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ABSTRACT The localization of the optic disc and fovea is crucial in the automated diagnosis of vari-
ous retinal diseases. We propose a novel deep learning driven heatmap regression model based on the
encoder-decoder architecture for the joint detection of optic disc and fovea centers in color fundus images.
To train the regression model, we transform the ground-truth center coordinates of optic disc and fovea of the
IDRiD dataset to heatmaps using a 2D-Gaussian equation. The model is capable of pinpointing any single
pixel in a vast 2D image space. The model is tested on IDRiD test dataset, Messidor, and G1020 datasets.
The model outperforms the state-of-the-art methods on these datasets. The model is very robust and generic,
which can be trained and used for the simultaneous localization of multiple landmarks in different medical
image datasets. The full implementation code and the trained model with weights (based on Keras) are
available for reuse at https://github.com/bhargav-jb/FundusPosNet.

INDEX TERMS Fundus image, optic disc, fovea, deep learning, heatmap, regression neural network,
Gaussian blob.

I. INTRODUCTION
Automated diagnosis of retinal diseases saves a considerable
amount of human labor and other resources involved in con-
trast to manual diagnosis. It also increases the accuracy and
efficiency of the screening process. The automated diagnosis
of most of the diseases in fundus images requires the precise
localization of Optic Disc (OD) and fovea. These two land-
marks define the reference points for detecting other crucial
anatomical and pathological structures in the retina [1]. The
important anatomical structures and their relative distances in
a color fundus image is shown in Fig. 1.
The precise detection of OD and fovea center coordinates

is challenging because of the vast fundus image space. The
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problem of finding the centers of OD and fovea can be related
to human pose estimation tasks where a trained Convolutional
Neural Network (CNN) generatesN heatmaps corresponding
to different key-joints in the human body [2]– [4]. Further,
these key-joints are used to predict the actions performed by
human beings. The heatmap regression technique is applied
to locate the specific coordinates in X-ray images [5], which
can also be extended to determine the landmarks’ coordi-
nates in fundus images. The initial models designed for the
landmark localization using the regression technique were
directly regressing the coordinates using fully-connected lay-
ers on top of a CNN feature extractor [6]. This method pri-
marily suffered from localization error as the task of precisely
mapping the coordinates in a very large image space was
highly non-linear in the context. The recent advancements
in human pose estimations have shown remarkable accuracy
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FIGURE 1. Fundus image illustrating important anatomical structures.

in landmark’s detection using a heatmap based coordinate
regression technique. The heatmap based regression tech-
nique achieves a very low localization error as it also con-
siders spatial context during regression.

Image augmentation techniques are commonly used to
artificially increase the size of the training and validation
datasets in deep learning [7]. We propose a novel deep learn-
ing regressionmodel for jointly regressing the fovea and optic
disc centers’ coordinates using encoder-decoder architecture.
We name our model, the FundusPosNet. A unique regression
technique is proposed to automatically generate the heatmap
labels for the OD and fovea regions in fundus images. The
proposed network is trained on these labels to generate
heatmaps for OD and fovea landmarks. The proposed model
achieves state-of-art results on IDRiD [8], Messidor [9], and
G1020 [10] datasets.

II. STATE-OF-THE-ART
Fundus image analysis is an active research area, and recently
there have been many significant works related to the joint
detection of the optic disc and fovea region centers. In [11] the
authors presented a milestone in the joint detection and seg-
mentation of crucial retinal structures. Their method jointly
detected the three major anatomical structures, the macula,
the OD, and the vascular arch, in the retinal images. The
algorithm outputs 16 distinct points in the retinal image
representing the three major anatomical structures by fitting
a single point-distribution-model. The method uses a cost
function to find the correct positions of anatomical structures
based on a combination of local and global cues fetched from
the reference images. This method has a limitation that both
macula and the optic disc regions should be at the center
of the fundus images. In their next work, the same authors
proposed a regression method to localize the fovea and optic
disc using a kNN regressor [12]. The proposed technique uses
two templates to extract the features to localize the optic disc
and fovea. It requires the availability of vessel extraction as

a prerequisite for the input images. The method used training
images manually marked for optic disc and fovea center to
train the regressor. The regressor first selects the point with
the lowest predicted distance to the optic disc as the optic
disc center and based on this, the search area for the fovea
is defined. The regressor selects the location with the least
predicted distance to the fovea as the fovea center location
from this search area.

A faster method for the optic disc and fovea localiza-
tion was proposed using template matching and directional
matched filters in CIElab color space [13]. The method also
uses the vessel characteristics in the optic disc to avoid false
positives. A search area for locating the fovea is defined based
on the optic disc location and its diameter. The point of lowest
matched filter response within the search area is selected as
the fovea center.

The usage of a saliency region detection algorithm to detect
the optic disc in CIElab color space was proposed in [14].
A saliency map may identify multiple image regions as the
possible optic disc due to pathological symptoms. For vali-
dating the optic disc detection, an unsupervised, probabilistic
latent semantic analysis classification algorithm was used,
which uses the specific structure of vasculature in the detected
region. After detecting the optic disc, the estimation of possi-
ble fovea region was done using the prior knowledge about
the distance of the fovea center from the optic disc center
along the axis of symmetry of a parabola whose vertex is at
the center of the optic disc. The proposed method fails if the
OD region is damaged or lacks saliency concerning vessel
structure, color, and illuminance in the image.

The semi-elliptical convex shapes like the OD in the
fundus image can be detected using Super-Elliptical Filters
[SEF] [15]. The authors have also proposed a setup for the
simultaneous OD and fovea detection using two individual
SEF filters located at a fixed distance from each other accord-
ing to the vertical and horizontal distances between the OD
and fovea mentioned in [16].

A unified approach for detecting OD and fovea based on
normalized cross-correlation [NCC] technique was presented
in [17]. The method performs NCC on fundus images using
the OD and fovea templates obtained from cropping the
specific regions in the sample fundus images by the experts.
To optimize the traditional NCC technique, the authors have
replaced the conventional mean and variance operations with
vector inner products and norms. To further increase the
detection speed, they have performed NCC on down-sampled
templates and down-sampled fundus images, and finally
mapping the Region-of-Interest (ROI) obtained as a result
back to the original fundus image.

The signal and intensity domain information from the
fundus images are used to detect OD and fovea locations.
The method proposed in [18] uses 1-D projections of the
image feature set in which 19 scanned lines were used to
identify the landmarks’ precise locations. For the detection
of OD, the method uses the intensity variation information
of the central optic nerve and retinal vessels emerging from
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OD. This variation in the intensity is very different from
any other variations in the intensities resulting from other
image pathologies. The peak-valley analysis is performed on
the scanned intensity lines to select OD’s center coordinates,
followed by choosing the reduced search space to detect the
fovea. The signal-valley analysis is then performed on the
reduced search space to precisely detect the fovea center.

CNN are recently gaining much popularity in medical
image analysis. A 7-layer CNN to jointly segment OD, fovea,
retinal vasculature, and background regions was proposed
by [19]. In this method, the three channels of the input are
passed to the CNN for every pixel location (x, y) in the ROI
for the classification. The first channel of input is a 7 × 7
neighborhood of the pixel (x, y) scaled to a size of 33 × 33.
The second channel of input is the 33 × 33 neighborhood of
the pixels. The third channel of input is a 165 × 165 neigh-
borhood with the pixel (x, y) as its center but scaled down
to a size of 33 × 33. The CNN used for classification has
five hidden layers and an output layer with four neurons for
4-class classification.

A multi-stage faster-RCNN network for the OD and fovea
detection is given in [20]. In the first stage, OD detection is
performed using the traditional faster-RCNN [21], followed
by OD segmentation using SVM. The second stage uses an
RPI-based faster-RCNN to segment the fovea, followed by its
center regression.

In most fundus images, the relative spatial positions of
optic disc and fovea size are constant. The authors in [22]
exploited this constant relative geometry to jointly detect the
centers of optic disc and fovea in their two-stage proposed
method. In the first stage, a relation network draws bounding
boxes which is the ROI around the OD and fovea. The relation
network uses a Faster-RCNN with Resnet-101 [23]. In the
second stage, a simple regressor implemented as a two-layer
CNN was used to jointly regress the center of OD and fovea
inside the bounding boxes.

The first regression model to perform a pixel-wise regres-
sion task to jointly detect OD and fovea was proposed by [9].
The method employs a fully convolutional deep neural net-
work for jointly regressing the centers of OD and fovea.
The network learns on the entire image to assess the global
features for predicting two minimal distances as OD and
fovea centers instead of learning on specific cropped ROI
representing them.

A deep multi-scale sequential CNN was used to regress
OD and fovea centers in [1]. The proposed method is fast
and robust, which does not depend on the relative geometry
information between the landmarks in the fundus image. The
network has two stages of CNNs. In the first stage, the ROIs
of both OD and fovea are extracted from the input image.
The second stage takes these ROIs as the input and performs
regression to detect both fovea and OD centers.

III. PROPOSED MODEL
In this section, we emphasize the details of the FundusPos-
Net design and its implementation. We explain the network

architecture, dataset preparation, setup used for training the
network, and the details of the newmethod used for extracting
the landmark’s center from the predicted heatmaps.

A. NETWORK ARCHITECTURE
FundusPosNet uses encoder-decoder architecture as its back-
bone inspired by the revolutionary U-Net model [24]
designed for biomedical image segmentation. The network
takes 128 × 128 × 3 fundus image as its input and outputs
two 128 × 128 heatmaps having pixel values in the range
between 0-1. These two heatmaps represent the two crucial
landmarks OD and fovea in the fundus image.

During network training, the encoder path learns to map
the input fundus image to a vector in the latent space, and
the decoder path learns to map this latent space vector to
heatmaps representing the OD and fovea regions. Table 1
lists the detailed layer-wise information of FundusPosNet
architecture. The following subsections explain the design
details of each type of layer used in FundusPosNet.

1) CONV-BN-LeakyReLU
In this layer, we first perform convolution using a K × K
kernel with a stride of (1, 1) and a dilation rate of D. The
convolution is followed by the Batch Normalization (BN)
operation applied to the feature maps along the channel-axis.
Finally, the Leaky ReLU activation function is applied to the
output after the BN.

2) CONV-BN-SIGMOID
In this layer, we first perform convolution using a K × K
kernel with a stride of (1, 1) and a dilation rate of D. The
convolution is followed by the BN operation applied to the
feature maps along the channel-axis. Finally, the Sigmoid
activation function is applied to the output after the BN.

3) TransposeConv
This is a 2× 2 transpose convolution layer where we perform
the up-convolutions on the input vector with a stride of 2 to
up-sample its height and width by a factor of 2.

4) MaxPool
This is a Ps × Ps pooling layer with a stride S of 2 × 2 used
to down-sample height and width of input by a factor of 2.

5) CONCATENATE
This layer performs a channel-wise concatenation of encoder
and decoder output. Skip connections are used in the
encoder-decoder networks to avoid the problem of vanishing
gradients. Skip connections concatenate the up-sampled vec-
tor in the decoder pathwith the symmetrically opposite output
vector in the encoder path along the channel-axis.

The output of the decoder path is subjected to a 1× 1 con-
volution operation, followed by batch normalization. Finally,
a sigmoid activation function is applied to this normalized
output of the decoder to predict the two heatmaps.
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TABLE 1. Layer-wise details of FundusPosNet architecture.

In some fundus images, the OD and fovea centers are tough
to locate due to the lack of adequate image quality or disease
pathology in the images. Retinal diseases often produce dark
and bright patches in the retinal layer, which may be mistaken
for the macula and OD regions, as shown in Fig. 2. To avoid
interference from the pathological anomalies during OD and
fovea centers’ regression, we consider the unique geometrical
distance relationship between OD and fovea centers. The
center of the fovea is located in the darkest region of a
fundus image, approximately 2.5 times the OD diameter from
the OD region [1]. The usage of dilated convolutions [25]
in the deeper layers of the architecture and the applica-
tion of different kernel sizes increase the receptive field.
This larger receptive field further aids the network to learn

more parameters based on the OD and fovea center distance
relation.

B. PREPARING DATASET FOR NETWORK TRAINING
We have used the IDRiD grand challenge fundus dataset is
used for network training. This dataset has 413 images for
training and 103 images for testing. All the images in the
dataset are 4288× 2848 dimension RGB images. The experts
have labeled each image in the dataset for the OD center (Ox,
Oy) and fovea center (Fx, Fy) by considering the top-left pixel
as the origin (0, 0). We have resized all the IDRiD dataset
images to 128 × 128 dimensions for training the network.
For better convergence while training, the images are also
normalized.
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FIGURE 2. Fundus images with retinal diseases.

Since there are only 413 images available for training,
we use image augmentation to artificially increase the dataset
size to avoid network overfitting during training and better
generalization. The following image transformations are used
to augment the training data.
1) Random horizontal & vertical flips: Each image is sub-

jected to horizontal and vertical flip with a probability
of 0.5.

2) Random scaling: Images are scaled by randomly select-
ing a scaling factor between −0.4 to +0.4 range.

3) Randomly varying brightness: The brightness of each
image is varied by randomly selecting a factor from
−0.5 to +0.5 range.

C. THE HEATMAP LABEL GENERATION
Although the pixel coordinates regression is similar to image
segmentation, we do not want the output of the network to be
a binary mask; instead, we need the output to be a heatmap
with continuous pixel values in the range between 0 - 1. If we
use ground truth as binarymaskwith only a single bright pixel
to label target location without any spatial context, in that
case, the task of predicting such heatmaps becomes extremely
difficult as there can be multiple locations in fundus image
which have pixel values similar to that of fovea or OD pixel
values. A 2DGaussian kernel has the ability to focus on target
location as well as provide spatial context. The mean of 2D
Gaussian kernel is centered around the ground truth coordi-
nate, and the remaining part of the kernel provides the spatial
context. The amount of spatial context can be controlled by
varying the σ value. The spatial context will allow the model
to learn the important features more effectively. We generate
the heatmap using the Gaussian function given by Eq. (1) in
the paper [26].

H (x, y) = exp

(
−
(x − α)2 + (y− β)2

2σ 2

)
(1)

where, (α, β) is the actual (annotated) center of the landmark,
(x, y) is a coordinate in 128× 128 image vector representing
the heatmap label, and σ is a constant used to control the size
of the Gaussian blob in the generated heatmap label.

The following steps are performed to generate the heatmap
labels for each landmark (OD and fovea) in the fundus image.

Step 1: Initialize a 128 × 128 image vector with all pixel
values set to zero. This image vector will be the
heatmap label produced for the input fundus image.
The pair (x, y) in (1) represent the coordinates of
each pixel in this image vector. The size of this image
vector is chosen to be 128 × 128 to keep it the same
as the dimension of the network output.

Step 2: The generated pixel value H (x, y) in the heatmap
label is obtained by plugging the values of the coor-
dinates (x, y) of every pixel in (1).

Step 3: Repeat Step 2 for all the pixels in the image vec-
tor represented by the set

{
(0, 1) , (0, 2) , . . . . . .

(127, 127)
}
.

In the generated heatmap labels, the pixel value around the
center of the landmark will be high, and it smoothly decreases
as we go away from the center. The constant σ in (1) controls
the size of the Gaussian blobs in heatmap labels. The higher
the value of σ , the wider will be the Gaussian blob and vice-
versa. The value of σ chosen for the localization of OD and
fovea is different as the size of the OD region is smaller
compared to the macular region. It is essential to ensure that
the Gaussian blob covers the entire landmark and its related
surrounding region to prevent false localization. Suppose we
choose a very small value for σ . In that case, the size of the
Gaussian blob will be relatively small, and there is a minimal
global and spatial context present in it, making it vulnerable
to localization errors. After thorough experimentation with
the network’s different parameter values, we have selected
the σ value of 2.0 and 2.5 for OD and fovea landmarks,
respectively. Fig. 3 shows the samples of generated heatmap
labels for OD and fovea landmarks.

D. NETWORK TRAINING
The network is trained using 413 fundus images from the
IDRiD training set and the augmentation and respective
heatmap labels. The network learns to regress every pixel
in the heatmap for the given input fundus image. Since the
network generates heatmaps for the two landmarks and all the
pixels in these heatmaps are always between the ranges 0 - 1,
we use the binary cross-entropy loss function given in Eq. (2)
to train the network towards an optimum state. The binary
cross-entropy loss function is also best suited for the logistic
regression that we use. Since we are trying to reduce the
error in heatmap generation and not the Euclidean distance,
binary cross-entropy is best suited for our purpose. Glorot
uniform initializer is used for the weight initialization for
all the kernels, and all the bias variables are initially set to
zero.

LBCE =
−1
N

N∑
i=1

ŷlog (y)+
(
1− ŷ

)
log (1− y) (2)

where, ŷ is the ground-truth heatmap and y is the predicted
pixel value in the generated heatmap.

For optimization, Adam optimizer is used with an initial
learning rate of 0.001. A batch size of 12 is selected, and
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FIGURE 3. Heatmap label generation.

TABLE 2. OD and fovea center localization on Messidor dataset (1200/1200).

TABLE 3. OD center localization on IDRiD test dataset (103/103).

TABLE 4. Fovea center localization on IDRiD test dataset (103/103).

the network is trained for 800 epochs. We save the weights
having the least validation loss on the IDRiD validation set.
Design of architecture and the training is carried out using
Keras framework on Tesla V80 GPU provided by the Google
colaboratory platform.

E. EXTRACTING THE LANDMARKS’ CENTER
COORDINATES FROM THE GENERATED HEATMAPS
Ideally, the center pixel of the landmark should be the bright-
est pixel in the heatmap generated by the network. But
sometimes, because of severe pathologies, there can be more

than one brightest pixel detected in the generated heatmaps.
If we choose the criterion for selecting the brightest pixel
in the heatmap as the center of the landmark, it can lead to
localization errors.

We introduce a method to accurately approximate the cen-
ter coordinates of generated heatmaps. First, we determine
the contour in the generated heatmap using the method given
in [27]. The center of this contour determines the center of
the landmark. The center (x̄, ȳ) of the contour is found by
first computing the moment of the contour using Eq. (3)
followed by the detection of the centroid of this moment
using Eq. (4). Finally, the coordinates of the landmark’s
detected center are mapped back from 128 × 128 image
space to the original dimension of the input image using
Eq. (5).

Mij =

W∑
x=0

H∑
y=0

x iyjI (x, y) (3)

(x̄, ȳ) =
{
M10

M00
,
M01

M00

}
(4)

X =
(X128 ×W )

128.0
, Y =

(Y128 × H)
128.0

(5)

where, I (x, y) represents pixel intensity, W and H represent
the width and height of the image respectively. The complete
process of OD and fovea center detection using the proposed
heatmap regression technique is shown in Fig. 4.
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FIGURE 4. Steps in OD and fovea localization.

TABLE 5. Encoder-decoder block outputs for the last two channels.

IV. RESULTS AND COMPARISON
To perform a fair comparison with state-of-the-art methods
on the Messidor dataset, we use the R-criterion evaluation
metric given in [28] to determine the accuracy of the proposed
model. Accordingly, we use the value of R = 68, R = 103,
and R = 109 for the Messidor images of resolution 1440 ×
960, 2240 × 1488, and 2304 × 1536, respectively. R is the
radius of the optic disc, andwe compare the results in terms of

(1/8)R, (1/4)R, (1/2)R, and 1R Euclidean distances between
the predicted centers and the actual centers (annotated) of the
OD and fovea landmarks. Following [9], we also compute
the Mean Euclidean Distance (D̄R) between the predicted and
the actual centers normalized by the OD radius as given in
Eq. (6).

D̄R = (D(Pp, Pr )/R.100) (6)
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TABLE 6. Localization of OD and fovea centers in different visual quality fundus images.
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TABLE 7. Architectural differences between FundusPosNet and U-Net.

where D is the Euclidean distance and Pp and Pr are the
predicted and actual pixels.

We have also considered the Euclidean Distance (ED)
between the predicted center and the actual center as a metric
for assessing our proposed model’s performance with other
state-of-the-art methods on Messidor and IDRiD test dataset.
The Euclidean Distance is computed using Eq. (7) is also
known as the L2 norm.

ED =
√(

Xg − Xp
)2
+
(
Yg − Yp

)2 (7)

where,
(
Xg,Yg

)
is the ground-truth center and

(
Xp,Yp

)
is the

predicted center, respectively.
Table 2 shows the accuracy of FundusPosNet compared to

other state-of-the-art methods on the Messidor dataset [9].
Table 3 and Table 4 show the accuracy of FundusPos-
Net compared to other models on IDRiD grand challenge
test dataset [8] for the OD and fovea center detection,
respectively.

Furthermore, we test FundusPosNet on G1020 dataset [10]
for the optic disc localization. There are 1020 images in this
dataset and each image is of 2423 × 3003 resolution. Fun-
dusPosNet detects OD centers for 979 images with a mean
Euclidean distance of 54.59. The model failed to predict OD
heatmap for remaining 41 images due to the poor visuality of
OD in these images.

V. DISCUSSION AND CONCLUSION
In this paper, we show that our proposed deep learning regres-
sion model performs exceptionally well on IDRiD and Mes-
sidor datasets for the OD and fovea landmarks localization
and their center detection. The model is very generic, and
with ground-truth data, it can be efficiently trained to local-
ize multiple landmarks in different medical image datasets
simultaneously.

Every layer in a robust deep learning model should con-
tribute effectivelywhile generating the desired output. Table 5
shows the encoder-decoder blocks’ attention in their last
two channels during OD and fovea landmarks prediction.
It is evident from the output that the regression model is
optimally regressing the pixels of landmark regions with
proper attention given in each encoder and decoder blocks.
We skip the demonstration of channel outputs for the last two
encoder blocks and the first decoder block as they represent
the deepest layers in the encoder-decoder path of the network,
and their output is hard to interpret as well as significantly less
intuitive.

In very minimal cases, we have observed that if the fundus
images have severe anatomical pathologies, FundusPosNet
fails to detect the OD and fovea centers precisely. It is
because the network is mistakenly identifying the pathologi-
cal deformations as the region of interest. Table 6 shows the
result of FundusPosNet for different visual quality fundus
images like good quality fundus image, inadequate qual-
ity fundus image, fundus image with not clearly visible
OD and macular regions, fundus images having pathology
regions brighter than the OD region, and fundus images
having pathologies with darker patches than the macular
region.

Although the proposed model is inspired by the revolution-
ary U-Net model, there are significant architectural differ-
ences between them. Table 7 lists the fundamental differences
between FundusPosNet and U-Net in terms of design and
implementation.
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