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ABSTRACT While the effectiveness of fog computing in Internet of Things (IoT) applications has been
widely investigated in various studies, there is still a lack of techniques to efficiently utilize the computing
resources in a fog platform to maximize Quality of Service (QoS) and Quality of Experience (QoE). This
paper presents a resource management model for service placement of distributed multitasking applications
in fog computing through mathematical modeling of such a platform. Our main design goal is to reduce
communication between the candidate nodes hosting different task modules of an application by selecting
a group of nodes near each other and as close to the source of the data as possible. We propose a method
based on a greedy principle that demonstrates a highly scalable and near-optimal performance for resource
mapping problems for multitasking applications in fog computing networks. Compared with the commercial
Gurobi optimizer, our proposed algorithm provides a mapping solution that obtains 93% of the performance,
attributed to a higher communication cost, while outperforming the reference method in terms of the
computing speed, cutting the mapping execution time to less than 1% of that of the Gurobi optimizer.

INDEX TERMS Greedy, fog computing, Internet of Things, modelling, optimization, resource management.

I. INTRODUCTION AND BACKGROUND

The past decade has witnessed a wide deployment of the
Internet of Things (IoT) technology in various application
domains, and its pervasive role will continue to strengthen in
the future [1]. The emerging IoT applications, through vari-
ous sensors, generate massive amounts of data that are gener-
ally referred to as big data. Traditionally, data is not processed
in the proximity of a sensor but transferred as it is to a server
that might be located in the cloud. However, transferring the
constantly increasing amount of information from sensors to
the cloud is not feasible. To overcome the intrinsic limitation
of centralized data processing in cloud computing, a new
paradigm called fog computing was introduced. Fog comput-
ing is characterized by heterogeneity, dynamicity, mobility,
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and geographical distribution that complement cloud comput-
ing services, providing local processing and faster response
for delay-sensitive applications. It is considered a derivative
of cloud computing that extends its services to the network’s
edge [2].

Fog computing does not replace cloud computing services
but rather, by a well-organized interplay, complements the
cloud computing services. Fog computing reduces the delay
and response time for frequent and delay-sensitive local user
requests. In contrast, cloud computing provides powerful
computing resources and more extensive data storage for the
global data collected from a larger geographical area. Figure 1
illustrates the basic architecture of a three-layered IoT system
based on cloud and fog computing.

While the effectiveness of fog computing in IoT applica-
tions has been widely investigated in various studies [3]-[7],
there is still a lack of techniques to efficiently utilize
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FIGURE 1. loT architecture based on cloud and fog computing.

computing resources in this platform to maximize Quality
of Service (QoS) and Quality of Experience (QoE). Ineffi-
cient scheduling and resource allocation for user services can
actually result in even higher delays than sending the data
for processing in the cloud [2]. Due to the aforementioned
unique characteristics of fog computing, the resource alloca-
tion problem becomes more challenging and sophisticated.
Understanding the nature of fog computing and the analogy
between fog and cloud computing helps in systematic mod-
eling of a fog computing framework and efficient resource
management in the fog.

The fog layer is a dynamic and resource-constrained com-
puting system, where both to-be-executed applications and
executing mobile nodes can enter and leave the system at
run-time, which results in high dynamicity of the workload
and platform. Moreover, such applications and computing
nodes are heterogeneous. Applications can be related to vari-
ous services, and nodes range from switches and routers to
base stations and even edge clusters or micro data centres
[8], [9]. Such dynamicity and heterogeneity in both applica-
tion and platform demand intelligent and agile coordination
through a resource management system to achieve optimal or
near-optimal performance at run-time.

A. RESOURCE MANAGEMENT

The resource management problem in fog computing has
been widely investigated from different perspectives. The
authors in [10] investigate the trade-off between the power
consumption and delay in a cloud-fog computing sys-
tem. They formulate the workload allocation problem in a
cloud-fog scenario by modeling the power consumption and
delay functions in the cloud and fog as well as communication
delay function for dispatch. They conclude that cloud com-
puting is more energy-efficient than fog computing while fog
computing, due to the proximity to the users, can improve the
performance of cloud computing by reducing communication
latencies. In [11], the authors formulate a joint optimization
problem for allocating the computation resources to max-
imize utility or the satisfaction rate and minimize carbon
footprint for video streaming services in fog computing. As a
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solution, they propose a proximal distributed algorithm for
large scale fog systems.

Communication costs between fog computing nodes are
very important parameters to be optimized. Finding an opti-
mal path to communicate the processing requests is a key
task in building a robust resource allocation scheme in fog
computing. The authors in [12] propose a Steiner tree based
caching scheme to produce an optimal Steiner tree in a fog
computing cluster to minimize the total cost of the commu-
nication path in a way that total cost of cashing resources is
minimized.

The majority of the aforementioned works consider
non-distributed applications running in a single device. IoT
applications are typically involved with processing streams of
data that are generated by sensors (i.e. data streaming applica-
tions). Stream processing involves applications that are devel-
oped as dataflow graphs that include task vertices executing
some user-defined logic and streaming the messages between
the tasks, i.e., distributed multi-task applications [9]. Such
applications are characterized by their continuous processing
requirements and computation-intensive nature. Offloading
computation tasks into the fog computing or cloud computing
layer, i.e., distributed processing, is an efficient solution to
cope with limited resources of the edge devices.

Application partitioning is a key technology in the devel-
opment of distributed applications for distributed computing
systems such as cloud and fog computing systems [13], [14].
The partitioning can be done in different levels of granularity.
In coarse-grained granularity, applications are divided into
a set of loosely coupled units, called application modules,
that can be integrated to create larger applications. Each
module of an application runs in a computing node (typically
within a container or Virtual Machine (VM)) and communi-
cates its output data to other involved modules, processing
data streams collaboratively with the other modules of that
application which may reside at several different computing
nodes around the network [6]. In fine-grained granularity,
applications or modules of applications are further divided
into smaller sub-tasks or processes (e.g. threads) that can
be executed on different components of a heterogeneous
computing node such as Central Processing Unit (CPU),
Graphics Processing Unit (GPU), and Field Programmable
Gate Array (FPGA [6], [15]. Such distribution, if not properly
managed, could be delay-inducing and resource-intensive in
geographically distributed fog computing networks [16].

The authors in [14] propose a framework for partitioning of
applications on Mobile Cloud Computing (MCC) platforms
to maximize the performance of applications in terms of
speed/throughput as well as optimally utilize cloud resources.
The authors in [17] consider a coarse-grained application
partitioning method based on virtual machines that run as
in cloudlet-based MCC environments. In [18], the authors
develop a resource allocation model that provides optimal
partitioning and offloading the application partitions into
MCC systems. They consider several system parameters such
as network traffic and processing resources in mobile devices,
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mobile clouds, and the cloud to optimally decide where to run
each partition of the application.

From the fog computing perspective, a distributed appli-
cation composed of several modules needs to be mapped
onto multiple computing nodes. The candidate processing
nodes communicate the data related to that application among
each other according to the data flow of the application. The
authors in [19] study dynamic task module mapping, i.e.,
deployment, in a fog computing platform. They argue that,
because of limited resources in fog computing platforms,
splitting the requests from the users into smaller modules
is a necessity. Their main goal is to find an optimal or
near-optimal way to decompose the applications into task
modules and efficiently map them onto the processing nodes.

It is evident that, in distributed processing, communication
among the nodes will impose a delay that may affect the
system’s QoS and QoE. So, a very important challenge is
how to assign applications’ modules to a set of fog computing
nodes resulting in minimal communication and execution
delays, energy consumption, and network bandwidth usage.

In an IoT-fog system, an unpredictable number of appli-
cations with different sequences may require computing
resources at any time. Therefore, allocation of computing
resources to the arriving service requests needs to be done
dynamically at run-time instead of design time. Satisfying
power and performance constraints by allocation of resources
for an application consisting of several communicating mod-
ules is a complex process. Moreover, the parallel execution
of the task modules in the system adds to the complexity,
potentially degrading the expected performance of the fog
computing system if not properly managed. Determining a
set of superior fog nodes to allocate an incoming distributed
application with the least possible communication cost and
delay is therefore crucial for ensuring high performance of the
fog computing system. At run-time, a resource allocation unit
(RTRA), manages this phase in two steps: i) node selection,
that determines a set of neighboring nodes with adequate
computing and storage capacity and bandwidth to be reserved
for the new application, and ii) task module mapping, that
forwards (distributes) the task modules of a particular appli-
cation to the selected fog nodes.

The authors in [20] investigate the requirements of dis-
tributed task placement in fog computing networks. They
point out that modeling both tasks and computing devices
is necessary for studying task placement for fog computing.
Also, development of distributed applications faces more
challenges than that of monolithic applications, in terms
of the communication complexity among each application’s
components that need to be addressed. They compare differ-
ent algorithms for the tasks placement problem in distributed
fog computing and conclude that greedy approaches, such
as the Hill-Climbing algorithm, demonstrate better perfor-
mance in solving the problem (higher speed), whereas genetic
algorithms provide solutions that have better performance
(higher quality). The authors in [21] propose an application
placement technique for concurrent applications in a fog
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network. They present a weighted cost model for minimizing
the execution time and energy consumption of multi-task
applications in the fog computing context, supported by a
pre-scheduling algorithm to maximize the number of parallel
executions. The authors in [22] propose a module placement
algorithm called MPC4.5 using the Markov Chain process in
mobile fog computing networks. They consider an applica-
tion consisting of multiple modules to be placed in a set of
the most suitable fog nodes. Their proposed algorithm uses
parameters such as authenticity, confidentiality, availability,
capacity, integrity, cost, and speed as decision parameters for
placing the application module in a fog node. In [23], the
authors propose an application placement algorithm based
on multidimensional QoE prioritization. They prioritize the
incoming offloading requests based on three main domains:
the environment runtime context, application usage, and user
expectations, taking into account QoE and QoS. Then they
choose a set of fog computing nodes for each requesting
application based on proximity to the source of data, com-
puting capabilities of fog nodes, and expected execution time
for each application.

In [24], the authors present a cost-efficient resource man-
agement model for non-distributed applications in fog com-
puting. They develop an optimal and heuristic (near-optimal)
method to minimize the cost of offloading the applications
in a fog computing platform. In their model, they consider
the cost of deployment of a VM for each application as well
as the communication delay for a given size of data. They
conclude that an appropriate set of fog nodes to host the VMs
for each application is a key factor for minimizing the cost of
fog computing resource management. Inspired by their work,
in this paper, we propose a novel resource management model
for service placement of distributed multi-task applications
in fog computing through mathematical modeling of this
platform.

Our main design goal is to reduce the communication cost
between the candidate nodes hosting different task modules
of an application by selecting a group of nodes that are near
to each other and also as close to the source of the data as
possible. The communication cost considered in this paper is
an abstract parameter to characterize the penalty of communi-
cation in distributed application execution, in terms of the size
and range of involved communication events. The rationale is
that the larger (smaller) this penalty is, the less (more) optimal
the mapping is performance-wise. The adopted communica-
tion cost concept reflects (predicts) the fog system’s behavior
with respect to more concrete communication-related param-
eters such as communication delay or communication energy
consumption.

Figure 2 shows an overlay architecture of our resource
management model in an IoT-fog computing system. The
physical network underlay illustrates the sensors streaming
their data to the fog nodes that are associated with them.
The virtual network overlay shows an overlay network con-
trolled by a virtual machine manager (VMM) eliminating the
routers that provide physical interconnections between the
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FIGURE 2. Overlay Architecture of fog computing network.

computing nodes. The task modules of each distributed appli-
cation are mapped onto a set of fog computing nodes forming
a separate overlay network, i.e., an application overlay, on top
of the virtual network overlay.

The main contributions of this paper include:

« Mathematical modeling and presentation of distributed
multi-task applications and fog computing systems.

« Formulating an optimization problem to reduce the over-
all communication costs in the system.

e Design and implementation of a heuristic greedy
algorithm for the resource management problem for
multi-tasking applications in fog computing networks.

« Performance evaluation of the proposed solution.

The rest of the paper is organized as follows. In Section 2,
we present the research methodology of this study. In section
3 we present the mathematical modeling of the system and
optimization problem formulation for multi-tasking resource
management in the fog. In Section 4, we present our pro-
posed algorithm for the problem. In Section 5, we provide
performance evaluation for the proposed solution. Finally,
in Section 6, we end with some concluding remarks.

Il. METHODOLOGY
In this section, we briefly present the research methodology
used in our study.

o Modeling the applications and network: We describe
our approach for modeling an application as a com-
position of smaller task modules. In this study, we do
not present a new method for application partitioning,
but rather we consider an application comprising an
ensemble of multiple task modules from the beginning.
We also model our fog computing network consisting
of nodes that are randomly distributed into a limited
physical area.

o Problem formulation:We present the factors that con-
strain our model and formulate an optimization problem

VOLUME 9, 2021

TABLE 1. List of notations.

[ Constants

The fog node set

The sensor set

The application set

The task module set

Wireless communication range for
each fog node or sensor

A binary-valued tensor that represents
communication between task modules
of an application

A binary-valued incidence matrix rep-
resenting the associations between task
modules and applications

A binary-valued matrix that indicates if
a fog node f is directly reachable from
a sensor s

A distance matrix that represents the
connections between fog nodes in the
network.

Vector of up-link costs of the fog
nodes.

Vector of streaming rates of the appli-
cations.

The length of data package uploaded to
an application a

Vector of container sizes of the task
modules.

A vector consisting of the hard disk
(storage) capacities of fog nodes

[ Variables ]
M c {0’1}A><T><F

DN | U

Ac {07 1}A><T><T

R € {0,1}T

Z € {0,1}5%F

N e N7

ueRF

AeRA

deRrRA

ceRT

h e RF

A Dbinary-valued tensor variable that
indicates if a task module ¢ from an
application a is mapped onto a fog
node f

for resource management, in the context of task map-
ping, with the objective of minimizing the overall com-
munication cost.

o Heuristic method: In order to validate our model,
we propose a heuristic greedy algorithm for solving the
formulated resource management problem.

« Experimental analysis: Finally, we investigate our
proposed model from different points of view. We com-
pare the properties of a method providing the absolute
optimal mapping solution with the results obtained by
the proposed heuristic greedy-based algorithm.

IlIl. SYSTEM MODELING

In this section, we introduce our fog resource management
model. For the convenience of the readers, the main notations
used in this paper are listed in Table 1.

A. APPLICATION MODEL

We model an application in a fog computing system as an
ensemble of task modules with inter-dependencies. Each task
module ¢ € T is a single function/portion of an application
that receives input data, provided by precedent tasks, and
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FIGURE 3. Task graph model of an application.

produces specific output data and sends it to the subsequent
tasks. Hence, application mapping in a fog computing system
follows a many-to-many function that should be calculated
based on the topology of the network and the current locations
of the sensors. We consider each task module developed as a
bundle including a lightweight virtual machine, i.e., a con-
tainer, and the source code. We define each application in the
system as a directed graph.

We employ a simple mathematical model for represent-
ing applications running in the system. Let us denote by
A € {0, 1}"*T*T the tensor, whose each horizontal slice
A, € {0, 137%T is an adjacency matrix that represents the
task graph of application a. Each entry A, ;, in the tensor
represents communication between pairs of tasks (i.e., source
and destination tasks) within the task graph of the applica-
tion a that receives data from a particular sensor. To mark
the first task module that receives the data from the sensor,
we consider a dummy task module that we call the source
node in the application’s task graph, i.e., f, to represent the
streaming sensor in A. In this case, the task module that
receives the data from 7y will represent the first task module in
the application task graph. Accordingly, an incidence matrix
R € {0, 1}**T can be obtained that represents the set of task
modules composing the application. The following example
(Figure 3) shows an application task graph for a given appli-
cation and a set of associated sensors. The application a; is
composed of following five task modules: #1, #2, #4, t, and t7,
ie,Ry . =1[1,1,1,0,1,0, 1, 1], where the involved tasks
are a subset of T = {#g, t1, 12, 13, 14, 15, 16, t7}. The adjacency
matrix A, .. represents the task graph of this application in
our system:

ey

[=NeNeloNoNoNeNe]
[=NeNeoloNo e el
[cNeoNeoBoloNe R "
[=NeoNeBoNoNoNeNe]
[cNeoNeBoNel =]
[=NeoNeloNoNoNeNe]
(=N e Nl =l e ]
=N NeloNoNoNoNe)

B. NETWORK MODEL

A fog computing network comprises heterogeneous com-
puting nodes that communicate with each other directly
or indirectly through network routers forming multi-hop
paths. We denote by N a distance matrix to represent our
network. Each element in this matrix represents the connec-
tion between a pair of fog computing nodes. Here, the values
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equal to 1 indicate a direct connection, i.e., the nodes are
either physically connected or within the wireless commu-
nication range of each other. On the other hand, the values
greater than 1 represent indirect connections through inter-
mediate fog nodes or routers. In this case, the value is equal to
the hop distance in the shortest path between two nodes. Two
fog nodes are reachable from each other if there is a direct or
indirect (multi-hop) connection between them. Without loss
of generality, we assume that all the fog nodes in the network
are reachable from each other.

1) SENSOR-NODE COMMUNICATION
Without loss of generality, we assume that all fog nodes and
sensors are using wireless technology for communication.
We define a radius p for each fog node and sensor that
determines its communication range. Fog nodes f € F and
sensors s € S can communicate with each other only if they
are within the communication range of each other. Let us
denote by Z € {0, 1}5*F a binary incidence matrix between
sensors’ set S and fog nodes’ set F' that indicates if a sensor
s € S and a fog node f € F are within the communication
range of each other, i.e., directly reachable from each other.
For the sake of simplicity, we assume that each application
receives data from only one sensor, and the other way around,
each sensor streams the data only to one application. That
means that there is one and only one application associated
with each sensor and vice versa. So, there is a one-to-one
relationship between an application and its corresponding
sensor. This being the case, we can refer to the application
and sensor interchangeably in our model. Sensors stream their
data as packages with the length of d,, Ya € A, to the fog
nodes f € F they are associated with, in specific intervals
with an up-link cost of uz, Vf € F and an up-link streaming
rate of A;,Va € A. Sensors s € § can stream their data
only to the nodes f € F that are directly reachable from
them, i.e., to the nodes for which Zy = 1 holds. Each sensor
s € § should be associated to one and only one fog node at
the time to ensure that the network traffic is not overloaded
redundantly.

C. MOTIVATION

Let us consider a toy example to demonstrate the main moti-
vation for this work. Figure 4 illustrates how a distributed
application is mapped onto a network. For simplicity and for
the sake of illustration, we consider a network with a 4 x 4
grid-mesh network topology. A wearable ECG sensor needs
to offload its data to the fog network for processing. The
sensor is within the communication range of the nodes 1 and 2
in the fog network. The ECG processing application is com-
posed of 5 task modules, i.e., R,. = (1,1,0,1,0, 1,1, 1).
First, the sensor will be associated with one of the fog nodes
within its range. In our example, the sensor gets associ-
ated with the fog node 1. The resource mapping algorithm
needs then to select a group of fog computing nodes that
can accommodate and process the containers of the task
modules of the ECG processing application, providing them
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FIGURE 4. Distributed Multi-Task mapping example.
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with appropriate communication paths. In our example, the
fog nodes 5, 10, 12, 13, 14 are the selected nodes. Since fog
nodes in general have limited resources in terms of storage
capacity and processing power, some nodes cannot be chosen
to host the containers of the task modules. These nodes,
instead, can act as intermediate routing nodes. In the example,
the nodes 6, 9, 15, 16 are such routers.

In this work, our optimization goal is to reduce the com-
munication costs and delays between the task modules of an
application by choosing the nodes that are as close as possible
to the involved sensors and in the proximity of each other.

D. PROBLEM FORMULATION

In this section, we define and formulate the resource manage-
ment and task mapping problem for distributed applications
in fog computing systems.

An application is partitioned into smaller task modules that
can be deployed as containers at fog computing nodes in the
system. Each task module within an application needs to be
mapped onto a selected fog node. We define a binary-valued
tensor variable M € {0, I}AXTXF , that indicates whether the
task module ¢ € T from the application a € A is mapped onto
the fognode f € F, i.e.,

1, task module ¢ from application a is mapped
onto fog node f
0, otherwise

Ma,t,f =

@

VOLUME 9, 2021

An obvious base requirement for this mapping is that the
considered task module ¢ is part of the considered application
a. This condition can be expressed as:

Y My =Ry, YacA teTl. 3)
feF
Since the applications are entering the fog computing sys-
tem dynamically at run-time, assigning multiple task modules
of an application to the nearest fog node will decrease the QoS
of applications that will join later. In this case, the nearest fog
nodes will soon be fully loaded with the tasks of the earlier
applications, and, consequently, newly arriving applications
will need to be mapped onto the fog nodes far away from their
data sources, resulting in higher communication costs and
delays. To avoid this condition and to effectively granulate
the QoS of all involved applications, our premise is that one
and only one task module of an application a can be mapped
onto any given fog node. However, this constraint does not
apply to a (dummy) source task #y representing a gateway that
passes sensor data to an application. In other words, such a
gateway node could also be a candidate for processing one
of the computational task modules of this application. The
constraint is formulated as follows:

Y My <1 VacA feF. 4)
teT\{to}

A sensor can be associated to a fog node, if and only if
the fog node is reachable from the sensor. To ensure this,
we define the following constraint:

Mo <Zs,y YVacA, feF (@)

Mapping and deployment of containers of the task modules
is possible only if there is enough disk/storage space in the
candidate fog nodes. This condition can be expressed as:

Y Y Musge+Mydy <hg Vf€F,  (6)

acA teT

where ¢; is the container size of a running task module ¢, and
hy is the hard disk (storage) capacity of a fog node f.

E. MIQP FORMULATION

In this work, we associate resource management and task
mapping in fog computing with the objective of minimizing
the overall communication cost in the system. In the optimum
case, the data is processed in the fog nodes that are in the
proximity of each other and as near as possible to the sensors
providing the data streams. The total communication cost in
the system is calculated as the sum of the up-link and inter-
node communication costs for every application that receives
data from sensors, i.e.,

Ccom = CUp—link + Cluter—Node @)

The communication cost between two points in the net-
work is determined by the amount and rate of the data trans-
ferred between the two points as well as the hop distance
between the two respective nodes. In the case of up-link
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communication, since the sensors are directly connected to
the receiving fog nodes, we consider the hop distance equal
to 1. For inter-node communication, we use the hop distances
stored in N. Hence, the total communication cost can be
calculated as:

CCom

= Z Z ufMa,to,anda

acA feF

+ Z Z Z Z Z Maats'sfsNf:fmfdMa,fdtf(]Aa,ts,tdAada

a€A t,€T ty€T f€F fgeF
(3)

Our goal is to minimize the overall communication cost
by choosing the best setting for M. Since the distance
dependence in the inter-node communication cost function
is quadratic with respect to M, we can formulate a mixed-
integer-quadratic-programming (MIQP) problem as follows:

MIQP

min : (8),

subject to : (3), (4), (5), (6)

and : M € {0, 1}A*T<F ©))

IV. SOLUTIONS

The MIQP problem defined in the previous section can be
solved in different ways. To achieve an optimum solution
for a given resource management task, we implement our
multi-task resource management model using the Gurobi
optimizer. However, since the search space grows exponen-
tially by adding more fog computing or sensor nodes to
the system, an optimum solution may not be feasible for
real-world scenarios. The fog computing nodes are resource-
constrained, and the dynamic decisions for resource mapping
need to be done swiftly to reduce the service delivery time and
to contribute to better QoS. Hence, to evaluate our model’s
efficiency and performance, we propose a greedy algorithm
as a heuristic method that guarantees a near-optimal solution
which is less computationally intensive and faster to achieve,
more suitable for a resource-constrained computing environ-
ment.

A. PROPOSED GREEDY ALGORITHM

We propose a two-phase distributed greedy algorithm as a
heuristic solution for our resource management model. In the
first phase presented in Algorithm 1, the system greedily
associates the sensors to the fog nodes considering the con-
straints (5) and minimizing the system’s overall up-link cost.
In the second phase, at each iteration, the greedy algorithm
assigns a fog node with the minimum communication cost
for one task module from each application considering the
constraints (3), (4), (6). At each iteration, the algorithm stores
the next node(s) in a queue based on the sequence defined
in each application’s task graph. Once all the task modules
have been mapped onto fog nodes, a communication graph
from the selected fog nodes for processing each multitask
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application is formed, and the overall cost is calculated based
on Equation (8). The greedy algorithm is presented in more
detail in Algorithm 1.

Most of the tensors and matrices used in our approach are
very sparse, meaning that they mostly comprise zero values.
Consequently, to improve the performance and simplify the
complexity of the algorithm, we only consider the non-zero
values in the tensor M that together represent the total number
of tasks modules from all the applications that are allocated
to the fog nodes. This corresponds to the total number of
elements that are pushed into the queue in Algorithm 1.
Similarly, we consider only the non-zero values in the matrix
Z that represent the number of all possible connections that
one sensor could have with the fog nodes within its range.
So, if we denote T to correspond to the number of non-zero
values in the tensor M and Z where a < 1 < at,Va €
A,t € T, the complexity of the first and second phases
could be calculated as O(t), and O(f ), Vf € F respectively.
So the total complexity of our algorithm in the worst case is
O(f1),Vf eF.

Algorithm 1 Greedy Algorithm

Data: Communication radius and coordinates of fog
nodes and sensors
Result: M, ;, 1
> Phase 1: Sensor association;
for each non-zero value in Zy do
Calculate the up-link cost;
f <«FogNode with the minimum up-link cost from s;
Mo <1
Queue.PUSH < [a, 0 and, the candidate gateway

fog node]
end

> Phase 2: Task module mapping;
L = []// alist that contains the Fog Nodes that are
already assigned for a task module of the application

while There is an item in the Queue do
a, tg, fs < Queue.POP

for each unallocated task module tg acting as a
destination of ts in application a do
fa < find a fog node closest to f; that is not in L
Queue.PUSH ([a, tq, f4])
L.append(fy)
update My 1, r, < 1
end

end

V. EXPERIMENTAL SETUP AND EVALUATION

To evaluate the efficiency of the proposed solutions in a
small-scale network of 100 x 100 meters, we consider 10 fog
nodes and 3 sensor nodes in a field with a uniform distri-
bution. The wireless coverage for the fog nodes and sensor
nodes is set to 40 and 20 meters, respectively. Each sensor is
associated with a multi-task application with the task graph
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presented in Figure 3. The data streaming rate from each
sensor is assigned based on a Gaussian distribution with a
mean and standard deviation of 1.2 and 0.8, respectively. The
container size for each task module is set to 0.4, and the
storage capacity of each fog node is normalized to 1. The
up-link cost associated with each fog node is also assigned
based on a Gaussian distribution with a mean and standard
deviation of 1.2 and 0.8, respectively.

We use a commercial solver, Gurobi 9.1, for solving the
MIQP problem for the optimal case. We run 1000 simu-
lation instances with different random seeds and plot the
Cumulative Distribution Function (CDF) of both algorithms’
total costs in Figure 5. According to this figure, our greedy
solution achieves near-optimal results, with the CDF reaching
on average 93.2% of the optimal value. This validates the
correctness and efficiency of our algorithm.

To validate the performance of our greedy algorithm,
we also record the execution time for 30 simulations with
the same setup. Figure.6 illustrates the comparison of the
execution time for both optimal and greedy methods. Our
greedy heuristic algorithm achieves considerably lower and
more predictable execution time than the optimal method,
cutting the execution time for resource mapping to 0.97%
of the time required by Gurobi-based optimization on
average.
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We visualize the task mapping for the optimal and greedy
algorithms for 3 sensor nodes with the same setting that
we described above. Figure 15 visualizes the solution by
our greedy algorithm, and Figure 16 visualizes the optimal
solution obtained by the Gurobi optimizer.

To evaluate the effects of a network setting on the average
total cost in both greedy and optimal solutions, we run 10 sim-
ulations for each network setting and obtain the average
values for the total cost. Figure 7 illustrates the average total
cost under different settings for a group of sensors, varying
from 2 to 10 sensors. To make the model feasible for our
larger experiments, we set the storage capacity of each fog
node to 10, a relatively large arbitrary value. We keep the
rest of the setup the same as in our earlier experiments. It is
evident, based on this diagram, that the total cost generally
increases when increasing the number of the sensor nodes,
as can be expected. However, the somewhat surprising local
decline in the diagram in the case with 4 sensors in the opti-
mum cost curve, and with 7 sensors in the greedy cost curve,
can result from a placement of sensors in an area where the
density of fog node distribution is higher. In such conditions,
the majority of inter-node communication is either direct
involving no intermediate nodes, or indirect involving only
few intermediate nodes, leading to a lower total cost due to a
lower average communication cost between task modules of
applications associated with the sensors.

Figure 8 illustrates the average total cost with respect to
varying rates of arriving data. In this experiment, the number
of fog nods and sensors are set to 10 and 3, respectively.
As can be seen, the average total cost for the greedy algorithm
is very near to the optimal solution and increases with the
arrival data rate.

To investigate the scalability of our model, we run a set
of experiments to examine the CPU time and maximum used
memory under different network settings. Figures 9 and 10
illustrate the CPU time and maximum used memory, respec-
tively, with the number of sensors varying from 10 to 100.
In this experiment, we set the number of fog nodes to 50.
Itis evident that our greedy algorithm outperforms the Gurobi
solver, that computes the optimal solution, by requiring
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significantly less resources (i.e., on average 99.88% less CPU
usage and 93.67 % less memory usage) for computing a
task mapping solution. The resource usage in Gurobi-based
optimization shows near-linear dependence on the number of
sensors with a much steeper slope than in the case of the
greedy method. Since the CPU time of the greedy method
is almost constant (i.e., a horizontal line) in this experiment,
we take a closer look into the resource usage of our algorithm
in Figure 11, where we can see that for 10-100 sensors,
the CPU time remains below 45 ms, and the memory need
remains below 1 MB, indicating a relatively slow increase of
the requirements. According to the experiment, for Gurobi,
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FIGURE 11. CPU time vs maximum required memory of greedy algorithm
with respect to the number of sensors.
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every additional set of 10 sensors increases the required
CPU time by 4434 ms and the memory need by 1.24 MB
on average. In comparison, for our greedy algorithm, these
values are 4 ms and 0.078 MB, respectively. This provides
evidence on the scalability of our algorithm with respect to
the number of sensors in the network.

Figures 12 and 13 illustrate the CPU time and maximum
used memory, respectively, with the number of fog nodes
varying from 10 to 100 and the number of sensors having
the constant value of 3. Also in this experiment, our greedy

VOLUME 9, 2021



F. Hosseinpour et al.: Resource Management Model for Distributed Multi-Task Applications

IEEE Access

10.16
0.007 1 CPU Time
= Max required memory F0.14
0.006 a
2z L0122
£ 0.005 2
§ 010 2
Z 0.004 2
o L0.08 E
2 3
= 0.003 L0.06 5
=) o
&5 0.002 1 L0.04 E
<
0.001 - F0.02 =
0.000 r y y F0.00

20 40 60 80 100
Number of fog nodes

FIGURE 14. CPU time vs maximum required memory of greedy algorithm
with respect to the number of fog nodes.

Fog Network Communication
mmm=  Uplink Communication
= Application Communication

® Sensor Nodes
® Fog Nodes

FIGURE 15. Task mapping examples (solved by our Greedy Algorithm).

Fog Network Comunication
wmm= Uplink Communication
m===_ Application Communication

® Sensor Nodes
® Fog Nodes

FIGURE 16. Task mapping examples (solved by Gurobi).

method clearly outperforms the Gurobi solver in terms of
computing resource needs, requiring on average 99.9% less
CPU time and 86.14 % less memory for solving a task map-
ping problem. Figure 14 shows that for 10-100 fog nodes,
the CPU time and memory need do not exceed 7 ms and
0.16 MB, respectively. Moreover, for each additional group of
10 fog nodes, our greedy algorithm requires, on average, only
0.7 ms of more CPU time and 0.016 MB of more memory,
whereas Gurobi requires 842 ms and 0.077 MB, respectively.
Hence, compared with Gurobi, our method is highly scalable
also with respect to the number of fog nodes in the network,
facilitating dynamic run-time task mapping in networks of
different sizes.

VI. CONCLUSION

We introduced a model for handling IoT requests with
multi-tasking applications in a fog computing network and
an analytical model to formulate the resource management
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problem from a communication cost perspective. We also
proposed an algorithm based on a greedy principle to
minimize the cost. Our proposed algorithm demonstrated a
near-optimal efficiency, i.e., 93%, with respect to the com-
munication cost (solution quality), while outperforming the
considered optimal method in terms of the computing speed
(solution latency), cutting the execution time to less than 1%
of the execution time of the commercial Gurobi optimizer
providing the absolute optimal solution. We showed that
our proposed model is highly scalable. However, since the
communication cost employed in this paper is an abstract
parameter, not fully covering all communication-related cost
factors in real networks, there is a need to further investigate
concrete aspects such as communication delays and energy
consumption when considering the resource management
problem in fog computing systems. As part of the future
work, we plan to extend our proposed model by considering
the communication bandwidth between network nodes to
calculate realistic communication delays. Moreover, we plan
to take into account the deployment costs of task module
containers in resource management problems.
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