such as parliamentary data, budget
and spending, census, geographical data, as well as data
related to climate, public transportation, traffic and education.

Nowadays, OGD is among the most published open
data on the Web and is continually increasing in terms of
volume over time. This enables data consumers to use these

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

data for better policymaking, greater innovation, economic
growth, and societal progress in general. To achieve these
potential benefits of OGD, it is essential to overcome different
challenges that encompass a wide range of issues from social
to technical [3].

From the technological perspective, according to the
OGD lifecycle [2], OGD publishing and consumption are
identified as the challenging processes that must be addressed
to unlock the potential benefits of OGD. Moreover, both
processes should be envisaged from a long-term viewpoint
to obtain the full potential of OGD [4], [5]. Different
assessment frameworks in the literature [6], [7]–[13] as well
as European regulations [14]– [16] have identified timeliness,
accessibility and usability as key data attributes that should

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 151841

https://orcid.org/0000-0003-2114-4137
https://orcid.org/0000-0002-0319-394X
https://orcid.org/0000-0003-3181-4480


E. Sánchez-Nielsen et al.: SuDaMa

be addressed to ensure long-term open data publishing
and optimal consumption when OGD solutions are being
designed and developed from a technological focus.

To date, the degree of maturity of technological solutions
has evolved in line with the potential benefits of OGD, the
needs of open government initiatives, and the increasing vol-
umes of available data. Following this path, the technological
focus is shifting to ensure long-term OGD publishing and
consumption. Referring to the need for OGD to be easily
accessible, usable and released continuously.

Ensuring the continuous updates of data is particularly
important for the publication of dynamic data (i.e., data
that is updated as new information becomes available),
since the economic and political value of OGD depends on
the immediate availability of new information and regular
updates. On the other hand, enhancing the OGD usability
(i.e., how easily can the published data be used) is also
essential to guarantee the full potential of data consumption
by data consumers.

Currently, most technological existing solutions have not
been envisaged as sustainable approaches (i.e., systems that
are able to last in an automated way) to sustain long-term
OGD publishing and consumption. The main reasons are
that opening up data around the world, in many cases,
originated as part of a politically driven open data initiative.
Also, it is in response to the emerging Open Government
Partnership (OGP) movement that needed to be implemented
within a set timeframe [6], using existing open data platforms
(ODPs) [3] as key components to enable data publishers
to publish and share their datasets as open data, without
considering the key data attributes to ensure long-term
publishing and consumption (i.e., timely, accessible and
usable data). Following the proliferation of these ODPs as
data infrastructures for OGD publishing and consumption,
the technological solutions have focused on two approaches.
On the one hand, the development of custom ODPs for
specific purposes and, on the other hand, the development of
underlying data management systems as well as their integra-
tion with existing ODPs. However, to date, both approaches
have not been envisaged as viable and sustainable solutions
(i.e., solutions that are sustainable in an automated way)
to ensure long-term publishing and overcome consumption
challenges (i.e., continuous publication of dynamic data, easy
access for developers as well as improving the consumption
experience of end-users).

Providing data management system solutions in the
domain of eGovernment also requires addressing properly
current regulations and digital government policy documents.
In the European Union (EU) context, it includes the new
open data directive [14], the communication related to the
new EU strategy for data [15], and the communication
associated with the common EU data space [16]. They all
focus on:
• Adopting application programming interfaces (APIs) as
mechanisms to facilitate the access to data opened for
reuse.

• Using APIs based on several principles: availability,
stability, maintenance over lifecycle, uniformity of use
and standards, user-friendliness, and security.

• Providing real-time access to dynamic data, meaning
that the public sector bodies should make data available
for reuse immediately after collection by ways of
suitable APIs.

Thus, the aim of this work is to present SuDaMa, which
is an acronym for Sustainable Open Government Data
Management Framework for long-term OGD publishing and
consumption. It addresses the above-mentioned challenges to
provide a sustainable data management system.

When reading this work, it is important to keep in mind
that when we refer to data consumers, we are referring to both
end-users and developers. Moreover, when we refer to end-
users, we are referring to individuals that access OGD. This is
distinct from developers and organizations that develop data-
enabled products from OGD.

Bearing all the above in mind, when constructing SuDaMa,
we prioritized how to automate the publication of OGD
from data systems that operate continuously and, how OGD
could be accessed in an easy and more usable way by data
consumers. Consequently, the four main contributions of our
work are to:
• Present an OGD management framework as a holistic
solution for long-term publishing and consumption.
This framework comprises the different phases from
set-up to post-deployment. That is, design of the
system’s architecture, development and deployment of
the system, as well as its evaluation and exploitation
in a real-world OGD scenario. To do this, we have
collaborated with the Canary Islands Parliament,1 in all
the mentioned phases.

• Introduce an evolvable and scalable API ecosystem,
as main component of the system’s architecture,
to ensure real-time access to dynamic data as well
as to generate dynamically new datasets when they
are available. This not only eliminates the tedious
and manual process of developing and maintaining
API resources for data publishers, but also enables
sustainable development for developers, providing data
consistency and ensuring greater efficiency and scala-
bility for their data-enabled products. This contribution
involves: 1) formalizing all the conceptual elements
of the ecosystem, 2) addressing the design of API
resources and the development of techniques that
ensure the dynamic generation of API resources for
variable data collections, which are not known ahead
of time and evolve over time, and 3) automating
the governance of the ecosystem by an autonomous
software agent to provide the capacity of dynamically
publishing/unpublishing data resources on ODPs.

• Offer advanced ways of consuming data between end-
users and data publishers by introducing an OGD

1https://www.parcan.es

151842 VOLUME 9, 2021



E. Sánchez-Nielsen et al.: SuDaMa

API- driven bot as a conversational interface. This
provides user-friendly access to end-users when data are
large and diverse, improving the usability of OGD. This
contribution involves developing techniques of how best
to handle the interaction with end-users when addressing
the information needs from OGD and, translating them
into effective queries for the resulting API ecosystem to
build up an answer.

• Implement the proposed solution and evaluate the two
core components of the system’s architecture (i.e.,
the API ecosystem and the OGD API-driven bot)
by a Verification, Validation and Testing model in a
real-world OGD scenario. This contribution shows the
results obtained in practice and the value created for
researchers and practitioners in real-life problems.

The remainder of the paper is structured as follows.
Section II summarizes the background. Section III outlines
the methodology applied. Section IV describes the require-
ments to design the architecture of the sustainable data man-
agement system to ensure long-term OGD publishing and
consumption. Section V presents the proposed architecture
and describes the novel aspects of the core components
to achieve the requirements. Section VI evaluates the main
aspects of the core components of the architecture according
to the specified requirements with a practical system for the
Canary Islands Parliament. Finally, Section VII highlights the
conclusions obtained from real-world settings.

II. BACKGROUND
A. LONG-TERM OGD PUBLISHING AND CONSUMPTION
OGD is expected to bring not only economic and social
benefits, but also advanced forms of policy decision-making
through data analytics and knowledge sharing capabilities
for various stakeholders in both the public and private sec-
tors [18]. According to the OGD lifecycle, OGD publishing
and consumption are identified as the challenging processes
that must be addressed to take full advantage of the benefits
of OGD [2].

OGD publishing refers to the specific process of making
data widely accessible by publishing it on government
portals. Therefore, maintaining OGD over time is vital to
ensure the long-term sustainability of published OGD.

OGD consumption refers to the process of use and reuse of
such data. Data consumption can be either data exploration,
where an end-user visualizes or scrutinizes OGD, or data
exploitation, where developers add value to OGD by carrying
out the development of data-enabled products.

Both processes must be envisaged from a long-term
viewpoint to take full advantage of the benefits that OGD
offer (i.e., promoting transparency, accountability and partici-
pation by governments as well as fostering greater innovation,
economic growth and societal progress in general) [2].

Different assessment frameworks in the literature have
identified that to cope with long-term data publishing
and consumption challenges, three key data attributes
must be addressed: timeliness, easy data access and

usability [6], [10]–[16]. This is attributed to the fact that
inconsistent or outdated data as well as inefficient data
accessibility and usability leads to poor data quality, which
potentially hampers their efficient reuse to generate political,
economic and social value [2], [13], [19]. Each of these three
critical factors is discussed below.

1) TIMELY DATA
Timely data refers to whether data are made available to
the public immediately after the data are created as well as
when the data are updated. It plays an essential role in the
publication of dynamic OGD, preventing subsequent issues
related to data consumption and guaranteeing an efficient
reuse of the data.

2) ACCESSIBLE DATA
Accessible data refers to how data is made available and
can be retrieved. Making OGD accessible to developers
is a crucial point that needs to be addressed by data
publishers to facilitate the development of data-enabled
products. It introduces the challenge of how developers
can easily access available datasets. The most commonly
used retrieval method has been bulk data: meaning that the
complete dataset should be available in downloadable form
from data catalogues.

More recently, APIs as access methods to datasets have
been recognized as being fundamental for an emerging data
economy [20]. This has also been highlighted from the EU
by different European digital government policy documents
and initiatives. It includes the EU Open Data Directive [14],
which specifically requires the mandatory use of APIs for
high-value and dynamic datasets as conditions for their
reuse. The European Study for Data [15] reports on the
future investment into EU-wide interoperable data spaces;
and the communication Towards a Common European Data
Space [16] points out the use of APIs for simpler and more
automated access to and use of datasets.

APIs have long been a cornerstone of information and com-
munication technology architectures. They are machine-to-
machine digital interfaces that facilitate the exchange of data
and services [20]. REpresentational State Transfer (REST)
has become the prominent architectural style for designing
Web APIs due to its lightweight nature, adaptability to the
Web, and scaling capacity [21]. A Web API using the REST
architectural style is referred to as a REST API. They are
designed around resources, which are any type of object, data
or service.

REST architectural style consists of a set of constraints to
address such factors as visibility, reliability, scalability and
performance. In general, REST APIs describe four interface
constraints, namely: 1) Identification of resources (i.e., use
Uniform Resource Identifier (URI) to identify resources);
2) Manipulation of resources through representations (i.e.,
representations are transferred between REST components
to manipulate resources, e.g., use JSON as exchange for-
mat); 3) self-descriptive messages (i.e., enable intermediate

VOLUME 9, 2021 151843



E. Sánchez-Nielsen et al.: SuDaMa

processing by constraining messages to be self-descriptive);
and 4) hypermedia as the engine of application state (i.e.,
resources link to each other in their representations using
hypermedia links and forms).

The increasing adoption of APIs has triggered the creation
of standards to formally describe a REST API in terms
of its resources and operations. The most representative
standards are: 1) Open API Initiative (OAI), formerly known
as Swagger [22] that is based on a JSON data representation
and, 2) RESTful APIModeling Language, RAML [23] which
is based on human-readable data serialization language.

3) USABLE DATA
The usability of data has become a significant feature to
guarantee OGD consumption for end-users. It addresses how
easily the published data can be used [2].

Despite the different OGD initiatives, access to OGD by
end-users is not as high as expected [24]–[27]. This can
be partially attributed to the fact that often a non-user-
friendly interface has been built on the top of ODPs for
access and navigation. Basically, visual representations or
large tabular files are constructed from the data and provided
as consumption sources. This data consumption approach,
in many cases, is not easy to consult, particularly when data
are large and diverse. This results in a decrease in the usability
of the data.

B. IMPLEMENTATION OF OGD PUBLISHING
The complexity of software implementation has evolved
in line with the potential benefits of OGD, the needs of
open government initiatives, and increasing data volumes.
In this context, the software implementation adopted by data
publishers to manage OGD publishing can be classified into
three approaches: 1) Using existing ODPs, 2) Development
of Custom ODPs, and 3) Development of Data Management
Systems. In the following subsections, each one of these
approaches are described and discussed.

1) USING EXISTING ODPS
Many governments have made their OGD available through
data portals, such as the U.S. Government’s Open Data,2

Australian Open Government Data,3 Canada Open Govern-
ment Portal,4 Swiss Open Government Data,5 Berlin Open
Data,6 Spanish Open Government Portal7 and Danish Open
Data.8 Many of these portals have been built on top of an
open-source data platform, such as CKAN,9 which provides a
data infrastructure to publish and share data with basic search
capabilities, visualization options and associated metadata to

2 https://www.data.gov/
3 https://www.australia.gov.au/
4 https://open.canada.ca/en
5 https://opendata.swiss/en/
6 https://daten.berlin.de/
7 https://datos.gob.es/
8 https://www.opendata.dk/city-of-copenhagen
9https://ckan.org/

assist access to these data. Other known ODPs are DKAN,
Junar, Socrata, Enigma, PublishMyData, OpeDataSoft and
Zenodo [3]. All these platforms are key elements used by data
publishers to publish and share their OGD as well as mediate
public access to data. Although these platforms provide
a number of data management services, data browsing
and content management services, these platforms are not
viable solutions to address the up-stream management of
data production to ensure long-term OGD publishing and
consumption in terms of timely data, accessible data and
usable data. This means that data publishers are responsible
for developing their own underlying management data
systems as well as their integration with existing ODPs.
However, many of the existing solutions have not addressed
the development of these aspects, as has been revealed in
detailed studies conducted by [1], [2]. Results obtained from
these studies show that only about the half of the datasets in
the portals analyzed were updated according to their schedule
and the nature of the contained data. Themain reasons are that
opening up data around the world, in many cases, originated
as part of a politically driven OGD initiative or in response to
the emerging OGP movement that needed to be implemented
within a set timeframe [6]. This situation has potentially
hampered an efficient reuse of OGD, limiting therefore the
promised benefits of OGD to the society and economy [2].

2) DEVELOPMENT OF CUSTOM ODPS
Over recent years, several ODPs have been designed and
developed with distinct features for specific purposes and
presented to the research community. Among them are a
linked data platform, QuerioCity, to publish, search and link
city data from static datasets or stream data from sensors [28],
AECIS to automate data discovery and urban stream data
integration [29], a streamlined process to collect, store and
disseminate monitored data in an urban environment [30], a
City Data Pipeline to seamlessly access the data from other
data providers [31], VIVO to populate research data [32],
and LinkedLab as a platform to manage data from research
communities [33]. All these ODPs are capable of dealing
with OGD with different affordances, however they were not
envisaged to cope with the key data attributes (i.e., timely
data, accessible data and usable data) to ensure long-term
OGD publishing and consumption.

3) DEVELOPMENT OF DATA MANAGEMENT SYSTEMS
Although there are numerous OGD initiatives that use ODPs
such as CKAN to publish their OGD, there still exist a number
of drawbacks which prevent them from reaching the full
potential of OGD. One of the main reasons is that publishing
OGD not only involves the act of making the data available
on data portals, but also maintaining them over time to
guarantee their efficient use and reuse. To address this issue,
the development of underlying data management systems
and their integration with existing ODPs has been proposed.
To date, however, there are some factors that have hampered
publishers attempting to carry out this approach. The main

151844 VOLUME 9, 2021



E. Sánchez-Nielsen et al.: SuDaMa

reason is that most OGD portals were created quickly as part
of a politically driven OGD initiative to be implemented in
a limited timeframe. Thus, most software solutions were set
up without considering the data update maintenance required
over time by data publishers.

However, given the importance of achieving the full
benefits of OGD, new software solutions considering the
development of data management systems are emerging.
For instance, in the context of budget and spending data,
a data management system has been proposed to address
publishing and exploration [34], whilst in the smart city
context, a data management system to streamline data
management and publishing has been described in [35].
Although these proposals present an approach to deal with
timely data, both tackle the challenge of managing, sharing
and publishing data by using Extract-Transform-Load (ETL)
technology [36]. Although popular, this method is subject
to several weaknesses which prevent it from achieving long-
termOGD publishing. Among the main drawbacks are: 1) the
overall processing time of data gathering is typically not near
real-time, 2) the manual development effort to make every
data release available can be very time-consuming, which
increases software development and maintenance costs, thus
incurring considerable expenses for the organizations, and 3)
data updates are available according to a scheduling strategy,
limiting their availability as soon data is available.

In summary, most approaches based on portal data and
data management systems have been quickly created without
considering the data maintenance required over time as well
as not considering the sustainability of solutions. That is, the
capability of data management systems and their ability to
evolve dynamically in an automated way to ensure long-term
OGD publishing.

C. IMPLEMENTATION FOR OGD CONSUMPTION
A very relevant challenge to achieving the full potential of
published OGD on ODPs is their use by data consumers.
Although OGD is associated with multiple benefits, several
studies found many challenges to using OGD [18]. One
of the most widely discussed challenges is that end-users
have a hard time making sense of raw data since visual
representations or large tabular files are constructed from the
data and provided as consumption sources. The researchers
suggest that only a small number of end-users are capable
of understanding the underlying statistical meanings and
implications of OGD and fully realize its benefits. To address
this challenging issue, the formalization of a platform,
namely MODA, was designed to provide a systematic value-
creation process that helps stakeholders identify the most
suitable information assets and convert them into forms that
can be easily consumed [37]. However, only a conceptual
approach has been introduced, neither its implementation nor
findings have been addressed yet. Other solutions have been
proposed for exploring datasets by web-based user interfaces
in a more user-friendly way, such is in the educational

context [38], budget and spending context [34], and in health
program initiatives [18].

However, more recently, the development of new digital
channels of interaction based on natural language processing
have been proposed as a key enabler to foster access to and
querying of open data. In this context, conversational bots are
useful Artificial Intelligence tools that can be exploited as a
more natural way to enable end-users to find and compose
the information needed in different domains. Formally, bots
are intelligent agents, defined as devices that perceive their
environment and take actions that maximize their chance of
success at achieving some goal [39]. They can understand a
spoken language and use speech communication as the user
interface [40], [41].

The adoption of bots in the public sector as a new
way of interaction poses two issues. On the one hand, the
development of a knowledge base from government experts,
and, on the other, its integration with dialog management.

Although the adoption of conversational bots has recently
been proposed as a way of transforming the communication
between citizens and government [42], little attention has
been given to developing it for open data to create a user
interaction that is as natural as possible for querying and
retrieving data.

The conclusion of the review of the state of the art tends
to suggest that to exploit the benefits of OGD, from the
technological viewpoint, it is essential to invest in making
good design decisions in the development of new data
management systems based on the key data attributes (i.e.,
timely data, accessible data, and usable data) as well as
making sustainability explicit.

Thus, the aim of this paper is to present a novel sustainable
data management system. That is, a data management system
that can last over time with the ability to evolve dynamically
in an automated way to ensure long-term publishing and
consumption of dynamic OGD. The main contributions of
the paper can be summarized as: 1) the formalization of an
evolvable and scalable API-enabled ecosystem to provide
the automation of timely data and easy data accessibility,
2) the autonomous governance of the API ecosystem to
ensure the sustainability of the system, 3) to offer advanced
ways of consuming data to improve data consumption, and
4) to validate the propose solution in a real OGD scenario
to show the findings obtained in practice with real-life
problems.

III. METHODOLOGY
The proposed framework, SuDaMa, has been created in
the context of an open data innovation project between
researchers of University of La Laguna (ULL) and practi-
tioners from the Parliament of the Canary Islands with the
methodology shown in Figure 1. This methodology follows
the steps of scientific research in the design of information
systems [43]: 1) problem identification and motivation,
2) define the objectives for the solution, 3) design and
development, 4) evaluation, and 5) demonstration.

VOLUME 9, 2021 151845



E. Sánchez-Nielsen et al.: SuDaMa

FIGURE 1. Overall methodology for the data management framework.

Given our goal is also to guarantee the sustainability of
the solution, we added an additional step named exploitation.
This allowed us to verify the evolution of the results over time
after the solution was deployed. Hence, the methodology (see
Figure 1) began with a literature review involving academic
papers, official documents and best-practice standards that
covered the different insights and challenges facing open data
publishing and consumption and considering technical, legal,
political, operational and economic angles. Next, from the
literature review, the main issues were determined that are not
covered by current data management systems to ensure OGD
sustainability in real OGD settings. Then, the requirements
for problem-solving were identified considering existing
policy support, legislation and technical principles. From
this, a framework was designed and discussed with parlia-
mentary stakeholders and the project advisory board. The
resulting framework consisted of four stages. First, the design
encompassed the formalization of the system’s architecture
and dataset selection. Second, the development of the system
for each of the different components was accomplished.
Third, the system was evaluated by a verification, validation
and testing-based model. Fourth, a demonstration of the
result was presented as an open data initiative of the
Parliament of Canary Islands on parliamentary transparency.
It included presentation, communication and discussion with
media and participants. An OGD driven application was
also implemented as way to validate the OGD consumption
experience. Nowadays, the deployed solution is being used
and continually validated by the Parliament.

IV. LONG-TERM OGD PUBLISHING AND CONSUMPTION
REQUIREMENTS
In this section, we determine the requirements to design
and develop the architecture of a sustainable data man-
agement system to ensure long-term OGD publishing and
consumption.

According to the key aspects discussed in Section II-A,
by long-term OGD publishing and consumption we mean to
cope with three key data attributes: timely data, accessible
data and usable data. The two first requirements are essential
to ensure long-term publishing, whilst the third requirement
is necessary to enable long-term consumption.

As a result, design decisions on the architecture must focus
on how to develop its components considering these three
requirements, so that the system works in an automated way.
For its application in real-world OGD scenarios, the solution
proposed must also be fully aligned with the new open data
directive [14].

A. REQUIREMENT 1: TIMELY OGD
This requirement is focused on providing dynamic OGD
publishing in a timely way. The system must be able to
address both dynamic data and datasets from organizations
that evolve over time according to their main functions.
By dynamic data, we mean that data is made available to
the public at real-time after the data is created or up to date.
By dynamic datasets, we mean the creation of new datasets
that are not known a priori and evolve over time.

B. REQUIREMENT 2: ACCESIBLE OGD
To ensure sustainable and easy data access to developers,
the system must be designed as an enabler to unify access
to all data, allowing developers to access and integrate them
into their applications. As a result, the system must deliver
a continuous flow of value to developers, ensuring that the
outputs are updated and synchronized with any changes in
the datasets.

The resulting system must also be connected to ODPs and
not only accessible through data publishers’ infrastructures
to foster greater data accessibility, as well as complying with
the principles addressed by EU legislation by adopting APIs
as mechanisms to improve access to open data.

151846 VOLUME 9, 2021



E. Sánchez-Nielsen et al.: SuDaMa

FIGURE 2. Sustainable open data management system architecture.

C. REQUIREMENT 3: USABLE OGD
The provision of new digital channels of interaction based on
natural language processing by conversational bots should be
addressed as a key enabler to foster OGD usability and then,
OGD consumption for end-users. The main aim is to create a
user interaction that is as natural as possible for querying and
retrieving OGD.

Developing conversational bots for OGD involves address-
ing two essential issues. On the one hand, interpreting
the natural language adopted by end-users to handle the
conversation in querying datasets and, on the other hand,
translating it into effective queries to build up the answer from
datasets.

V. ARCHITECTURE
The system architecture we propose (see Figure 2) consists of
four components: 1) data sources, 2) data staging and storage,
3) API ecosystem, and 4) consumption.

The two core components proposed for the system archi-
tecture are the API ecosystem to ensure long-term publishing
considering the timely and accessible data requirements.
Consequently, it is proposed to publish/unpublish OGD in an
automated way. Second, the consumption component must
ensure long-term consumption considering the usable data
requirement.

The data sources component represents a unified represen-
tation based on an ontological approach [44]–[46] for differ-
ent heterogeneous data gathered from diverse sources. This
component provides a schema for the semantic representation
of data sources, which is consistent and complete enough
to model all the aspects and entries for datasets. The data
staging and storage component is responsible for data storage
and implementing the anonymization policy in such a way
that identifiable personal characteristics are hidden before
datasets are managed by the API ecosystem component.

In each of the following subsections, we formalize,
describe and provide the novel aspects of the core compo-
nents of the architecture.

A. API ECOSYSTEM
The ‘‘ecosystem’’ metaphor is traditionally used in open
data scenarios to describe a set of interdependent ele-
ments that together form an evolving, self-organizing and
sustainable system. Various works are found within the
research community with different viewpoints. Among them
are those proposing the basic components and definitions
from a business model perspective [47], defining the kind
of knowledge that is required for validating open data
in digital service ecosystems [48], evaluating the benefits
of open data [49], analyzing the major stakeholders [50],
and national experiences focused on social, political, and
economic angles [51]. Our approach differs from them in
two essential aspects. Firstly, our approach is directly related
to an evolvable and scalable ecosystem supported on API
resources for dynamically creating, managing, and sustaining
these resources to provide timely dynamic data, which is not
covered by existing data ecosystem approaches. Secondly,
we propose to automate the governance of the API ecosystem
to ensure the sustainability of the data management system by
a software agent, which is also not covered by existing data
ecosystem approaches.

Formally, the API ecosystem is defined in terms of a triplet,
denoted by E = (Re, A, Rl), where E is the API ecosystem
name; Re is the set of API resources produced and consumed
by ecosystem actors; A is the set of actors who participate in
the ecosystem; and Rl is the set of relationships engaged by
ecosystem actors.

The environment of the ecosystem evolves through a set
S of discrete states, where S = {s0, . . . , sn}. Therefore,
given an ecosystem environment E , we write henceforward

VOLUME 9, 2021 151847



E. Sánchez-Nielsen et al.: SuDaMa

E(st ), to denote the ecosystem is at a finite state st ; and
Rei(st ),Ai(st ) andRli(st ) to denote respectively a specific API
resource i, actor i or relationship i at a state st .

In the following, the formalization and description of
each one of these conceptual elements, the proposal of the
design of API resources based on a REST architectural style
(henceforward API resources), and the approach on how to
automate the governance of the ecosystem by a software
agent is presented.

1) API RESOURCE
Given an ecosystem environment state st , an API resource
is formalized as an octuple denoted by Rei(st ) =

({Ca1,. . . ,Cak},{Enj},{Pt1,. . . ,Ptq},{Nt j}, {At1, . . . ,Atm},
{St1, . . . , Stn}, {Ql1, . . . ,Qlk}, {Li1, . . . ,Lil}, ), where:
• Rei is the API resource name.
• {Ca1, . . . ,Cak} refers to a set of categories. Each
category Cai is established by the reference ontology
of the domain. Each resource Rei is grouped into a
specific categoryCai. An additional category, calledAPI
management, is included to handle the different aspects
related to ensuring the automated governance of API
resources by the software agent.

• {Enj} refers to the location of the path item to the
endpoint for each API resource Rei.

• {Pt1, . . . ,Ptq} refers to a list of ODPs on which
resource Rei has been published. In the case the list is
empty, resource Rei has not been published on any data
platform.

• {Ntj} represents the communication channel of the
ecosystem’s actors to notify the results of a resource
Rei in terms of its quality properties. For instance, the
email address that will be used to notify ecosystem’s
API producers of the outcomes of a resource Rei in
terms of its quality properties, that is, its reliability and
performance.

• {At1, . . . ,Atm} refers to a set of two attributes that
characterizes the features related to the accessibility
of each resource Rei. The first one identifies the level
of access for each API resource. The second attribute
identifies the type of resource according to the way the
URL patterns have been constructed. The values for
the first attribute are public or private. Public APIs are
accessible by all data consumers. These APIs are read-
only APIs (i.e., only GET operations are considered).
Private APIs are internal APIs only accessible to
the software agent to facilitate core functionalities
for creating and managing APIs resources and, are
updateable APIs (i.e., all operations are considered).
The values of the second attribute are fixed or variable
to indicate if it is a concrete or varying resource (see
Section V-A2).

• {St1, . . . , Stn} is a set of standards. Each standard
Sti represents the specification to which the described
resource Rei is conformed. The Open API Specifica-
tion [22] is the specification to define the resources

and operations. It allows both human and computers to
understand the resources and operations of APIs without
looking at the source code and extra documentation.

• {Ql1, . . . ,Qlk} } refers to a set of four quality properties
to which each API resource Rei is evaluated. The first
one, Ql1, is related to testing outcomes. These include
the results for both nominal and faulty specification-
based test cases. Nominal tests assess that given
correct input data, the API resource operations return
a successful response code (i.e., 2xx family of codes).
Faulty tests assess that given incorrect input data, the
resource operations return an error response code (i.e.,
4xx or 5xx family of codes) [52]. As a result of
these testing outcomes, for each ecosystem environment
state st , the value of the first quality property, Ql1,
is computed according to the following decision rule:

Ql1 (st) =


1, if nominal and faulty

testing are passed
0, Otherwise

(1)

The second quality property,Ql2, refers to the number of
times each resource Rei has passed both tests. Accord-
ingly, this property is associated with the reliability of
each resource representing how ‘‘effective’’ the resource
is in terms of robustness: the higher the reliability, the
better. For each ecosystem environment state st , the
value of Ql2 is computed according to the following
expression:

Ql2 (st) =
n∑
i=0

Ql1 (st−i) (2)

This gives a reliability measure for each resource
considering past testing results and not only the current
result, where n represents the dimension of the subset of
previous environment states to be considered. Reliability
increases as the number of nominal and faulty tests are
passed in the recent past. The third quality property,
Ql3 is related to the performance of each resource Rei
in terms of its response time (i.e., the time to react
to a request once it has received one). The fourth
quality property, Ql4, provides a measure of the quality
of code written for each resource Rei in terms of
statement coverage testing. It describes the degree to
which the statement code of each resource is executed
when test cases are executed, verifying what the written
code is expected to do and not do. A resource with
high statement coverage, measured as a percentage,
suggests it has a lower chance of containing undetected
software bugs compared to resources with low statement
coverage.

• {Li1, . . . ,Lil}) is a set of licenses. Each license Lii
represents a license to perform some activity related to
resource Rei. The open license Open Data Commons
Public Domain Dedication and License (PDDL) can be

151848 VOLUME 9, 2021



E. Sánchez-Nielsen et al.: SuDaMa

selected to freely share, modify, and use the datasets for
any purpose and without any restrictions.

2) BUILDING API RESOURCES
The design of API resources must focus on how to
automatically publish dynamic data and datasets via APIs on
ODPs, when new data and datasets are made available by
organizations. Two types of API resources called variable
and fixed were proposed by analyzing data models for
storage and retrieval of data produced in organizations which
are essentially dynamic considering they evolve over time
according to the performance of their main functions. With
variable API resources, we refer to a structured way for
defining how the URL patterns should be constructed to
allow the creation of new datasets which are not known a
priori (e.g., datasets on new parliament members and laws
of the next legislature). This is distinct from a fixed API that
specifies a concrete resource name which is unique over time
and different legislatures (e.g., a dataset on municipalities or
a dataset on assets). In this case, the syntax of the URL pattern
is structured as follows:

//SITE/API_URL

where SITE represents the domain of the site, and API_URL
represents the API path. An example of a URL pattern of
a fixed API resource for retrieving a dataset corresponding
to the vehicles owned by a parliamentary institution is the
following:

//parcan.es/api/transparency/vehicles/

where parcan refers to the site of the parliamentary institu-
tion, transparency corresponds to the API category Cai,
and vehicles refers to the resource name.

On the other hand, when we are designing variable API
resources, we provide a dynamic way for building specific
resources, where it is assumed that the values of path
parameters (e.g., members, legislatures, legislative bodies,
years, etc.) that specify variable collections for each different
API are not known ahead of time and evolve over time.

With this aim, the path templating approach [53] is used as
a mechanism to specify how to describe sets of relative URL
patterns when variable values need to be provided according
to the evolution of the data over time and are not known
a priori. The syntax of the URL pattern for the proposed
variable API resources is then structured as follows:

//SITE/API_URL/PARAMETER

where SITE represents the domain of the site, API_URL
represents the API path, and PARAMETER represents the
parameter element. Curly brackets are used to denote parts of
the parameter element as a path variable, which is not known
ahead of time. An example of a URL pattern of variable API
resources for retrieving datasets corresponding to the agenda
of members by year and months in a parliamentary setting,

where the data values corresponding to them are not known
in advance is the following:

//parcan.es/api/activity/deputies/agenda

/{member}/{year}/{month}

3) DYNAMIC GENERATION OF API RESOURCES
Fixed API resources are automatically published on ODPs
since their URL patterns directly represent the URL path that
data consumers must invoke to obtain the required datasets.
In the case of variable API resources, a four-step process is
developed to ensure the dynamic generation of all specific
resources for variable collections where it is assumed that
the path parameters and their values are not known ahead of
time and evolve over time (e.g., year, code of a legislature,
parliamentary member, etc.,). This process is executed by
the software agent integrated into the API ecosystem. Three
essential API resources grouped into the API management
category called API query, API requests resolver and API
generator must be developed. The four-step process is as
follows:
• The API query first builds the query according to the
following format to obtain each of the different API
categories Cai:
https://SITE_NAME/api/request_resol

ver/?category=CATEGORY_VALUE

• The different requests to the API requests resolver
with the details about the required categories Cai are
performed in the second step of the process to obtain the
set of all API resources Rei.

• In the third step, the API requests resolver returns the
values for each parameter expression of each variable
API resource Rei that correspond to each representative
API category Cai.

• In the last step of the process, the API generator is
responsible for processing the inferred values from the
expression expansion for each URL template variable
by generating as many API resources Rei as possible
values the parameters namedwithin the expression have.
Accordingly, the returned API resources Rei consist of a
set of URL templates with their values as defined by the
corresponding parameter types.

As a result of this four-step process, each possible resulting
URL pattern is obtained for all the different API categories
Cai. Figure 3 illustrates an excerpt with the outcomes
obtained in JSON format in a parliamentary setting, when
the API requests resolver is requested by the specific API
category representation and after the first three steps
of the process have been performed. The results shown in
the Figure 3 include the different API resources obtained, the
URL template variable, and the values required for each path
parameter needed (l_island, l_legislature). Subsequently,
in the last step of the process, all the URLs with their
specific resources and each inferred parameter value will be
generated by the API generator for each of the seven different
legislatures and seven islands.

VOLUME 9, 2021 151849



E. Sánchez-Nielsen et al.: SuDaMa

FIGURE 3. Excerpt of the results of the API requests resolver for the API category representation in JSON format.

4) AUTOMATED GOVERNANCE
Automated governance of all API resources in the API
ecosystem is addressed by a software agent with internal
state (henceforward called API Publisher, Publisher Agent
or agent). The Publisher Agent runs continuously in the
API ecosystem to perform three functions: perception of
the dynamic conditions in the ecosystem, updating the
internal state with new perceptions, and actions upon that
ecosystem to carry out its goals. The agent decision-making
is modelled considering the ecosystem and its evolution
and not solely based on the present. The agent is modelled
assuming that the environment of the ecosystem may be
in any state of a set S of discrete states, and it has a
repertoire of possible actions A to transform the state of the
environment, where A = {a0, .., am}. Formally, the behavior
of the state-based agent can be represented by the following
functions [39], [54]:
See, which captures the agent’s ability to observe its

environment. The output of the function is a percept (i.e.,
a perceptual information). Let Per be a (non-empty) set
of percepts, the function see is a function which maps
environment states to percepts:

see :S → Per

Next, which captures the ability of the agent to record
information about the environment state and history. Let I be
the set of all internal states of the agent, the function next
maps an internal state and percept to an internal state:

Next :I x Per → I

Action, is defined as mapping internal states to actions
upon the environment. Thus, the agent decides about what
action to perform based on the evolution of the environment
and not solely based on the present.

Action :I → A

The ecosystem is supported by a software environment.
The different elements of the Publisher Agent, the software
environment and behavior for the automated governance of
API resources is illustrated graphically in Figure 4. The
environment comprises an API Registry, an API Repository
and Open Data Platforms. The API Registry provides a
registration mechanism for advertising all available API
resources. The API Repository provides access to the
software implementation of different API resources. The
Open Data Platforms are the data infrastructures on which
API resources are published/unpublished.

151850 VOLUME 9, 2021



E. Sánchez-Nielsen et al.: SuDaMa

FIGURE 4. The Publisher Agent in its environment for the automated governance of API resources.

The Publisher Agent can receive two different percepts: a
percept new-resources (a trigger from the API Registry, indi-
cating that new datasets are available to be published as API
resources) or health-checking (a trigger from ecosystem’s
API producers, signifying that the enabled-API resources
need to be validated for detecting reliable/faulty resources
and, subsequently enabling their publishing/unpublishing on
ODPs). As mentioned in Section V-A2, the API resources
produced can be fixed or variable.

The internal state of the Publisher Agent represents the
information the agent has about the set of available API
resources. It varies over time according to new percepts
and the environment’s evolution. The information the agent
has about its environment for each available resource Rei is
name, category, location, open data platforms, notifications,
attributes, standard, quality, and license (see Section V-A1).
The set of all internal states of the agent is represented
by I . A specific internal state of the agent is then an
element of I , where 11, . . . ,1n denotes the different
members of I .
The perception function see maps the environment states

to two different percepts (new-resources, health-checking).
The next function is specified according to the perceptual
information obtained from the environment (either new-
resources or health-checking) and generates a new set of
internal states I , which includes this information. But,
in addition, the agent must also remove old or irrelevant
information. Therefore, the next function is specified in two
parts. First, let old be (1) the set of old information about the
set of all API resources in I to remove. Then, let the function
new be the set of new information about API resources to add

to I :

new :I x Per → I

The function new of the agent updates the set of internal
states I according to the two different percepts that it can
receive. When the percept is new-resources, for each new
resource Rei produced, the function new updates the set of
internal states I by (1) carrying out the dynamic generation
of all possible API resources (see Section V-A3) in the case
of a variable API or adding the API resource in the case of
a fixed API. And subsequently, (2) storing resource Rei and
adding the information corresponding to each of the eight
components that characterizes each API resource obtained.

When the percept is health-checking, the function new
validates the set of API resources of the agent’s current
internal state in terms of reliability and performance. With
this aim, a testing process that consists of both nominal and
faulty specification-based test cases, as well as performance
testing is performed for each resource Rei. As a result of
this process, the values of each of the four quality properties
(Ql1, Ql2, Ql3 and Ql4) are obtained for each resource (see
Section V-A1) and updated in the current internal state of the
agent.

Given the new and old functions, the next function of the
agent is defined as follows:

next (I ) = (I \ old (1)) ∪ new(I )

The decision-making of the agent on what action to carry
out on its environment is influenced by the ecosystem’s
history, and it is modelled by behavior rules regarding
publishing reliable API resources on ODPs, unpublishing

VOLUME 9, 2021 151851



E. Sánchez-Nielsen et al.: SuDaMa

faulty API resources on ODPs, and notifying faulty API
resources to ecosystem’s API producers. The goal is to ensure
automated publishing, testing and removal of API resources
over time. Consequently, publishing must guarantee the
automated publishing of new API resources and their timely
updates on data platforms over time when new datasets are
available, testing must ensure the proper operation of all API
resources, whilst removal must remove API resources when
datasets are no longer available, or API resources are faulty.

The first rule that governs the agent’s behavior, a1, deals
with the publishing action. Since the quality properties,
Ql2 and Ql3, represent a measure of effectiveness and
performance for each resource Rei considering past testing
results, the agent can decide when performing a publishing
action is appropriate or not, focused on this measurement.
Hence, for a given environment state st , if the agent detects
that the quality propertyQl2 (i.e., the reliability) of a resource
Rei is higher than a publishing threshold, δpublishing, and the
response time of the resource is lower than a response time
threshold γresponse and, the resource has not been published
on a data platform Pti, then the prescribed action will be to
publish the resource Rei on the corresponding platform Pti:

if
(
Ql2 (st) > δpublishing

)
and(

Ql3 (st) < γresponse
)

and

(Pt i (st) = 0) then

publish Rei (st) on Pt i (st) (3)

The second rule, a2, deals with the unpublishing action
of the agent. Hence, for a given environment state st , if the
agent detects that the quality property Ql2 for a resource Rei
is less than or equal to a publishing threshold, δpublishing,
and it has been published on a data platform Pti, then the
prescribed action will be to unpublish the resource Rei on the
corresponding platform Pti:

if
(
Ql2 (st) ≤ δpublishing

)
and

(Pt i (st) = 1)

then unpublish Rei (st) on Pt i (st) (4)

As a result, the agent’s decision-making to pub-
lish/unpublish a resource Rei is based on the temporal
coherence of the testing results by considering the outcomes
obtained through the recent history and not just the current
outcome. This is performed by considering that each testing
process for a resource is required to be passed at least
δpublishing times for a publishing action. Whilst for an
unpublishing action, it is required that the resource has at
least n − δpublishing testing failures, where n represents the
number of previous environment states to be considered.
This guarantees that a resource will not be immediately
published/unpublished by the agent when a testing process
is passed or failed.

The third rule, a3, deals with the notification action about
faulty resources to ecosystem’s API producers. Hence, if the
agent detects that a resource was published in a previous state

st−1 and in the current state st is unpublished then the action
will be to notify the faulty and unpublished resource to the
API producers:

if (Pt i (st−1) = 1) and

(Pt i (st) = 0) then

notify unpublished Rei (st) to Nt i (st) (5)

The fourth rule, a4, refers to the notification to ecosystem’s
API producers when the performance in terms of response
time does not exceed a response time threshold. Thus, the
action will be to inform API producers about the faulty
resource:

if
(
Ql3 (st) > γresponse

)
then

notify faulty resource Rei (st) to Nt i (st) (6)

As a result of the interaction of the Publisher Agent with
its environment, its behavior for the automated governance
of API resources can be summarized in the following way.
The agent starts in the API ecosystem in some initial internal
state i0. It then observes its environment state st , and receives
a percept see(st ), either new-resources or health-checking.
The internal state I of the agent is then updated via the next
function, becoming set to next (i0, see(st )), removing old
information and adding new information to the corresponding
resources Rei. The action selected by the agent is then
action(next(i0, see(st ))) related to publishing, unpublishing
and notifying actions. The corresponding action is then
performed, and the agent enters another cycle, perceiving the
ecosystem via see, updating its state via next, and choosing
an action to perform via action. Each cycle of the Publisher
Agent is defined considering the required frequency to
provide timely datasets.

5) ACTORS
Actors are essential elements of the API ecosystem and each
one has different roles and capabilities. Given an ecosystem
environment state st , an actor is denoted by Ai(st ) =
({Ro1, . . . ,Rol},{Re1, . . . ,Ren}), where:
• Ai is the actor name. The actors of the ecosystem are
integrated both by humans and software agents. Three
types of actors are defined according to the role played
in the API ecosystem: API producers, API publisher or
API consumers.

• {Ro1, . . . ,Rol} is a set of roles. Each role Roi represents
a role performed by actor Ai. The role of API producers
is to manually develop fixed API resources. API
publisher is an autonomous software agent, whose role
is to ensure the dynamic generation of variable API
resources and a sustainable governance of all of them to
guarantee the proper operation, as well as timely pub-
lishing/unpublishing of all resources. API consumers
are both developers and end-users. Developers access
the API resources produced in the ecosystem to gen-
erate data-enabled products and innovation. Potential
end-users in parliamentary settings include citizens,

151852 VOLUME 9, 2021



E. Sánchez-Nielsen et al.: SuDaMa

public administration, government, local authorities,
media, researchers, parliamentary staff, lawyers, and
practitioners.

• {Re1, . . . ,Ren} is the API set of resources. Each
resource Rei represents an API resource produced or
consumed by actor Ai.

6) RELATIONSHIPS
Relationships are the interactions between API ecosystem
actors. Since open license is selected to freely share, modify,
and use datasets for any purpose and without any restrictions,
no relationship follows a business model. Given an ecosystem
environment state st , a relationship Rli is formalized by
Rli(st ) = (< Ai, Aj >, {At1, . . . ,Atn}), where:
• <Ai, Aj > is a pair of actors, which represents the actors
that participate in relationship Rli.

• {At1, . . . ,Atn} is a set of attributes. Each attribute Ati
represents a feature that characterizes relationship Rli.

B. CONSUMPTION
OGD is published as API resources on ODPs for data
consumers, as illustrated in Figure 2. The publication of OGD
as API resources facilitates the use of bots as conversational
interfaces for querying published data and the use of data
management tools to develop machine learning services to
offer functionalities such as data mining, classification, and
data interpretation. The following subsection addresses how
an OGD API-driven bot can be used as a conversational bot
to enable OGD usability considering the Google Dialogflow
platform.10

1) OGD API-DRIVEN BOT
The aim of the resulting OGD API-driven bot (henceforward
called bot) is to provide a user-friendly access and querying
method to datasets as well as the ability to help end-users to
gain knowledge from the datasets, which represent a domain
environment and create new knowledge from them.
The development of the bot poses different challenges,

such as interpreting the natural language adopted by end-
users to handle the conversation in querying the information
needs on OGD and, translating it into effective queries for the
resulting API ecosystem to build up an answer. To enable the
bot to provide such functionalities, two components need be
addressed: the knowledge base (to provide responses to end-
user input) and the dialogue management module (to handle
the conversation process).
For the development of the knowledge base, the ontolog-

ical perspective of the domain, which formally specifies the
conceptual terms and semantic relationships that model and
represent the domain is used. As a result, the bot system’s
knowledge base is obtained from the semantic model of the
domain and then, it is internally represented according to
the different categories in the API resources that encompass
the API ecosystem. Bot’s knowledge base is updated over

10https://cloud.google.com/dialogflow

time as the API ecosystem is updated dynamically by the
Publisher Agent (see Section V-A4) when new datasets are
made available.
For the development of the dialogue management,

Dialogflow is used to (1) understand end-users input queries
expressed in natural language processing (NLP) by speaking
or typing a question, (2) generate a dynamic response from
the API ecosystem to fulfill the request and, (3) present a
response to end-users according to a response template.
To build bot’s behavior with Dialogflow, the following

components are defined: intents, entities, contexts and
fulfillment. An intent represents the intention behind end-
users’ inputs and the goal expected to be achieved with each
request. Consequently, one intent is modelled for each type
of end-user request that the bot can support. Dialogflow
contexts are used to control the flow of a conversation for
an intent by setting input and output contexts. Dialogflow
fulfillment is used to provide a dynamic response according
to the bot’s knowledge base instead of static responses for
matched intents. With this aim, webhook integration [55] is
used in terms of requests to the bot’s webhook services to
handle dynamic responses by passing information from a
matched intent into the corresponding API calls to the API
ecosystem and getting the result from it. This guarantees
that the bot will get the appropriate answer when an end-
user issues a question in a parliamentary setting like ‘‘Will
the bill on ‘‘Assistance dogs for people with disabilities’’ be
voted on in the next plenary session?’’. This is because it
performs the actions as calls to API resources of the API
ecosystem, which is updated timely by the Publisher Agent.
Accordingly, the bot will always give available information
considering the updated parliamentary agenda corresponding
to that session instead of static responses of matched intents.
This is essential since static responses of matched intents
cannot include information which is dynamically updated
based on the parliamentary activity that is going to occur over
time.
The user interface of the bot can be implemented as a

mobile app, where voice and text can be supported as modes
of communication. The bot’s behavior is modelled by the
following seven-step process as follows:
Step 1) The end-user interacts through the interface by

speaking or typing a question.
Step 2) Dialogflow matches the end-user expression to an

intent and extracts parameters.
Step 3) If an intent is matched, a webhook request message

with information about the matched intent is sent
by Dialogflow to the bot webhook service.

Step 4) The bot webhook service performs the actions as
API calls to the API ecosystem.

Step 5) The bot webhook service sends a webhook
response message to Dialogflow. This message
contains the response to be sent to the end-user and
updates to the context active for the conversation.

Step 6) Dialogflow sends the response to the end-user.
Step 7) The end-users hear or see the response.

VOLUME 9, 2021 151853



E. Sánchez-Nielsen et al.: SuDaMa

VI. EVALUATION
In this section, we evaluate the novel aspects of the two
core components of the architecture proposed in section V
considering the requirements for these components (spec-
ified in Section IV) when the data management system is
implemented as a sustainable solution to support the open
data initiative for the Parliament of the Canary Islands
for long-term OGD publishing and consumption. The API
ecosystem component of the architecture is evaluated for
long-termOGDpublishing, whereas the OGDAPI-driven bot
component is evaluated for long-term OGD consumption.

The entire infrastructure that supports the solution consists
of a hyperconverged infrastructure (HCI) with virtualization
software with 4 nodes VxRAIL E560 Hybrid + E560F All
Flash. Each node has 2xIntel Xeon 56 @ 2.5Ghz (16 cores
per CPU) with 384 GB of RAM. As a result, the nodes
provide a storage cluster vSAN All Flash of 121 TB. This
HCI has been selected as infrastructure to support our
solution because it provides a unified system that decreases
data center complexity and increases data scalability. The
reference ontology of the domain described in our previous
research work [56] was developed using the Protégé ontology
tool [57] as well as Virtuoso universal server and RDBMS
Oracle, which have been used as database engines in the data
layer. Django REST framework11 has been used as toolkit
to develop the API ecosystem, where the API resources rely
on the OpenAPI specification [22]. Currently, CKAN12 is
utilized as ODP to provide access to all available data via API
resources.

Which data must be anonymized and which anonymization
technique should be used, in such a way that identifiable
personal characteristics are hidden when OGD are published
and consumed, were defined according to an anonymization
policy. This policy was based on the European General
Data Protection Regulation [58] that currently is the most
relevant existing regulation for privacy protection for all
European individuals since May 2018. The attributes that can
identify a specific individual (i.e., members of parliament
and civil servants) were classified into three categories: (1)
key attributes (attributes that uniquely identifies individual,
e.g., ID, name, social security number); (2) quasi-identifiers
(attributes that can be combined with external information
to expose some individuals, e.g., home address); sensi-
tive attributes (attributes that contain sensitive information
about individual, e.g., disability status). Generalization and
suppression techniques [59] were applied respectively to
replace a QI value with a less specific value to reduce the
granularity of representation by using the l-diversity model,
while suppression is focused on hiding a QI value entirely.

The autonomous agent has been developed as a goal-based
agent with Python programming language. The OGD API-
driven bot was developed as a prototype of conversational bot
with Google DialogFlow platform to enable parliamentary

11 https://www.django-rest-framework.org/
12https://ckan.org/

open data usability. Currently, other platforms are being stud-
ied to deploy the bot and its integrationwith the parliamentary
web portal as well as other messaging platforms.

The Verification, Validation and Testing model [60] was
adopted to evaluate the sustainable data management system
focusing on the two core components proposed for the system
architecture: the API ecosystem and the conversational bot.
Each process involved in the evaluation is discussed below.

A. VERIFICATION
The verification process established whether the data man-
agement system implemented meets the timely data and
accessible data requirements for the API ecosystem and the
usable data requirement for the OGD API-driven bot as well
as the ability of the data management system to be sustainable
over the entire evolution cycle. The solution proposed is also
compared with existing approaches for both OGD publishing
and OGD consumption.

Regarding the framework proposed, SuDaMa, it can be
affirmed that it is effective and efficient as a practical solution
to support the open data initiative for the Parliament of
the Canary Islands. This initiative started on January 2019,
by carrying out the methodology described in Section III and
providing the resulting data management system. This was
affirmed by the IT CIO of the Parliament of the Canary
Islands, the project advisory board, parliamentary stakehold-
ers and the ULL. As evidence of this, the deployed solution
remains operational and has been continuously validated by
the Parliament with over 3,000 datasets published by the API
ecosystem after two years since commissioning. The data
have been verified and timely provided and are accessible in a
user-friendly way via APIs to developers as well as enhancing
the usability of data by end-users.

Regarding the framework proposed, SuDaMa, in com-
parison with the software approaches described in the
literature for implementing OGD publishing solutions (see
Section II-B), it can be stated that the solution outperforms
the affordances of the three existing approaches. First, when
we compare the solution proposed against an approach
focused on using existing ODPs (i.e., publishing directly on
ODPs), our solution is more efficient because our solution
not only allows data publishers to publish data on any
ODP with data maintenance over time but also ensures
real-time access to dynamic data as well as generating
dynamically new datasets when they are available. Second,
when we compare the solution proposed against the other two
approaches focused on developing custom ODPs as well as
developing data management systems and their integration
with existing ODPs, our solution also performs better than
the existing ones since our solution does not use ETL tools
to carry out the publishing process. As a result, our solution
avoids the weaknesses of these approaches. That is, our
solution can ensure real-time publishing of dynamic data
without using manual development effort every time a data
release is available, which not only eliminates errors, but also

151854 VOLUME 9, 2021



E. Sánchez-Nielsen et al.: SuDaMa

leads to significant cost savings in comparison to traditional
approaches focused on the use of ETL tools.

Regarding the framework proposed, SuDaMa, compared
to other software approaches described in the litera-
ture for implementing OGD consumption solutions (see
Section II-C), provides a novel contribution by introducing
conversational bots to exploit the potential of OGD and thus
improve the consumption experience of end-users in terms
of creating an end-user interaction as natural as possible for
querying and retrieving OGD.

Moreover, in contrast to previous solutions described
in the literature [3], [28]–[36], our proposed solution has
been designedmaking sustainability an explicit consideration
of the design of the data management system (i.e., the
capability of the system to last over time in an automated
way). This not only eliminates development errors in
publishing/unpublishing tasks but also lowers development
and maintenance costs.

Regarding the main conclusions of the CIO, he reflected
the importance of the results achieved. On the one hand, the
setting up and use of the API ecosystem has been based on
the principles of availability, stability, maintenance over life
cycle, uniformity of use and standards and user-friendliness.
On the other hand, the system has been verified as being
reliable and scalable. That is, the assurance that the system
is behaving and responding as intended and that it can scale
up according to increasing amounts of datasets published via
API resources. The CIO also highlighted that currently, the
Canary Islands Parliament is the only one of all seventeen
Spanish parliaments that publishes data on ODPs, and, to the
best of his knowledge, is the first regional parliament that has
implemented a sustainable open data system for publishing
and consumption over time as well as introducing a bot as
conversational interface for consuming OGD.

The sustainable data management system has also been
verified as a solution in practice to support the open
data initiative of the Canary Islands Parliament with a
demonstration of the solution given to the president of
the parliament, media and a wide diversity of stakeholders
on 20th June 2019.

B. VALIDATION
The validation process was aimed at evaluating the sustain-
ability and efficiency of the system considering the two core
components proposed of the architecture: the API ecosystem
and the conversational bot. The validation of the first and
second requirement described in Section IV (timely data
and accessible data) validates the API ecosystem for long-
term OGD publishing, whereas the third requirement (usable
data) validates the conversational bot for long-term OGD
consumption.

1) VALIDATION OF REQUIREMENT 1: TIMELY OGD
For the first requirement to be met (see Section IV-A), the
first core component of the architecture, the API ecosystem
should be evolvable and scalable by carrying out the dynamic

FIGURE 5. Statistics on the publication of new datasets on CKAN as new
API resources are generated.

generation of all possible API resources (see Section V-A3)
in the case of variable APIs when the Publisher Agent
receives a percept new-resources (see Section V-A4). This
has been validated by checking when new resources have
been generated with the correct publication on the open
platform CKAN. Figure 5 illustrates the statistics on the
publication of new datasets on CKAN as new API resources
are generated. The statistics show that the number of datasets
has been constantly growing since the system was deployed.
This is in line with the evolution of the data according to
the work of this parliamentary institution. As result of this
validation process, it has been proved that the automation of
the generation of API resources behaves correctly to provide
up-to-date open data over time.

Each discrete state st of the agent represents the execution
of an agent’s cycle, which is set considering the required
frequency to provide timely datasets. Currently, in our
parliamentary context, this cycle is once per day. However,
this cycle can be increased or decreased according to the need
for providing new datasets on ODPs.

2) VALIDATION OF REQUIREMENT 2: ACCESSIBLE OGD
For the second requirement to be met (see Section IV-B),
developers must evaluate the adoption of API resources
as the main asset of the API ecosystem in terms of easy
access to published datasets, therefore, facilitating their
implementation in data-enabled products. The assessment
was performed from the perspective of the field of technology
assessment (TA) [61], evaluating how API technology
facilitates the implementations of data-enabled products for
developers compared to the traditional retrieval method based
on bulk data. In this context, the perceived usefulness and
ease of software development are important factors that
influence developers’ decisions. To do this, we developed
a 7-point Likert scale assessment questionnaire, shown in
Table 1, with four items with the endpoints Not at all (1)
and Yes, totally (7) with ten developers. Figure 6 shows the
results of the questionnaire for each question from the distinct
participants. For all questions, high average values were

VOLUME 9, 2021 151855



E. Sánchez-Nielsen et al.: SuDaMa

TABLE 1. Questionnaire employed for the assessment of adopting API
resources as technology by developers for implementing data-enabled
products.

FIGURE 6. Results of the questionnaire by participants and questions,
with Q1, Q2, Q3 and Q4 representing Question 1, Question 2, Question
3 and Question 4, respectively.

obtained. Specifically, an average value of 6.6 for question 1,
6.6 for question 2, 6.8 for question 3 and 7 for question 4 were
obtained. We can observe that the participants’ ratings did
not vary and range specifically between 6 and 7. Concerning
the ease of software development, the results revealed that
all participants were able to successfully implement their
applications with the available API resources while 8/10
participants highlighted that the adoption of API resources
is considered easier than the bulk data method to implement
their data product developments. Regarding the perceived
usefulness of adopting API technology for their applications,
all participants were also very satisfied, with 6/10 participants
rating this aspect with the maximum value of 7 and the
remaining 4/10 participants rated it with the second highest
value of 6.

Additionally, observational findings on potential benefits
and future improvements were obtained from developers’ free
comments.

After reviewing the feedback, we acquired the following
insights on potential benefits: 1) adopting APIs as access
method to dynamic data is crucial for developers to

implement real-time based applications as well as providing
innovative products that draw on machine learning function-
alities; 2) API technology is an appropriate access method
compared to bulk data when datasets are too large or so
volatile that downloading them all and assuring that all
of them are up to date becomes burdensome. Therefore,
accessing small parts of data by APIs can lower the barrier
to entry and make it easier for developers to begin using the
data for their applications; 3) bulk data is static but using APIs
is dynamic. As a result, using APIs is expected to have faster
response times and higher availability, which means that the
service/application runs fast at all times; 4) using APIs is
timelier than bulk data since APIs remain continuously and
indefinitely available, while bulk data are released once and
updated as needed; and 5) the public sector should prioritize
the use of APIs to streamline the data economy.

Concerning possible enhancements, two important ones
were suggested by participants: 1) providing an online
mechanism on the open data portal with a suggestion form
according to a demand-driven approach on new datasets could
help foster public engagement, new and improved services for
citizens, better policy-making processes, advance legislative
science, creation of new insights, and generate business value;
and 2) APIs should be considered a key enabler not only
to access open data but also to deliver legislative digital
transformation goals.

3) VALIDATION OF REQUIREMENT 3: USABLE OGD
For the third requirement to be met (see Section IV-C),
a prototype of an OGD API-driven bot, called parcanbot,
was developed using the Google Dialogflow platform to
be validated as an application scenario of conversational
bot. The aim of the resulting bot system, parcanbot, was
to provide a user-friendly access and querying method to
datasets to increase the transparency and accountability of
parliamentary activity as well as the ability to help end-
users to gain knowledge from the parliamentary environment
and create new knowledge from it. The development of
parcanbot posed different challenges, such as interpreting
the natural language adopted by end-users to handle the
conversation in querying the information needs on open data
about transparency, parliamentary activity, representation and
legislative process and, translating it into effective queries for
the resulting API ecosystem to build up an answer. For the
development of the knowledge base, our approach built on the
ontological perspective of our domain [56], which formally
specifies the conceptual terms and semantic relationships
that model and represent the main functions of an open
parliament. The user interface of parcanbotwas implemented
as a mobile app, where voice and text are supported as modes
of communication.

Figure 7 shows the interaction with parcanbot. Initially, the
end-user accesses the conversational interface of parcanbot,
which is owned by the Parliament of Canary Islands.
Parcanbot starts by greeting the end-user. As this is the
first interaction of the end-user, the dialogue manager

151856 VOLUME 9, 2021



E. Sánchez-Nielsen et al.: SuDaMa

FIGURE 7. Screenshots with instances of the interaction between parcanbot and end-user. The language is Spanish in the
current prototype.

provides the different clickable options to the interface that
parcanbot can answer. The end-user can interact by pressing
an option or interacting by voice as communication mode.
Parcanbot′s duties include providing information on the
procedurally driven dynamics in plenary sessions on what
happened (which legislative initiative has been debated and
results of any procedural actions), transparency information
on representative members and parliament (e.g., agenda,
legislatives initiatives presented, interventions, declaration of
assets) as well as information on parliamentary news and both
past and future agendas. In the screenshot shown in Figure 7,
the end-user raised a question on parliamentary activity corre-
sponding to two years ago. Accordingly, parcanbot responds
with different activities corresponding to that period. From
now on, the end-user can continue the conversation as he/she
prefers, by asking only about the activities conducted in that
period: changes related to the organization and operation of
the parliament, writings of associations and individuals as
well as oral questions in the plenary session. In this case,
information related to housing benefits is provided, because
the end-user is querying about available oral questions on this
topic.

To validate OGD usability using the application scenario of
the consumption component, parcanbot, a methodology that
validates the end-user experience (UX) was used.

The methodology to evaluate UX is based on both a
quantitative and qualitative component to validate if the
conversational bot is better or worse than the traditional
solution based on navigating through an open data portal.
For the quantitative evaluation, a suitable User Experience
Questionnaire (UEQ) [62] was used as evaluation tool to
ascertain the impact that the conversational bot, parcanbot,
has on end-users, and this result is compared to the overall

impression of using the traditional interface built on the top
of the open data portal CKAN for access and navigation.
The qualitative evaluation consists of observational find-
ings from end-users about comparing both interface tools
and collecting their feedback for future improvement of
the bot.

TheUEQprovides a quantitativemeasurement of a product
user’s experience by allowing end-users to express feelings,
impressions and attitudes that arise when experiencing the
product in a simple way by filling out a quick question-
naire [62]–[64]. The use of this UEQ has proven be a
valuable tool for comparing technological solutions in real-
world scenarios [65]. Specifically, the UEQ contains 6 scales
with 26 items, where each item is represented by two terms
with opposite meanings. These items are rated on a 7-point
Likert scale with the endpoints Not important at all (1) and
Very important (7). Table 2 shows the UEQ provided to the
end-users for their assessment, where each item is classified
according to one of the following six scales [63]:
• Attractiveness: Overall impression of parcanbot.
Do end-users like or dislike it?

• Perspicuity: Is it easy to get familiar with parcanbot? Is
it easy to learn how to use parcanbot?

• Efficiency: Can end-users solve their tasks without
unnecessary effort using parcanbot? Is the interaction
with parcanbot efficient and fast? Does parcanbot react
fast to user input?

• Dependability: Does the end-user feel in control of the
interaction?

• Stimulation: Is parcanbot exciting and motivating to
use?

• Novelty: Is parcanbot innovative and creative? Does
parcanbot catch the interest of end-users?

VOLUME 9, 2021 151857



E. Sánchez-Nielsen et al.: SuDaMa

TABLE 2. UEQ employed for the assessment of user experience from [50],
where A, P, E, D, S and N denotes respectively the scales associated with
each item corresponding to attractiveness, perspicuity, efficiency,
dependability, stimulation and novelty.

As a result of applying the UEQ version described in [65],
we obtained end-users’ general impressions by evaluating
the Attractiveness scale. The pragmatic quality aspects that
describe interaction qualities related to the goals the end-
users aim to achieve when using parcanbot are evaluated by
the Perspicuity, Efficiency and Dependability attributes. The
hedonic qualities are related to pleasure or fun while using
parcanbot. These are obtained by evaluating the Stimulation
and Novelty attributes. To compare if parcanbot outperforms
the traditional interface built on the top of the CKAN portal,
the UEQ evaluations of both interface tools are compared
based on the averages for each UEQ scale.

The UEQ evaluations were performed with 25 end-users,
given that a stable measurement result can be obtained by
applying the UEQ to 20-30 end-users [63]. The process for
all of them included four steps:

• Demonstration. They were shown how to use parcanbot
to obtain answers on procedurally driven dynamics in
plenary sessions on what happened (what legislative
initiative had been debated and procedural actions) as
well as transparency and accountability information on
members and parliament (e.g., news, agenda, commis-
sions, legislative initiatives presented, interventions and
salary).

• Practice. A practice task was designed to get familiar
using both parcanbot and the interface of CKAN. The
practice task consisted of obtaining the answers to
five different information needs on transparency and
accountability. The questions asked were: (1) What are
the legislative initiatives presented by a specific member
of parliament for two specific legislatures; (2) What
is the salary in a legislature for a specific member;
(3) What has been the agenda of a specific member for
a specific legislature? (4) Is there a citizen participation
draft law on Libraries in the Canary Islands? If it exists,
what does it consist of? and (5) What were the most
relevant parliamentary news items during the last two
years?

• UEQ Analysis. After the previous practice task, each
end-user had to evaluate parcanbot and the traditional
interface on CKAN. For each interface tool, the
participants filled out the UEQ with 26 questions (see
Table 2). The main aim was to check the parcanbot end-
user experience and if it gives a better user experience
compared to the conventional interface on the open
data portal CKAN. The data analytical approach was
performed with the tool available on the UEQweb site13

that automatically calculates the scale values and creates
a bar chart to visualize the results for both interfaces. The
analytical tool scaled the items from -3 to+3, where−3
represents the most negative answer, 0 a neutral answer,
and +3 the most positive answer. In this context, values
above +1 indicate a positive impression of the end-
users concerning this scale, values below -1 a negative
impression [64].
The two UEQs filled out by participants were analyzed
by comparing the quantitative data of the corresponding
scales and items for both questionnaires. The chart
in the Figure 8 shows the results for the comparison
of parcanbot and the interface on CKAN concerning
the UEQ scales. It shows that parcanbot created an
overall positive impression concerning all the scales
of the UEQ: attractiveness, perspicuity, efficiency,
dependability, stimulation and novelty with high values
for all of them. Parcanbot outperforms CKAN portal in
all these scales. Analyzing the item results of the attrac-
tiveness scale, the interface of CKAN is considered less
attractive compared with parcanbot. This is motivated
because CKAN portal is perceived as less enjoyable,
pleasant, attractive and friendly compared to parcanbot.

13http:// https://www.ueq-online.org/

151858 VOLUME 9, 2021



E. Sánchez-Nielsen et al.: SuDaMa

FIGURE 8. Comparison of CKAN portal interface with Parcanbot
concerning the UEQ scales.

Concerning the perspicuity scale, participants consid-
ered that both interfaces are similar to learn in terms
of use. However, they considered that parcanbot is
more understandable and easier to use compared to
the CKAN portal. Regarding the efficiency scale, most
of the participants responded that both interfaces can
be considered as practical tools. However, parcanbot
was perceived as faster, more efficient and organized
in comparison with the CKAN portal. With regard
to the dependability scale, participants considered that
both interfaces were equally secure, but they believed
that parcanbot exceeded their expectations, and it was
more supportive compared to the CKAN portal. The
answers also revealed that for most participants, the
CKAN portal was more predictable when using it.
This could be because it is based on the traditional
method of searching and navigating data in the portal
using keywords and does not include natural language
and other communication modalities such as speech.
The answers corresponding to the items linked to the
hedonic scales stimulation and novelty had a negative
impression with the CKAN portal because the partic-
ipants considered that navigating through the portal is
less exciting, interesting and motivating compared to
parcanbot although both interfaces were perceived as
valuable tools. The answers also revealed that parcanbot
was seen as more innovative, inventive, creative and
developed with leading-edge technology in relation to
CKAN portal.

• Feedback gathering. After the participants filled out
the UEQ, a short questionnaire with a specific rating
question was performed to obtain information about
the most valuable data to query on parcanbot. The
items were rated on a 7-point Likert scale with the
endpoints Not important at all (1) and Very important
(7). In addition, observational findings were achieved
from free comments concerning both interfaces to

obtain end-users’ feedback for future improvement of
parcanbot.
The results of the short questionnaire rating parcanbot on
the most valuable data revealed that they are data related
to legislative proposals, voting results, decision-making
and deputies’ salaries. After reviewing the comments
concerning end-users’ feedback, we have acquired the
following insights: (1) when the number of datasets is
reduced and the amount of data inside them is also
scarce, both approaches are useful, although parcanbot
is perceived as a new digital channel that helps improve
the communication between the parliament and citizens;
(2) compared to the existing open data portal CKAN,
parcanbot is more useful, faster and easier to use to
obtain the information needed using natural language
when the number of datasets is large; (3) using natural
language with speech communication modality as a
communication channel is more engaging than navigat-
ing through an open data portal to understand legislation.
As one participant stated, ‘‘it takes several clicks to
get to where you need to be when navigating through
an open data portal, I prefer speech as a technique to
locate data’’; (4) when the amount of data in a dataset
is large, it would be recommendable to enable visual
data in parcanbot to help the understanding of data more
quickly; (5) to obtain more value from data, it would be
useful to combine parliamentary datasets with datasets
from other domains to obtain the effects and benefits
of the proposed laws over time; (6) parcanbot can be
considered a valuable tool to reduce the transparency-
accountability gap when parliamentary open data is
provided by the parliament; and (7) most end-users
also highlighted that parcanbot helps enable access to
lawmaking information in a friendly way, which is
perceived not only by easier use of published data but
also as a support to get more actively involved in the
practice of lawmaking by subsequent collaboration in
participatory processes.

C. TESTING
The process of testing is used to assess the correct behavior of
the proposed core component of the architecture. That is, the
API ecosystem. This process is essential for the governance
of all API resources in the ecosystem. It is executed when the
Publisher Agent receives a percept health-checking, implying
that the enabled-API resources need to be validated to detect
reliable/faulty resources. As a result of this process, the values
of each one of the four quality properties (Ql1, Ql2, Ql3
and Ql4) for each resource are obtained (see Section V-A1)
and updated in the current internal state of the agent. Then,
subject to these values, the agent decides on what action to
carry out (i.e., publishing reliable API resources on ODPs,
unpublishing faulty API resources on ODPs, and notifying
faulty resources to ecosystem’s API producers).

In this context, testing the API ecosystem requires the
generation of different test cases with high code coverage

VOLUME 9, 2021 151859



E. Sánchez-Nielsen et al.: SuDaMa

and that can determine the reliability and performance of
all available API resources. To define different test cases,
we need to consider the software components involved in
the Web framework on which the API resources have been
developed. Given the API resources have been built on
Django REST framework (DRF), three different components
need to be considered: managers, serializers and views.
Managers are the interfaces through which database query
operations are provided to DRF. Serializers are used to
transform the results of database queries into the format
required to be shown when the API resource is consumed,
while the views are the mechanisms that DRF uses to be
able to render the given information and display it through
a path.

According to these three components, we define five
test cases to test separately each component and to ensure
that all API resources behave correctly using both correct
and incorrect data inputs and a sixth test case to assess
performance results:
• Nominal manager-based test cases: these test cases
assess the accurate behavior of query operations per-
formed by each API resource to retrieve the correct data
from the corresponding databases.

• Nominal serializer based test cases: here it is tested
whether the serializer components of each API resource
behaves correctly, transforming the data collected
through database queries into the format that is required.

• Faulty serializer based test cases: for each API resource,
missing information is generated and sent to the
serializer to assess that the code error is generated.

• Nominal and faulty view-based test cases: this tests
if each API resource behaves correctly with the view
components. That is, if it sends the required information
correctly through the URL designed for the consumption
of this API resource. A status code 2xx is returned if
everything behaves correctly, otherwise a 4xx family
code is returned.

• Nominal and faulty parameter-based test cases: for each
API resource and each parameter, a nominal test case
with the correct data type and required parameter is
tested to assess that a status code 2xx is returned. On the
other hand, for each API resource and each parameter,
a faulty test is performed with wrong data types and
missing parameter values to assess that a 4xx or 5xx
family code error is returned.
The results of the above five test cases were used to
determine the value of the quality propertyQl1 bymeans
of (1), where this value is used in turn to calculate
the value of the quality property Ql2 by means of
(2). The values of n in (2) and δpublishing in (4) were
respectively set to 10 and 7. This allows us to determine
the reliability of each API resource considering the
history of the n previous environment states to the
current environment state st and taking into account
that more than n − δpublishing testing cases must not be
passed (in a consecutive or non-consecutive way) for an

unpublishing action of an API resource by the Publisher
Agent in (4).
Currently, on average, the generated test cases obtained
100%, 99% and 73% of coverage respectively for the
managers, serializers and views components of RDF as
well as a 100% of coverage for test cases assessing the
correct behavior when parameter values are used by the
API resource.

• Performance-based test cases: A sixth test case based
on the response rate was conducted to ensure that each
API resource is robust and performant. This test case
consisted of three different HTTP requests with the GET
operation on the same resource. When a test case is
executed, it returns the average value of the different
HTTP requests. The result obtained for each test case
executed is used to calculate the quality property Ql3 of
each API resource, which is utilized by the Publisher
Agent to notify faulty resources to ecosystem’s API
producers by means of (6). The response time threshold,
γresponse, was set by performing a preliminary study
and analyzing the response rate in terms of the average
value of response of each API resource, where the
average higher value of all of them was considered to
establish the threshold. From this study, it was fixed at
5 seconds.

In summary, after two years of testing the API ecosystem in
the parliamentary setting of the Parliament of Canary Islands,
we have observed that:
• The ecosystem is scalable and generates, as well as
publishes, automatically dynamic data when they are
made available by the institution. To date, the deployed
solution contains more than 3,000 datasets correctly
published by the Publisher Agent on the CKAN plat-
form. Therewere 2,979 datasets automatically generated
by 29 variable APIs by the Publisher Agent, while only
22 datasets were generated by 22 fixed APIs. This has
eliminated the tedious andmanual process of developing
API resources by ecosystem’s API producers, which not
only eliminates errors but also leads to significant cost
savings.

• The ecosystem is stable and robust. No fault has been
reported either in the nominal tests or in the faulty
tests for the ecosystem in the case of variable API
resources. This is because all of them were generated
correctly by the Publisher Agent. Only one unpublished
action was reported on a fixed API on awards datasets
as consequence of a specific software modification in
the middleware, which was solved immediately as the
notification was received by ecosystem’s API producers.
This shows that all resources have been correctly
published.

• APIs are performant. This has been evaluated by
analyzing their response time during the use of
the system for over two years. Only two notifica-
tions about faulty resources have been reported from
the Publisher Agent to ecosystem’s API producers.

151860 VOLUME 9, 2021



E. Sánchez-Nielsen et al.: SuDaMa

This was motivated by a communication network
problem that supports the API ecosystem infrastruc-
ture. Given the problem was resolved immediately,
no resource was unpublished by the agent.

• The statement coverage of the generated test cases is on
average 93% considering the different software compo-
nents included in the definitions. This demonstrates the
reliability of all available API resources.

VII. CONCLUSION
In this paper, we present SuDaMa, an OGD management
framework to address the significant challenges of long-
term data publishing and consumption with the aim of:
(1) automating the publishing/unpublishing of OGD on open
data platforms, which need to be updated dynamically from
data systems that operate continuously, (2) providing an eas-
ier and more usable way for both developers and end-users to
access OGD, and 3) improving the consumption experience
by introducing conversational bots. This framework has been
created and validated in the context of an open data innovation
project with the Parliament of the Canary Islands. As a result,
a sustainable OGD management system has been developed
and evaluated. The deployed solution remains operational and
is being continuously validated by the Parliament with more
than 3,000 datasets published by the API ecosystem after two
years of commissioning.

The main findings we have obtained from our research
results during all this time from the wide diversity of actors
involved are:

• From the IT CIO, practitioners and stakeholders’
standpoints, the framework and the resulting data
management system presented is considered a holistic
and remarkable solution that can assist parliaments
in their digital transformation in OGD long-term
publishing and consumption. It will lead to greater
innovative potential of parliamentary service provision
and enhanced policymaking. Moreover, the proposed
solution is fully alignedwith the recommendations of the
EU Commission priorities, Member State policies and
related standards. Special attention has been paid to the
principles recommended by EU directives for the design
of API resources using open-source tools by default
for such development. The IT CIO also highlighted
that in a parliamentary domain, which is continuously
changing over time, automation of the API ecosystem
by the autonomous agent is essential to ensure the sus-
tainability of an OGD management system. On the one
hand, this automation guarantees long-term publishing
in terms of providing timely data as well as easy and fast
access to them. On the other hand, it eliminates develop-
ment errors in publishing/unpublishing tasks and lowers
development and maintenance costs. Moreover, given
APIs are a general purpose, domain-neutral technology,
the solution presented can be applied to a huge number
of domains that use dynamic data: smart cities, citizen

science, health, mobility, statistics, meteorological data,
agriculture, energy, and skills/jobs data.

• From parliamentary practitioners and ULL researchers’
viewpoints, internal and external benefits were iden-
tified which included innovation triggering, efficiency
gains and improving access to and use of parliamentary
open data assets, as well as the promotion of digital
ecosystems and new economic opportunities. In addi-
tion, facilitating access by an API ecosystem has had
an impact on parliament openness and transparency,
generating trust among citizens via additional mobile
applications built on the API ecosystem to create
virtuous feedback loops when citizen engage with
parliament.

• From the IT project advisory board’s perspective, the
API ecosystem has proved to be scalable, reliable
and robust, generating automatically dynamic data
when they are made available by the institution. This
eliminated the tedious andmanual process of developing
and maintaining API resources, which has had positive
effects on the performance of the institution by not only
eliminating errors but also lowering related development
and maintenance costs, as well as increasing the
flexibility of focusing on high level objectives instead
of operational ones.

• From software developers’ points of view, the solution
proposed strongly supports the provision of dynamic
data with regular updates, meaning data are released
continuously and therefore, can be reused immediately
after collection by means of suitable APIs. This ensures
faster and easier software development, which can help
catalyze new entrepreneurial efforts to implement real-
time based applications as well as providing innovative
data-enabled products for parliaments, governments,
researchers, companies, citizens, journalists, students,
NGOs, and intermediaries.

• From end-users’ standpoint, the conversational bot,
parcanbot, meets their expectations. It was perceived
as a new digital channel that could help improve
communication between the parliament and citizens.
It was considered more useful, easier to use and more
engaging compared to navigating data through the
existing open data portal CKAN since parliamentary
contexts are associated with huge volumes of informa-
tion. Indeed, it is considered a valuable tool for reducing
the transparency-accountability gap.

APPENDIX
A. LIST OF ACRONYMS
API Application Programming Interface.
DRF Django REST Framework.
ETL Extract-Transform-Load.
EU European Union.
HCI Hyper Converged Infrastructure.
JSON JavaScript Object Notation.

VOLUME 9, 2021 151861



E. Sánchez-Nielsen et al.: SuDaMa

OAI Open API Initiative.
ODP Open Data Platform.
OGD Open Government Data.
OGP Open Government Partnership.
PDDL Public Domain Dedication and Licence.
RAML RESTful API Modelling Language.
REST Representational State Transfer.
RO Reference Ontology.
SuDaMa Sustainable Open Government Data Manage-

ment Framework for long-term and consump-
tion.

TA Technology Assessment.
UEQ User Experience Questionnaire.
UX User experience.

REFERENCES
[1] Open Government Group. (2007). Open Government Data Principles.

Accessed: Jul. 2021. [Online]. Available: https://opengovdata.org/
[2] J. Attard, F. Orlandi, S. Scerri, and S. Auer, ‘‘A systematic review of

open government data initiatives,’’ Government Inf. Quart., vol. 32, no. 4,
pp. 399–418, Oct. 2015, doi: 10.1016/j.giq.2015.07.006.

[3] R. Enriquez-Reyes, S. Cadena-Vela, A. Fuster-Guillo, J.-N. Mazon,
L. D. Ibanez, and E. Simperl, ‘‘Systematic mapping of open data studies:
Classification and trends from a technological perspective,’’ IEEE Access,
vol. 9, pp. 12968–12988, 2021, doi: 10.1109/ACCESS.2021.3052025.

[4] Y. Gao, M. Janssen, and C. Zhang, ‘‘Understanding the evolution of
open government data research: Towards open data sustainability and
smartness,’’ Int. Rev. Administ. Sci., vol. 4, pp. 1–17, Apr. 2021, doi:
10.1177/00208523211009955.

[5] H. Jiang, Q. Shao, J. J. H. Liou, T. Shao, and X. Shi, ‘‘Improving the
sustainability of open government data,’’ Sustainability, vol. 11, no. 8,
p. 2388, Apr. 2019, doi: 10.3390/su11082388.

[6] T. Sasse, A. Smith, E. Broad, J. Tennison, P. Wells, U. Atz, W. Carrara,
and H. Bollers, Recommendations for Open Data Portals: From
Setup to Sustainability. London, U.K.: The Open Data Institute,
2020. [Online]. [Online]. Available: https://data.europa.eu/sites/default/
files/edp_s3wp4_sustainability_recommendations.pdf

[7] C. Batini, C. Cappiello, C. Francalanci, and A. Maurino, ‘‘Methodologies
for data quality assessment and improvement,’’ ACM Comput. Surv.,
vol. 41, no. 3, pp. 1–52, Jul. 2009, doi: 10.1145/1541880.1541883.

[8] R. Máchová andM. Lnenicka, ‘‘Evaluating the quality of open data portals
on the national level,’’ J. Theor. Appl. Electron. Commerce Res., vol. 12,
no. 1, pp. 21–41, 2017.

[9] B. Fan and Y. Zhao, ‘‘The moderating effect of external pressure on the
relationship between internal organizational factors and the quality of open
government data,’’ Government Inf. Quart., vol. 34, no. 3, pp. 396–405,
Sep. 2017.

[10] M. Lnánicka, ‘‘An in-depth analysis of open data portals as an emerging
public e-service,’’ Int. J. Social, Behav., Educ., Econ. Manage. Eng., vol. 9,
no. 2, pp. 589–599, Apr. 2015.

[11] D. S. Sayogo, T. A. Pardo, and M. Cook, ‘‘A framework for benchmarking
open government data efforts,’’ in Proc. 47th Hawaii Int. Conf. Syst. Sci.
(HICSS), Jan. 2014, pp. 1896–1905.

[12] N. Veljkovic, S. Bogdanovic-Dinic, and L. Stoimenov, ‘‘Municipal open
data catalogues,’’ in Proc. Conf. E-Democracy Open Government, 2011,
pp. 195–207.

[13] N. Veljković, S. Bogdanović-Dinić, and L. Stoimenov, ‘‘Benchmarking
open government: An open data perspective,’’ Government Inf. Quart.,
vol. 31, no. 2, pp. 278–290, Apr. 2014.

[14] European Commission. (Jun. 2019). Directive (EU) 2019/1024 of the
European Parliament and of the Council on open data and the re-use
of public sector information. Accessed Jul. 2021. [Online].
Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
uriserv:OJ.L_.2019.172.01.0056.01.ENG

[15] European Commission. (Feb. 2020). A European strategy for data.
Accessed: Jul. 2021. [Online]. Available: https://ec.europa.eu/
info/sites/default/files/communication-european-strategy-data-19feb2020
_en.pdf

[16] European Commission. (Nov. 2018). Commission Delegated Regulation
EU 2019/411. Accessed: Jul. 2021. [Online]. Available: https://eur-
lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0411
&from=EN

[17] O. A. Sennaike, M. Waqar, E. Osagie, I. Hassan, A. Stasiewicz, L. Porwol,
and A. Ojo, ‘‘Towards intelligent open data platforms: Discovering
relatedness in datasets,’’ in Proc. Intell. Syst. Conf. (IntelliSys), Sep. 2017,
pp. 414–421, doi: 10.1109/IntelliSys.2017.8324327.

[18] S. Park and J. R. Gil-Garcia, ‘‘Open data innovation: Visualizations
and process redesign as a way to bridge the transparency-accountability
gap,’’ Government Inf. Quart., vol. 25, May 2021, Art. no. 101456, doi:
10.1016/j.giq.2020.101456.

[19] A. Vetrá, L. Canova, M. Torchiano, C. O. Minotas, R. Iemma, and
F. Morando, ‘‘Open data quality measurement framework: Definition and
application to open government data,’’ Government Inf. Quart., vol. 33,
no. 2, pp. 325–337, Apr. 2016, doi: 10.1016/j.giq.2016.02.001.

[20] W. Tan, Y. Fan, A. Ghoneim, M. A. Hossain, and S. Dustdar, ‘‘From the
service-oriented architecture to the web API economy,’’ IEEE Internet
Comput., vol. 20, no. 4, pp. 64–68, Jul. 2016, doi: 10.1109/MIC.2016.74.

[21] R. Fielding, ‘‘Architectural styles and the design of network-based software
architectures,’’ Ph.D. dissertation, Dept. Inf. Comput. Sci., Univ. California
Irvine, 2000.

[22] The Linux Foundation. The Open API Specification Version3.0.2.
Accessed: Jul. 2021. [Online]. Available: http://spec.openapis.
org/oas/v3.0.2

[23] RAML: RESTful API Modeling Language Specification 1.0. Accessed:
Jul. 2021. [Online]. Available: https://raml.org/

[24] F. Ahmadi Zeleti and A. Ojo, ‘‘Qualitative structural model for capabilities
in open data organizations,’’ in Proc. 52nd Hawaii Int. Conf. Syst. Sci.,
Jan. 2019, pp. 2902–2911.

[25] J. Fawcett, ‘‘Examining open data as a source of competitive advantage for
big businesses,’’ in Proc. Open Data Res. Symp., 2016, pp. 1–19.

[26] A. Zuidervijk and M. Janssen, ‘‘Participation and quality in open data
use: Open data Infrastructures evaluated,’’ in Proc. 15th Eur. Conf.
E-Government, 2015, pp. 351–359.

[27] L. Berntzen, M. Johannessen, K. Andersen, and J. Crusoe, ‘‘Parliamentary
open data in scandinavia,’’ Computers, vol. 8, no. 3, p. 65, Sep. 2019, doi:
10.3390/computers8030065.

[28] V. Lopez, S. Kotoulas, ML. Sbodio, M. Stephenson, A. Gkoulalas-
Divanis, and P. M. Aonghusa, ‘‘QuerioCity: A linked data platform for
urban information management,’’ in Proc. 11st Int. Semantic Web Conf.,
vol. 7650, 2012, pp. 148–163.

[29] F. Gao, M. I. Ali, and A. Mileo, ‘‘Semantic discovery and integration of
urban data streams,’’ in Proc. 5th Workshop Semantics Smarter Cities,
2014, pp. 15–30.

[30] H. Santos, P. P. Pinheiro, and D. L. McGuinness, ‘‘Contextual data
collection for smart cities,’’ in Proc. 6th Workshop Semantics Smart Cities,
2015, pp. 1–16.

[31] S. Bischof, A. Polleres, and S. Sperl, ‘‘City data pipeline,’’ in Proc. I-
SEMANTICS Posters Demonstrations Track, 2013, p. 45.

[32] DuraSpace Community. VIVO. Accessed: Sep. 2021. [Online]. Available:
https://duraspace.org/vivo/

[33] F. Darari and R. Manurung, ‘‘LinkedLab: A linked data platform for
research communities,’’ in Proc. Adv. Comput. Sci. Inf. Syst. (ICACSIS),
2011, pp. 253–258.

[34] F. A. Musyaffa, L. Halilaj, Y. Li, F. Orlandi, and H. Jabeen, ‘‘Openbudgets.
Eu: A platform for semantically representing and analyzing open fiscal
data,’’ in Proc. Int. Conf. Web Eng., vol. 10845, 2018, pp. 433–447.

[35] X. Liu, A. Heller, and P. S. Nielsen, ‘‘CITIESData: A smart city data
management framework,’’ Knowl. Inf. Syst., vol. 53, no. 3, pp. 699–722,
Dec. 2017, doi: 10.1007/s10115-017-1051-3.

[36] P. Vassiliadis, ‘‘A survey of extract-transform-load technology,’’ Int.
J. Data Warehousing Mining, vol. 5, no. 3, pp. 1–27, 2007.

[37] X. Masip-Bruin, G.-J. Ren, R. Serral-Gracia, and M. Yannuzzi, ‘‘Unlock-
ing the value of open data with a process-based information platform,’’
in Proc. IEEE 15th Conf. Bus. Informat., Jul. 2013, pp. 331–337, doi:
10.1109/CBI.2013.54.

[38] R. Eckelberg, V. B. Calixto, and M. H. Pimentel, ‘‘Educational open
government data: From requirements to end users,’’ in Proc. Int. Conf. Web
Eng., vol. 10845, 2018, pp. 463–470.

[39] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
London, U.K.: Pearson, 2010.

151862 VOLUME 9, 2021

http://dx.doi.org/10.1016/j.giq.2015.07.006
http://dx.doi.org/10.1109/ACCESS.2021.3052025
http://dx.doi.org/10.1177/00208523211009955
http://dx.doi.org/10.3390/su11082388
http://dx.doi.org/10.1145/1541880.1541883
http://dx.doi.org/10.1109/IntelliSys.2017.8324327
http://dx.doi.org/10.1016/j.giq.2020.101456
http://dx.doi.org/10.1016/j.giq.2016.02.001
http://dx.doi.org/10.1109/MIC.2016.74
http://dx.doi.org/10.3390/computers8030065
http://dx.doi.org/10.1007/s10115-017-1051-3
http://dx.doi.org/10.1109/CBI.2013.54


E. Sánchez-Nielsen et al.: SuDaMa

[40] I. Poola, ‘‘Making artificial intelligence (AI) and disrupted business
intelligence (BI) truly conversational with humanity touch, automated
descriptions and talking bots,’’ Int. J. Adv. Res., Ideas Innov. Technol.,
vol. 3, no. 5, pp. 573–577, 2017.

[41] L. C. Klopfenstein, S. Delpriori, S. Malatini, and A. Bogliolo, ‘‘The rise
of bots: A survey of conversational interfaces, patterns, and paradigms,’’
in Proc. Conf. Designing Interact. Syst., Jun. 2017, pp. 555–565.

[42] A. Androutsopoulou, N. Karacapilidis, E. Loukis, and Y. Charalabidis,
‘‘Transforming the communication between citizens and government
through AI-guided chatbots,’’ Government Inf. Quart., vol. 36, no. 2,
pp. 358–367, Apr. 2019.

[43] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee,
‘‘A design science research methodology for information systems
research,’’ J. Manage. Inf. Syst., vol. 24, no. 3, pp. 45–77, 2007,doi:
10.2753/MIS0742-1222240302.

[44] R. Studer, V. R. Benjamins, and D. Fensel, ‘‘Knowledge engineering: Prin-
ciples and methods,’’ Data Knowl. Eng., vol. 25, nos. 1–2, pp. 161–197,
1998.

[45] K. Munir and M. Sheraz Anjum, ‘‘The use of ontologies for effective
knowledgemodelling and information retrieval,’’ Appl. Comput. Informat.,
vol. 14, no. 2, pp. 116–126, Jul. 2018.

[46] M. I. S. Oliveira and B. F. Lóscio, ‘‘What is a data ecosystem?’’ in Proc.
19th Annu. Int. Conf. Digit. Government Res., Governance Data Age,
Delft, The Netherlands, May 2018, pp. 1–6.

[47] C. Brewster and K. O’Hara, ‘‘Knowledge representation with ontologies:
The present and future,’’ IEEE Intell. Syst., vol. 19, no. 1, pp. 72–81,
Jan. 2004.

[48] A. Immonen, E. Ovaska, and T. Paaso, ‘‘Towards certified open data in
digital service ecosystems,’’ Softw. Qual. J., vol. 26, no. 4, pp. 1257–1297,
2018.

[49] T. Davies, ‘‘Open Data: Infrastructures and ecosystems,’’ Open Data Res.,
vol. 18, pp. 1–6, Jan. 2011.

[50] M. Heimstadt, F. Saunderson, and T. Heath, ‘‘Conceptualizing Open
Data ecosystems: A timeline analysis of Open Data development in
the UK,’’ School Bus. Econ., Free Univ. Berlin, Berlin, Germany,
Tech. Rep. 2014/12, 2014.

[51] D. Lee, ‘‘Building an open data ecosystem—An Irish experience,’’ in Proc.
ICEGOV, Guimaraes, Portugal, pp. 351–360.

[52] H. Ed-douibi, J. L. Canovas Izquierdo, and J. Cabot, ‘‘Automatic
generation of test cases for REST APIs: A specification-based approach,’’
in Proc. IEEE 22nd Int. Enterprise Distrib. Object Comput. Conf. (EDOC),
Oct. 2018, pp. 181–190.

[53] Internet Engineering Task Force. (2012). URI Template
specification RFC 6570. Accessed: Jul. 2021. [Online]. Available:
https://tools.ietf.org/html/rfc6570

[54] M. Wooldridge, An Introduction to MultiAgent Systems. Hoboken, NJ,
USA: Wiley, 2009.

[55] T. Davis. What is a WebHook. Accessed: Jul. 2021. [Online]. Available:
https://webhooks.pbworks.com/w/page/13385124/FrontPage

[56] E. Sánchez-Nielsen, F. Chávez-Gutiérrez, and J. Lorenzo-Navarro,
‘‘A semantic parliamentarymultimedia approach for retrieval of video clips
with content understanding,’’Multimedia Syst., vol. 25, no. 4, pp. 337–354,
Aug. 2019.

[57] (2020). Protégé. [Online]. Available: https:// protege.stanford.edu/
[58] (2018). EU General Data Protection Regulation. Accessed: Jul. 2021.

[Online]. Available: https://ec.europa.eu/info/law/law-topic/data-
protection/data-protection-eu_en

[59] L. Sweeney, ‘‘Achieving K-anonymity privacy protection using general-
ization and suppression,’’ Fuzziness Knowl.-Based Syst., vol. 10, no. 5,
pp. 571–588, 2002.

[60] A. Engel, Verification, Validation and Testing of Engineered Systems.
Hoboken, NJ, USA: Wiley, 2010.

[61] D. Banta, ‘‘What is technology assessment?’’ Int. J. Technol.
Assessment Health Care, vol. 25, no. S1, pp. 7–9, Jul. 2009, doi:
10.1017/S0266462309090333.

[62] M. Schrepp, M, A. Hinderks, and J. Thomaschewski, ‘‘Applying the
user experience questionnaire (UEQ) in different evaluation scenarios,’’
in Design, User Experience, and Usability. Theories, Methods, and
Tools for Designing the User Experience (Lecture Notes in Computer
Science), vol. 8517, A. Marcus, Ed. Berkeley, CA, USA: Springer, 2014,
pp. 383–392.

[63] M. Schrepp, A. Hinderks, and J. Thomaschewski, ‘‘Construction of a
benchmark for the user experience questionnaire (UEQ),’’ Int. J. Interact.
Multimedia Artif. Intell., vol. 4, no. 4, pp. 40–44, 2017.

[64] M. Rauschenberger, M. Schrepp, M. Cota, and J. Thomaschewski,
‘‘Efficient measurement of the user experience of interactive products.
How to use the user experience questionnaire (UEQ),’’ Int. J. Interact.
Multimedia Artif. Intell., vol. 2, no. 1, pp. 39–45, 2013.

[65] E. Sánchez-Nielsen and F. Chávez-Gutiérrez, ‘‘Using semantic annota-
tions on political debate videos for building open government based
lawmaking,’’ Expert Syst., vol. 21, Jun. 2021, Art. no. e12748, doi:
10.1111/exsy.12748.

ELENA SÁNCHEZ-NIELSEN received the B.Sc.
degree in computer science from the Univer-
sidad de Las Palmas de Gran Canaria, Spain,
in 1994, and the M.Sc. and Ph.D. degrees in
computer science and artificial intelligence from
the Universidad de La Laguna, Spain, in 1999 and
2003, respectively. She is currently an Associate
Professor with the Departamento de Ingeniería
Informática y de Sistemas, Universidad de La
Laguna. She has directed several research projects

and is often contracted for innovation projects in industry and government.
She has published over 80 articles, including in peer-reviewed international
journals, book chapters, and conference proceedings. She also serves the
community on various technical committees. Her current research interests
include the intersection between artificial intelligence and data systems,
smart information systems, innovation in eGovernment, which draws on
artificial intelligence, and big, open, and linked data systems.

ALEJANDRO MORALES received the B.Sc.
degree from the Universidad de La Laguna, Spain,
in 2018, where he is currently pursuing the M.Sc.
degree. He is also an Information and Technology
Scholar with the Canary Islands Parliament, Spain,
where he is working on an open data initiative
for the Canary Islands Parliament. His current
research interests include application program-
ming interfaces, open data systems, machine
learning, and software engineering.

OMAR MENDO received the B.Sc. degree from
the Universidad de La Laguna, Spain, in 2019,
where he is currently pursuing the M.Sc. degree
in machine learning. He is also an Information
and Technology Scholar with the Canary Islands
Parliament, Spain, where he is working on an
open data initiative for the Parliament. His current
research interests include machine learning, and
open and big data systems.

FRANCISCO CHÁVEZ-GUTIÉRREZ received the
B.Sc. degree in computer science from the Uni-
versidad de Las Palmas de Gran Canaria, Spain,
in 1994, and the M.Sc. and Ph.D. degrees in
computer science and artificial intelligence from
the Universidad de La Laguna (ULL), in 2007 and
2017, respectively. He is currently the CIO of
the Canary Islands Parliament, Spain, and has
led all information and technology-related projects
at this institution over the last 25 years. He has

collaborated with the ULL in research and development projects to innovate
information systems in parliamentary settings. He has published various
articles, including in peer-reviewed international journals, book chapters, and
conference proceedings. His current research interests include eGovernment,
innovation in parliamentary information systems, big, open, and linked data
systems, and emerging technologies.

VOLUME 9, 2021 151863

http://dx.doi.org/10.2753/MIS0742-1222240302
http://dx.doi.org/10.1017/S0266462309090333
http://dx.doi.org/10.1111/exsy.12748

