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ABSTRACT Waveguide problems are fundamental to elastic and acoustic wave propagation, where we are
interested in finding the propagation constants and modal patterns of waveguide modes. As the waveguide is
assumed uniform in one direction, the original 3-D problem can be converted into a so-called 2.5-D problem
by using the Fourier transform in that direction. However, the introduction of elastic metamaterials (EMM)
broadens the horizon of this subject, and new features are required in EMM waveguides that cannot be
obtained by most traditional waveguide solvers. In this work, a spectral element method (SEM) is developed
to simulate the elastic/acoustic waveguide problem in anisotropic media with anisotropic mass density and/or
negative index parameters. We design an anisotropic density EMM waveguide with our SEM solver to
demonstrate several intriguing phenomena. Comparisons with the traditional finite element method (FEM)
for several examples show the significant advantages of the SEM in term of accuracy and efficiency.

INDEX TERMS Elastic waveguide, spectral element method, metamaterials, anisotropic density media.

I. INTRODUCTION
Recently, elastic waveguide problems have gained much
attention due to various engineering applications, for exam-
ple, ultrasound characterization, non-destructive testing, and
structural healthmonitoring [1]–[3]. For various types of elas-
tic waveguides [4], the mode analysis [5], [6] is an important
research topic, because wave propagation and scattering phe-
nomena in a waveguide can be described as the superposition
of all of the propagation modes and evanescent modes. In this
class of problems, one is interested in solving the propagation
constants and the corresponding field distributions of individ-
ual modes in a given waveguide structure.

As an extension of the electromagnetic and acous-
tic waveguides [7]–[9], Lagasse proposes a finite ele-
ment method (FEM) for computing the eigenmodes of the
homogeneous elastic waveguides of arbitrary cross sec-
tions [10]; Kosmodamianskii et. al. derive the equation for
normal elastic waves in a longitudinally anisotropic cylin-
drical waveguide with a circular cross-section [11]; and
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Gravenkamp et. al. develop the scaled boundary finite ele-
ment method (SBFEM) for an inhomogeneous isotropic
elastic waveguide [12]. A semi-analytical finite element
method (SAFEM) has been developed to simulate the
solid-fluid couplingwaveguide [13]–[15] and an openwaveg-
uide with the absorbing boundary condition [16]. Moreover,
the spectral element method (SEM) is also used to solve the
piezoelectric waveguide problem [17]. All of these investiga-
tions focus on specific problemswith significant applications.

Recently, with the advent of elastic metamaterials (EMM),
various new and intriguing wave propagation phenomena can
be generated in such novel synthetic materials [18]–[21].
As EMMs can involve negative refractive index materials
and/or anisotropic mass density, most traditional numeri-
cal waveguide solvers such as the finite difference (FD)
method [22], FEM [23]–[25] and SEM [17], [26] have
not been modified to accommodate the modeling of such
EMM waveguides.

In recent years, the SEM has been successfully devel-
oped for analyzing the propagation and scattering of elastic
waves [27]–[30], acoustic waves [31], [32], and electro-
magnetic waves [33], [34]. As a special version of the
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high-order FEM, the SEM not only takes advantage of the
geometric flexibility of the FEM, but also has the high accu-
racy of spectral methods. Moreover, the use of the Gauss-
Lobatto-Legendre (GLL) polynomials for the nodal basis
functions makes the numerical error converges exponentially
with the order of basis functions. Therefore, at the same
accuracy requirement, the SEM requires much fewer degrees
of freedom (DOFs) than the FEM, so it can save huge com-
putational costs.

This investigation aims at developing an effective SEM for
an inhomogeneous elastic waveguide of an arbitrary cross
section applicable to both anisotropic solid materials and
all kinds of EMMs, for instance, negative index, anisotropic
mass density and so on, for the first time. In addition,
the waveguide system with both solids and fluids is also
treated by considering the fluid-solid coupling. The external
boundary of the waveguide cross section can allow different
boundary conditions based on the given general formula-
tions of the boundary terms, for example, the hard boundary
condition, the soft boundary condition, the Bloch periodic
boundary condition and the absorbing boundary condition for
an unbounded (open) waveguide. Numerical examples show
the significant advantages of the SEM in term of accuracy
and computation efficiency compared with the conventional
FEM as implemented by COMSOL. We also investigate
waveguides with anisotropic density that cannot be solved by
commercial solvers.

The organization of this paper is as follows. In Section II,
we will present the detailed weak formulation of the elas-
tic waveguide. The discretization by the SEM is shown in
Section III. Finally, the accuracy and efficiency of the SEM
are demonstrated by several examples in Section IV.

II. GOVERNING EQUATIONS AND WEAK FORMULATIONS
A. GOVERNING EQUATIONS
For a general anisotropic and inhomogeneous elastic meta-
material with a potentially anisotropic mass density, elastic
wave equations in frequency domain read

ρω2
· u+∇ · τ = 0 (1a)

τ = c : ε (1b)

ε = (∇u+∇uT )/2 (1c)

where ρ = (ρij)3×3 is the anisotropic mass density;ω denotes
the angular frequency, u is the particle displacement;
ε, τ are the 2nd-order strain and stress tensors; c is the
4th-order elastic tensor. In Voigt notation, cijkl can be con-
verted to a second-order tensor (Crs)6×6. The subscripts of
C and c satisfy the relations between (r, s) and (i, j, k, l):
1 ↔ 11, 2 ↔ 22, 3 ↔ 33, 4 ↔ 23, 5 ↔ 13 and 6 ↔ 12.
Therefore, the constitutive equation (1b) can be transformed
into a matrix form [35]. And the divergence of τ computed
by the left divergence operator can be expressed as

∇ · τ = êk∂xk · τjiêj ⊗ êi =
3∑
j=1

∂τji

∂xj
êi , τji,jêi (2)

where Einstein’s convention has been adapted, with the
repeated indices implying summation. The operators ‘‘⊗’’
and ‘‘·‘‘ represent the diadic product and the dot product,
respectively. Substituting (2) into (1a) yields

ω2ρijuj(x, y, z)+ τji,j = 0 (3)

The Latin subscripts i, j, k, . . . represent three-dimensional
indices and theGreek subscriptsα, β, . . . are two-dimensional
indices. It is well known that the waveguide problem is
actually a 2.5-dimensional problem, where the field is
three-dimensional depending on (x1, x2, x3) = (x, y, z) but
the materials are two-dimensional depending on (x1, x2).
When the propagation is along the +z-axis and the cross
section of the waveguide is uniform in the z-direction,
the phasor expression for displacement field u and the
operator∇ can be written explicitly as

u = êiui(x, y)e−γzzejωt (4a)

∇ = ê1
∂

∂x1
+ ê2

∂

∂x2
− ê3jkz ≡∇t − ê3γz (4b)

for any given waveguide mode, where êi and ui(x, y) denote
the i-th unit vector and its corresponding component of the
displacement field in Cartesian coordinates, respectively, and
γz = jkz = αz + jβz is the complex propagation constant
(the real variablesαz and βz are called the attenuation constant
and phase constant respectively). kz is the z-component of the
wave vector. In the following formulations, the time conven-
tion ejωt is omitted. Therefore, substituting (4) into (1c), the
strain tensor can be written as

ε = e−γzz


u1,1

u1,2 + u2,1
2

u3,1 − γzu1
2

u1,2 + u2,1
2

u2,2
u3,2 − γzu2

2
u3,1 − γzu1

2
u3,2 − γzu2

2
−γzu3


(5)

On the other hand, the stress tensor can be expressed as
τ = e−γzzτijêi ⊗ êj, and the components τij are indicated as

τij = Cr(i,j),r(k,α)uk,α − γzCr(i,j),r(k,3)uk (6)

where the subscripts of C come from the elements of a
symmetrical constant matrix r defined by

r =

 1 6 5
6 2 4
5 4 3


Obviously, τ is also symmetrical. Inserting (4)-(6) into (3),

we can obtain the governing equation of the elastic waveguide
as follows
• Component formulation:

γ 2
z `3ij3uj − γz[∂xα(`αij3uj)+ `3ijαuj,α]

+ ∂xα(`αijβuj,β )+ ω2ρijuj = 0 (7)

• The components of the coefficient tensor ` = `kijmêk ⊗
êi ⊗ êj ⊗ êm are denoted by

`kijm = Cr(i,k),r(j,m) (8)
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It is easy to see that (7) is a quadratic eigenvalue problem,
where γz = jkz = αz+ jβz is the eigenvalue and u denotes the
corresponding eigenvector. The goal of this work is to develop
the SEM for solving the eigenpairs (γz,u).

B. WEAK FORMULATION
Based on the framework of FEM, multiplying equation (7) by
the test function ϕ and integrating and using the integration
by parts for the second and fourth integrations, we arrive at
the weak form equation for the solid region

γ 2
z aij(uj, ϕ)− γz[bij(uj, ϕ)+ I1]+ qij(uj, ϕ)+ I2 = 0 (9)

The above bilinear functions can be written in detail as

aij(uj, ϕ) =
∫
0

ϕ†(`3ij3uj)dxdy

bij(uj, ϕ) =
∫
0

ϕ†(`3ijαuj,α)dxdy

−

∫
0

(∂xαϕ)†(`αij3uj)dxdy

qij(uj, ϕ) =
∫
0

ω2ϕ†(ρijuj)dxdy

−

∫
0

(∂xαϕ)†(`αijβuj,β )dxdy

I1 =
∫
∂0

ϕ†(nα`αij3uj)dx

I2 =
∫
∂0

ϕ†(nα`αijβuj,β )dx (10)

where 0 is the waveguide cross section; ∂0 denotes the
boundary of 0; n̂ = nα êα represents the unit outward
normal vector at the point on the edge ∂0; the superscript
‘‘†’’ denotes the complex conjugate. Because of the existence
of boundary integral items I1 and I2, we need one or the
combination of the following boundary conditions.

C. BOUNDARY CONDITIONS
In order to solve the propagation constant γz within a given
waveguide, for the external boundary integral −γzI1 + I2,
we need the suitable boundary conditions, such as the hard
boundary condition, the soft boundary condition, the Bloch
periodic boundary condition and the absorbing boundary
condition.

1) Hard boundary condition reads u = 0. Therefore
−γzI1 + I2 = 0 and the region of the integration 0
is replaced by 0\∂0.

2) Soft boundary condition reads n̂ · τ = 0. According
to (6), we have

nαταi = nα[−γz(`αij3uj)+ `αijβuj,β ] (11)

Substituting (11) into the external boundary integral,
we have−γzI1+I2 =

∫
∂0

n̂·τdx in view of n̂·τ = njτji
and n3 = 0 in the waveguide problem. Therefore,
the boundary integrals vanish and the region of the
integration is unchanged.

3) By the Bloch theorem [36], we first obtain

uj(kt , r+ a) = uj(kt , r)e−jkt ·a (12)

where k = kt + ẑkz is the Bloch wave vector, r and
a are the position vectors on the boundary ∂0 and the
lattice translation vector, respectively. Define the Bloch
periodic subspace HB

p (0) = {v ∈ H
1(0) : v(r + a) =

v(r)e−jkt ·a on ∂0}, whereH1(0) = {v ∈ L2(0) :∇tv ∈
L2(0)2}. For any ϕ, uj belonging to HB

p , from I1 and I2
in (10), note that the normal vectors defined on a pair
of periodic boundary have opposite directions, we can
obtain the external boundary integral I1 = I2 = 0. Con-
sequently, the external boundary integrations vanish for
all the opposite boundaries (BPBC) by using the Bloch
periodic boundary condition on the external boundary.
Meanwhile, the Bloch periodic boundary condition
waveguide problem can be transformed into the follow-
ing equivalent waveguide problemwith purely periodic
boundary conditions. When uj are written as the plane
wave form uj(kt , r) = ũj(kt , r)e−jkt ·r, we can obtain the
periodic boundary conditions ũj(kt , r + a) = ũj(kt , r)
arising from (12). Therefore, the corresponding peri-
odic subspace can be defined by

Hp(0) = {v ∈ H1(0) : v(r+ a) = v(r) on ∂0} (13)

For any ϕ, uj belonging toHp, it is easy to check that the
external boundary integrals are still zero. By replacing
the operator∇t with∇t− jkt in (9), we arrive at a new
scheme

γ 2
z ãij (̃uj, ϕ)− γz̃bij (̃uj, ϕ)+ q̃ij (̃uj, ϕ) = 0 (14)

where the bilinear functions can be written as

ãij(̃uj, ϕ) =
∫
0

ϕ†(`3ij3̃uj)dxdy

b̃ij(̃uj, ϕ) =
∫
0

ϕ†[`3ijα (̃uj,α − jkα ũj)]dxdy

−

∫
0

(∂xαϕ − jkα)†(`αij3̃uj)dxdy

q̃ij (̃uj, ϕ) =
∫
0

ω2ϕ†ρij̃ujdxdy

−

∫
0

(∂xαϕ−jkα)†[`αijβ (̃uj,β−jkβ ũj)]dxdy

(15)

4) In our work, the absorbing boundary condition is used
to truncate the infinite external boundary when the
waveguide is unbounded in the transverse directions.
From [28], the absorbing boundary condition for the
scalar mass density is expressed as

t = CLρ(v · n̂)n̂+ CTρ(v− (v · n̂)n̂) (16)

where t is the boundary traction, v is the veloc-
ity field on the surface, and CL , CT represent the
material bulk speed of longitudinal and transverse
waves in the background outside the computational
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region 0, respectively. However, in this work we treat
anisotropic density, so the boundary function is rewrit-
ten as

n̂ · τ = jωρ · [CTu+ (CL − CT )(njuj)n̂] (17)

Accordingly, the scalar expressions with the Einstein
notation are written as

njτji = jωρij[CT uj + (CL − CT )(n1u1 + n2u2)nj]

(18)

Moreover, noting that n3 = 0, the external boundary
integrations in (9) are replaced by

−γzI1 + I2 = dij(uj, ϕ) (19)

The above bilinear function can be written in detail as

dij(uj, ϕ) = jω
∫
∂0ext

ϕ†[ρijCT

+ (CL − CT )njρiαnα]ujdx (20)

The weak formulations of the elastic waveguide for
the pure solid model with the Bloch periodic boundary
condition and the absorbing boundary condition are
expressed compactly as

γ 2
z aij(uj, ϕ)− γzbij(uj, ϕ)+ qij(uj, ϕ)+ I3 = 0

(21a)

I3 =
{
0 for Hard, Soft and BPBC
dij(uj, ϕ) for ABC

(21b)

The above is for the case where all materials are solid in the
waveguide. If part of the waveguide is made of fluid, we need
to consider the special coupling between fluid and solid in the
eigenvalue problem.

D. THE FLUID-SOLID COUPLING SYSTEM
When the waveguide is filled with an inhomogeneous
medium including parts of fluid and solid, we need to con-
sider the fluid-solid coupling. The symbol ‘‘f ’’ is introduced
to denote the local fluid region f , which shares the common
interface ∂0fs with the local solid region s shown in Fig 1.
For the fluid-solid coupling system, we not only derive the
weak form in the fluid region, but also give the continuity
condition of the fluid-solid at the interface defined by ∂0fs.
First, the governing equation for the potential χ , defined as
v = ρ−1f ∇χ , in the fluid region is introduced from [29]

∇ · (ρ−1f ∇χ )+ κ−1ω2χ = 0 (22)

where ρf is the density of fluid/acoustic materials and κ is the
bulk modulus. The phasor expression for potential is shown
as χ = χ (x, y)e−γzz. Multiplying (22) by the test function ψ
and integrating, after using the integration by parts, we obtain
the weak form for the fluid region

γ 2
z e(χ,ψ)− f (χ,ψ)+ I4 = 0 (23)

FIGURE 1. The solid region s (left) and the fluid region f (right) with an
interface ∂0fs.

The above bilinear functions can be expressed as follows

e(χ,ψ) =
∫
0

ψ†ρ−1f χdxdy

f (χ,ψ) =
∫
0

(∂αψ)†(ρ
−1
f ∂αχ )− ψ†κ−1ω2χdxdy

I4 =
∫
∂0

ψ†(nαρ
−1
f ∂αχ )dx (24)

Second, when the boundary integral −γzI1 + I2 in (9) is
restricted to the interface ∂0fs between the solid region and
the fluid region, because of the continuity condition of the
traction n̂ · τ = jωχ n̂ [29] and the fact n3 = 0, it follows that

−γzI
fs
1 + I

fs
2 =

∫
∂0fs

ϕ†jωχ (x, y)nidx , I fs5 (25)

Finally, for the fluid region, similarly, the external bound-
ary integration I4 satisfies

I4

=

 0, for Hard, Soft, and BPBC

jω
∫
∂0ext

ψ†(ρf CL)−1χdx, for ABC

(26)

On the other hand, by replacing the normal component of
the velocity n̂ · vfluid = n̂ · (ρ−1f ∇χ ) in the fluid region with
the normal component of the velocity n̂ · (jωu) in the solid
region [29], I fs4 can be derived as

I fs4 = jω
∫
∂0fs

ψ†njujdx (27)

Compactly, the weak formulations of the fluid-solid cou-
pling system are shown as (28), as shown at the bottom of the
next page.

Note that, when the cladding medium outside a core of
the waveguide is filled with solid, −γzI1 + I2 is replaced
by I3 shown in (21b) and I4 = 0. Conversely, when the
cladding is a fluid region, −γzI1 + I2 = 0 and I4 is shown
in (26).

The above completes the formulation of elastic waveguide
and its weak formulations. In the next section, we will intro-
duce the discretization scheme to calculate the propagation
constants γz of the waveguide and their corresponding modes
(eigenvectors).
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III. BASIS FUNCTIONS AND DISCRETIZATION
A. BASIS FUNCTIONS
In order to approximate the unknown field component uj,
we apply the Gauss-Lobatto-Legendre (GLL) polynomials as
the basis functions. The N th-order 1D GLL polynomials are
defined as

φ(N )
r =

−1
N (N + 1)LN (ξr )

(1− ξ2)L ′N (ξ )

(ξ − ξr )
, r ∈ N+ (29)

where the interpolating points ξr ∈ [−1, 1], and they are
chosen as the GLL points which are the roots of equation
(1 − ξ2r )L

′
N (ξr ) = 0, and L ′N (ξ ) is the derivative of the

N th-order Legendre polynomial. Note that, the Legendre
polynomials are orthogonal polynomials that allow to reduce
the interpolation errors compared to the standard Lagrange
polynomials used in the FEM. uj can be approximated by
using the tensor-product ϕ(N )

p = φ
(N )
r (ξ )φ(N )

s (η) of two 1D
nodal basis functions, where the subscript p is the compound
index of (r, s). Let the physical domain be subdivided into
a number of non-overlapping quadrilateral elements, so that
each element can be mapped into the reference element
[−1, 1] × [−1, 1] by the mapping x(ξ, η), y(ξ, η) [7], [37].
For example, the irregular element κ with curved edges
can be mapped to the reference element κ̂ by using the
curvilinear mapping shown in Fig 2. While the correspond-
ing invertible mappings are applied to the basis function
ϕ(x, y) = ϕ̂(ξ, η) and ∇tϕ(x, y) = J−1∇̂t ϕ̂(ξ, η) , Jαϕ̂êα ,

where J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
is the Jacobian matrix, as derived

in [27], [33], [34].

FIGURE 2. The 3rd-order curvilinear mapping between κ and κ̂ . (Left) A
second-order geometrical curved element κ in the physical domain.
(Right) The corresponding reference element κ̂ for the 3-rd SEM (N = 3),
where the 16 points are GLL points.

B. DISCRETE FORMS
In general, three unknown components uj of the displacement
field can be approximated by

uj =
nsj∑
q=1

uj,qϕ(N )
q (x, y) (30)

where nsj represents the number of nodal degrees of free-
dom (DOFs) of the component uj for the solid region. Thus,

the total number of DOFs in the solid region is Ns =
3∑
j=1

Nsj.

Inserting (30) into (18), we arrive at the quadratic eigenvalue
problems

[γ 2
z
¯̄As − γz ¯̄Bs + ( ¯̄K s

+
¯̄M s)+ ¯̄T s]u = 0 (31)

where u , [u1,u2,u3]T , uj , (uj,1, · · · , uj,nsj ), the sub-

script ‘‘s’’ means the solid region and ¯̄T is the boundary inte-
gral matrix, which is equal to zero when using the hard, the
soft and the Bloch periodic boundary condition, and nonzero
for the absorbing boundary condition. After the invertible
mapping, the elemental matrices consist of the following
parts

( ¯̄A(κ̂)ik )pq =
∫ 1

−1

∫ 1

−1
|J |ϕ̂†p`3ik3ϕ̂q dξdη

( ¯̄B(κ̂)ik )pq =
∫ 1

−1

∫ 1

−1
|J |ϕ̂†p(`3ikαJαϕ̂q) dξdη

− |J |(Jαϕ̂p)†(`αik3ϕ̂q)dξdη

( ¯̄K (κ̂)
ik )pq = −

∫ 1

−1

∫ 1

−1
|J |(Jαϕ̂p)†(`αikβJβ ϕ̂q)dξdη

( ¯̄M (κ̂)
ik )pq = ω2

∫ 1

−1

∫ 1

−1
|J |ρik ϕ̂†p ϕ̂qdξdη

( ¯̄T (κ̂)
ik )pq = jω

∫ 1

−1
|Jb|ϕ̂†p[ρikCT

+ (CL − CT )nkρiαnα]ϕ̂qdξ (32)

where p, q = 1, 2 · · · ,N+1, the superscript ‘‘(κ̂)’’ means the
reference element and Jb arises from the mapping from any
edges to reference domain [−1, 1]. Meanwhile, ¯̄T s arising
from the absorbing boundary condition is expressed in (32).
Similarly, uj, χ are written as

u(s)j =
nsj∑
q=1

u(s)j,qϕ
(s)
q , w(f )

=

nf∑
q=1

w(f )
q ϕ

(f )
q (33)

where nf denotes the number of the total nodal DOFs for
the fluid region. Substituting (33) into (28), we arrive at the
fluid-solid coupling eigenvalue problem (34), as shown at
the bottom of the next page, based on the Bloch periodic

boundary condition, where ¯̄R(s,f ) = [ ¯̄R(s,f )1 , ¯̄R(s,f )2 , ¯̄R(s,f )3 ]T ,
¯̄Q(f ,s)

= [ ¯̄Q(f ,s)
1 , ¯̄Q(f ,s)

2 , ¯̄Q(f ,s)
3 ], w , (w1, · · · ,wnf ). The

elemental matrices are given as following

(A(f )0 )pq =
∫ 1

−1

∫ 1

−1
|J |ϕ̂(f )†p ρ−1f ϕ̂(f )q dξdη

{
γ 2
z aij(uj, ϕ)− γz[bij(uj, ϕ)+ I1]+ qij(uj, ϕ)+ I2 + I

fs
5 = 0

γ 2
z e(χ,ψ)− f (χ,ψ)+ I4 + I

fs
4 = 0

(28)
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(K (f )
0 )pq = −

∫ 1

−1

∫ 1

−1
|J |(Jαϕ̂(f )p )†ρ−1f (Jαϕ̂(f )q )dξdη

(M (f )
0 )pq =

∫ 1

−1

∫ 1

−1
|J |ϕ̂(f )†p κ−1ω2ϕ̂(f )q dξdη

( ¯̄Q(f ,s)
i )pq = jω

∫ 1

−1
|Jb|ϕ̂(f )†p niϕ̂(s)q dξ

( ¯̄R(s,f )i )pq = jω
∫ 1

−1
|Jb|ϕ̂(s)†p ϕ̂(f )q nidξ (35)

The remaining elemental matrices can be obtained by
replacing the superscript (κ̂) of (32) with (s). After these
matrices are assembled, the quadratic eigenvalue prob-
lems (34) is converted to a first order generalized eigenvalue
problem (36), as shown at the bottom of the page, for γz
referring to [38], where I and 0 denote the identity matrix
and zero matrix. Then (36) can be solved by using the eigen-
value solver ‘‘eigs’’ in MATLAB based on ARPACK library
routines.

IV. NUMERICAL RESULTS
In this section, several examples are presented to verify the
high accuracy and efficiency of the SEM for simulating elas-
tic waveguide problems. The memory, the number of DOFs
and the accuracy of the SEM are compared with the commer-
cial FEM solver COMSOL. Finally, we conduct a numerical
experiment on an elastic matematerial(EMM) core which
cannot be solved by COMSOL, because of the presence of
anisotropic density. Before the experiments, there are some
preparations. First, in the simulation of the Bloch periodic
boundary condition waveguide problem, the wave vector is
defined by

k = k(x̂ sin θ cosφ + ŷ sin θ sinφ + ẑ cos θ)

where k = ω/vi, vi is the velocity of the P wave or S wave
in the background medium and (θ, φ) are the elevation and
azimuthal angles of the propagation direction. Second, for
convenience, we introduce the notations in our tables and
figures:
1) vp and vs are the velocities of the P (longitudinal) wave

and the S (transversal) waves.
2) ρ is the mass density.
3) λ and µ are Lamè constants.
4) kNi,z is the i-th eigenmode wavenumber kz obtained in

the z direction by the N -th order SEM.

5) The reference value k̄10i,z is the solution of the 10th-order
SEM with an extremely fine mesh.

6) The relative error is calculated by |kNi,z − k̄10i,z|/|k̄
10
i,z|.

For the quadratic eigenvalue problems, the solver will pro-
vide two opposite eignvalues (γz and −γz). To determine
the correct sign of the propagation constant, we introduce
two quantities: the time averaged Poynting vector [39] p =
Re(−jωu·τ ∗)/2 and the corresponding power Pz=

∫
0
ẑ·pdxdy

in the cross section. The positive Pz is the criterion for
choosing the correct sign of γz in the following numerical
examples. The SEM is implemented by using Matlab on
a MacBook Pro 2018 PC with 16 GB Memory and Intel
Core i7 CPU. COMSOL was used for comparison on the
same PC. The computational time and memory are displayed
with the ‘‘tic’’, ‘‘toc’’ function and ‘‘memory’’ function in
Matlab, respectively.

A. BLOCH PERIODIC UNIT CELL
In order to verify the accuracy and convergence of the
proposed SEM, we first consider a simple inhomogeneous
anisotropic waveguide with the Bloch periodic boundary con-
dition. The Bloch periodic unit cell has many applications
in lithography and the design of elastic metasurfaces, which
act as a plate-like waveguide connecting two elastic half-
spaces [40]. The configuration of the unit cell is shown
in FIG. 3, where nine circular lead cores are embedded
in the zinc square lattice. These circles with different radii
are spaced one millimeter apart. The material properties are
λPb = 3.142× 1010 N/m2, µPb = 5.986× 109 N/m2, ρPb =
11340 kg/m3. The cladding is a transversely isotropic mate-
rial with C11 = 16.5 GPa, C12 = 3.1 GPa, C13 = 5.0 GPa,
C33 = 6.2 GPa, C55 = 3.96 GPa and ρZn = 2700kg/m3. The
frequency f = 5 MHz and the unit cell is 2 cm containing
multiple wavelengths, so that it is a relatively large scale
problem.
The numerical results of kNi,z obtained by the 5th-order

SEM, the 5th-order FEM in COMSOL and the 10th-order
SEM are shown in Table 1 (the negligible imaginary part is
not shown). In view of the maximum interpolation order of
COMSOL is only 5, 10th-order SEM is taken as the refer-
ence value. It is observed that the 5th-order SEM matches
excellently with both the 5th-order COMSOL and 10th-order
SEM. On the other hand, as illustrated in Table 2, to achieve
the similar accuracy, when searching for 20 modes at f = 5
MHz, COMSOL requires 1.5 times DOFs, 1.8 times CPU

{γ 2
z

[
¯̄As 0
0 Af0

]
− γz

[
¯̄Bs 0
0 0

]
+

[
¯̄K s
+
¯̄M s ¯̄R(s,f )

¯̄Q(f ,s) K f
0 +M

f
0

]
}

(
u
w

)
= 0 (34)


¯̄Bs 0 −

¯̄K s
−
¯̄M s

−
¯̄R(s,f )

0 0 −
¯̄Q(f ,s)

−K f
0 −M

f
0

I 0 0 0
0 I 0 0



γzu
γzw
u
w

 = γz

¯̄As 0 0 0
0 Af0 0 0
0 0 I 0
0 0 0 I



γzu
γzw
u
w

 (36)
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FIGURE 3. Schematic view of a unit cell with nine lead circles (r1 = 1 mm,
r2 = 1.5 mm, r3 = 2 mm). They are separated by the interval of d = 1 mm
and are embedded in the anisotropic zinc. The square outer boundaries
are set as the Bloch periodic condition.

TABLE 1. kz (rad/s) of the elastic BPBC waveguide in FIG. 3 obtained by
the SEM and COMSOL.

time and 1.3 times memory used by the SEM. Moreover, the
comparison when twice the frequency f = 10 MHz is also
shown in Table 2. We can also see that when the numbers
of element and DOFs are taken to be similar, COMSOL is
not as accurate as the SEM and requires a little more com-
putational costs. Thus, the proposed SEM is more efficient
than the FEM, mainly because of the spectral accuracy (the
exponential convergence) of the SEM shown in FIG. 5. The
magnitude distributions of uuu(x, y) for the 1st, 7th, 18th mode
are displayed in FIG. 4. All of them propagate in the lead core
with different radii.

FIGURE 4. Magnitude distributions of uuu(x, y ) corresponding to ki,z
(i = 1,7,18) of the Bloch periodic boundary condition waveguide shown
in FIG. 3. (a)-(c) correspond to the 1st, 7th and 18th mode.

B. RESONANT STRUCTURE OF AN EMM
In order to verify that our SEM solver is accurate and efficient
for the inhomogeneous waveguide with solid-fluid coupling
and Bloch periodic boundary condition, we first consider
a resonant structure in the building block of a left-handed
material proposed in [21]. This kind of resonant structure will
bring negative elastic parameters within a certain frequency

FIGURE 5. The second order curvilinear quadrilateral mesh
with 244 elements and relative errors of eigenmodes obtained by using
the different order SEM for the Bloch periodic boundary condition
waveguide shown in FIG. 3.

range and the cross section of the unit cell, a rubber coated
water cylinder embedded in a foam host, is shown in FIG. 6.
The lattice constant is a and the radius of the rubber and water
is 0.32a and 0.24a, respectively. When we set a = 1 m,
the corresponding frequency is chosen as 34.887 Hz referring
to [21]. In addition, the material parameters are listed in
Table 3 and the Bloch periodic boundary condition is used in
the example, (θ, φ) = (0, 0) and k = ω/vs, vs is the velocity
of S wave in the foam. Table 4 shows that the numerical
solutions of this inhomogeneous isotropic waveguide with
Bloch periodic boundary condition obtained by the SEM
and COMSOL agrees well. On the other hand, as illustrated
in Table 5, the proposed SEM is more efficient than the
FEM in terms of the DOFs and memory. Moreover, from the
subgraph (a) and (c) of FIG. 7, we can see that there is a
quadrupolar resonance in the rubber region for the first mode
produced by the P wave, due to the much smaller vp of the
rubber than those in the background foam and the water core.
Besides, as shown in the subgraph (b) and (d) of FIG. 7, a total
reflection occurs at the boundary between the rubber region
and the water core for the second mode, because of the much
larger vp of the water in Table 3.

FIGURE 6. The cross section of the resonant structure for a left-hand
material with a rubber coated water cylinder embedded in a foam host,
with their material properties listed in Table 3.

C. OPTICAL FIBER MODEL
Next, to verify the absorbing boundary condition formu-
lation for an open (unbounded) inhomogeneous isotropic
waveguide, we consider the optical fiber. It is a common
optical waveguide consisting of the cladding and the fiber
core, and its elastic waveguide properties are of significant
interest [41], [42]. The cross section of the optical fiber is
shown in FIG. 8, which consists of the core and the cladding.
The radius of the core and the cladding is a = 4.1 µm and
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TABLE 2. The comparison of the FEM and the SEM for the elastic Bloch periodic boundary condition waveguide in FIG. 3.

TABLE 3. Parameters for the resonant structures in FIG. 6.

FIGURE 7. The distributions of u correspond to the first two modes in the elastic resonant structure waveguide in FIG. 6.
The first mode in (a) and (c) exhibits a quadrupolar resonance in the rubber region. The second mode in (b) and
(d) shows a total reflection at the interface between the rubber region and the water region.

TABLE 4. The first two values of kz (rad/s) of the elastic resonant
structure waveguide in FIG. 6 obtained by the SEM and COMSOL.

3a = 12.3 µm, respectively; the cladding is pure SiO2 and
the core is filled with one of the three different materials
as shown in Table 6. The SEM is employed to simulate the
elastic waveguide properties of this optical fiber. Besides,
to verify the accuracy and effectiveness of the SEM for solv-
ing the solid-fluid system, a fluid cladding is also considered.
The material parameters are included in Table 6. In order to
simulate the unbounded waveguide structure, the absorbing
boundary condition is used to truncate the cladding so that
the simulated structure mimics an infinite cladding region.

1) NORMAL ELASTIC MATERIALS
First, to verify the accuracy of the SEM solver for the inhomo-
geneous open waveguide problems, we conduct a numerical
experiment on the actual optical quartz fiber model consisting
of cladding 1 and core 1, and the frequency is chosen as 3GHz
as in realistic application [43]. The agreement among the
three results in Table 7 verifies the accuracy of our scheme.
Besides, we observe that the real part of the higher-order

FIGURE 8. The cross section of the optical fiber (a = 4.1 µm), with an
unbounded cladding truncated by an absorbing boundary condition at
r = 3a. The core and cladding materials can take the combination of
materials listed in Table 6.

mode gradually decreases while the imaginary part falling
into different orders of magnitude gradually increases. The
phenomenon indicates that the energy loss of the higher-order
mode gradually increases. The relative errors and compu-
tational costs of the SEM and the FEM are illustrated in
Table 8. For a similar mesh, the proposed 3rd-order SEM
and 4th-order FEM can achieve similar accuracy (3E-6). The
corresponding memory used by FEM is more than SEM,
illustrating the proposed SEM is more efficient than FEM.
Moreover, it can be observed that the 6th-order SEM can
achieve higher accuracy (3E-7) with less memory, due to the
spectral accuracy of the SEM solver. Moreover, waves are
well absorbed at the outer absorbing boundary.

2) DOUBLE NEGATIVE INDEX ELASTIC METAMATRIAL (EMM)
CORE
Second, for the same size model, we now consider the
effects of the EMM core with a negative index. We design
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TABLE 5. The comparison of FEM and SEM for the elastic resonant structure waveguide in FIG. 6.

TABLE 6. Parameters for the cores and claddings of the optical fiber in FIG. 8.

TABLE 7. kz (Mrad/s) of the elastic fiber-optics waveguide in FIG. 8 obtained by the SEM and COMSOL for core 1 and cladding 1 listed in Table 6.

TABLE 8. The comparison of FEM and SEM for the elastic fiber-optics waveguide in FIG. 8 with core 1 and cladding 1 listed in Table 6.

FIGURE 9. Contour maps of ux , uy , uz in the open fiber-optics waveguide problem in FIG. 8 with an impure SiO2 core 1. (a)-(d)
correspond to the first to the fourth mode. No impurity shown in the contour maps indicate that no spurious modes exist and
waves are well absorbed at the outer absorbing boundary.

an example on a simultaneously negative mass density and
bulk modulus EMM core 2 constructed by reference [18],
embedded in Cladding 1 in Table 6. The frequency is chosen
as 0.3 GHz. Through calculating the velocities of P-wave and
S-wave respectively shown in Table 6, we find the velocity of

S-wave is an imaginary number, thus the S-wave is forbidden
in this material. Again, kNi,z (N = 5,10) obtained by the two
methods are shown in Table 9. It is observed that the SEM
solution matches excellently with the reference results and
the COMSOL’s results, verifying that our scheme is suitable
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TABLE 9. kz (Mrad/s) of the elastic waveguide with either EMM core 2 or core 3 and cladding 1 in FIG. 8 obtained by the SEM and COMSOL.

TABLE 10. The comparison of FEM and SEM with EMM core 2 in Table 9.

FIGURE 10. Magnitude distributions of uuu(x, y ) for eignmodes
corresponding to ki,z (i = 1, · · · ,6) obtained in the open fiber-optics
waveguide problem with EMM core 2 in cladding 1 in FIG. 8. (a)-(f) cor-
respond to the first to the sixth mode. All of them propagate only at the
interface between the core and cladding because of the presence of the
negative index material, different from the normal material core 3
in FIG. 11.

for the negative index materials. Meanwhile, as illustrated
in Table 10, DOFs and the memory used by COMSOL
with 5th-order basis functions is 2.1 and 1.4 times more
than 5th-order SEM to achieve the similar accuracy (8E-7).
Evidently, it shows the high computation efficiency of the
SEM. Furthermore, the magnitude distributions of uuu(x, y)
corresponding to ki,z (i = 1, · · · , 6) with EMM core 2 are
plotted in FIG. 10. On the other hand, instead of core 2,
we conduct another experiment on core 3, whose density and
bulk modulus are positive. The agreement in Table 10 verifies
the accuracy of the results. FIG. 11 plots the distribution of uuu
corresponding to ki,z (i = 1, 2, 3) with core 3. In contrast to
the previous configuration, we observe in FIG. 10 that these
modes in the waveguide of EMM core 2 propagate only at
the interface between the core and cladding because of the
presence of the negative index material.

Furthermore, we notice that one propagation mode exists
under low frequencies (fd/c ∈ [6.5 × 10−6, 9 × 10−3],
d = 2a) as shown in FIG. 12. Within this frequency range,

FIGURE 11. Magnitude distributions of uuu(x, y ) for eignmodes
corresponding to ki,z (i = 1,2,3) obtained in the open fiber-optics
waveguide problem in FIG. 8 with the normal material core 3 in
cladding 1. (a)-(c) correspond to the first to the third mode. In the
contrast to the EMM core 2 in FIG. 10, the fundamental mode found in
the normal material open fiber-optics waveguide is concentrated in the
whole core region.

FIGURE 12. The dispersion curves versus with frequency (d = 2a, c = vs
of cladding 1) for the fundamental mode in the waveguide with EMM
core 2 and cladding 1 in FIG. 8. (a) The real part of kz . Within the low
frequency fd/c ∈ [6.5× 10−6,9× 10−3], the real part of kz does not vary
with the frequency. (b) The phase velocity. The negative value means the
direction of the phase velocity is −ẑ , antiparallel to the +ẑ . Thus, the
backward wave propagation phenomenon is found in this mode.

different from normal elastic materials, the increase of the
frequency does not alter the distribution interval of the real
part of kz (the phase constant βz = −5.23 × 105) with the
negligible imaginary part (the attenuation constant αz) on the
basis of the positive Pz. Through the observation in FIG. 13,
we can find the propagation mode is caused by the P wave
and concentrated in the core. In addition, in order to explain
the existence of this mode, the phase velocity vp = ω/βz is
shown in FIG. 12 (b). It can be found that this mode exhibits
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TABLE 11. kz (×105) for core 3 in water cladding in FIG. 8 obtained by the SEM and FEM.

FIGURE 13. The distributions for u(x, y ) for the first eigenmode at low frequency when
the waveguide is filled with EMM core 2 in Figure 12. This mode remains the same in
the frequency range of fd/c ∈ [6.5× 10−6,9× 10−3]. (a) The magnitude distribution of
u(x, y ). (b) The 3D vector of u. (c) The z-component of Poynting vector.

backward wave propagation in the cross section, which is
defined as the phase velocity direction (−ẑ) antiparallel to
the Poynting vector (+ẑ), caused by the negative-index mate-
rials [44]. Hence, different from normal elastic materials, the
application of EMMs will bring some special eigenmodes in
the elastic waveguide.

3) SOLID-FLUID COUPLING MODEL
In the previous case, the cladding was assumed unbounded,
which may not be realistic. Actually, the external medium
of the most practical open waveguide problems is fluid
(for example, either air or water). Therefore, here we exam-
ine the same size model to verify the fluid-solid coupling
system of the open waveguide problems at the frequency
of 60 MHz. In this case, the cross section consists of the solid
core 3 and the fluid cladding 2. Noting that COMSOL does
not provide the absorbing boundary condition in the mode
analysis of the acoustic module. So for comparison, we set
the impedance value of the plane wave as an approximation
in COMSOL when the outer boundary is far enough. The
agreement is good as illustrated in Table 11, demonstrating
that the proposed SEM is capable of treating the absorbing
boundary condition solid-fluid problem. Besides, the relative
errors (|kNi,z − k̄

10
i,z|/|k̄

10
i,z|) obtained by different orders of

SEM confirm the exponential convergence in FIG. 14. Next,
we give a detail discussion about the third mode, whose atten-
uation constant is almost zero. First, as observed in FIG. 15,
different from other modes, the propagation of this mode
concentrates in the core. The reason for this phenomenon is
that the third mode may be caused by the transversal wave,
which cannot be transmitted into the fluid region. Moreover,
as indicated in [33], for an exact integration [(N + 1)th-order
GLL quadrature in each element] of the second-order

FIGURE 14. Relative errors of the first four modes of the solid-fluid open
fiber-optics waveguide problem in FIG. 8. Note that the error curve of the
third mode are straight lines if one groups the even and odd orders
separately, because the even and odd orders have different offsets.

FIGURE 15. Magnitude distributions of u(x, y ) for these eignmodes
obtained in solid (core 3) - fluid (Water) open fiber-optics waveguide
problem in FIG. 8. (a)-(d) correspond to the first to the fourth modes.
Note that different from other modes, the propagation of the third mode
concentrates in the core.

geometrical modeling, the errors of mode 3 are straight lines
if one groups the even and odd orders separately, and the even
and odd orders have different offsets. Therefore the relative
error of this mode is reasonable.

D. EMM WITH ANISOTROPIC DENSITY
In addition to themetamaterials with negative index discussed
above, the metamaterials with anisotropic mass density have
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attracted more and more attention recently. Because the
equivalent model with effective anisotropic mass density can
describe the dynamic behavior of the original lattice system in
all directions. Hence, we conduct one numerical experiment
on one anisotropic density core that cannot be simulated by
some traditional numerical methods. Besides, in this section,
the formulation of phase velocity obtained by elastic tensorC
and isotropic density ρ in literature [45] is extended to one
suitable for anisotropic density ¯̄ρ = (ρij)3×3. Note that the
explanations of the symbols are referred to reference [45].
Starting with time domain governing equation

¯̄ρ ·
∂2uuu
∂t2
−∇ · τττ = 0 (37)

Multiplying both sides by the inverse of ¯̄ρ, the scalar
expressions for a homogeneous medium are arrived at

∂2ui
∂t2
= ( ¯̄ρ−1)im · cmjkl

∂2uk
∂xl∂xj

(38)

After denoting 0ik = cijklnjnl , where nj is the component
of the unit propagation vector n and multiplying both sides
by pl , the components of the unit polarization vector colinear
with the displacement. The final eigenvalue formulation is
obtained

[( ¯̄ρ−1)im · 0mlpl − v2δil]pl = 0 (39)

where v2 is the eigenvalue.
The cross section centered at (0,0) m is shown in FIG. 16;

the width of the square cladding and the square core is 0.5 m
and 0.11 m, respectively. The cladding is zinc with isotropic
material parameters {vp, vs} = {4820.7, 2361.6} m/s and the
mass density is 7100 kg/m3. The core is an anisotropic EMM
with the effective elastic coefficients C11 = 36.63 GPa,
C12 = 5.57 GPa, C13 = 13.53 GPa, C22 = 18.83 GPa,
C23 = 7.84GPa, C33 = 48.38GPa, C44 = 12.41GPa, C55 =

6.69 GPa, C66 = 2.272 GPa. The frequency we choose is f =
16 kHz and corresponding effective anisotropic mass density
represent ρEMM = diag{6277, 3168, 2700} kg/m3 according
to [20]. The anisotropic mass density is frequency-dependent
and caused by the different locally resonant frequencies along
different directions in the microstructure design, depending
on the inverse proportional function ρeff,i = a+b/(ω2

i −ω
2)

[20], [46], where a, b are the positive constants given by the
detailed model parameters and ωi is the locally resonance
frequency along the i direction (i = x, y, z). Note that ω1
is the smallest, the ρEMM is certainly produced by the fre-
quency below and close to the ω1, leading to the resonance
phenomena dominated by the ux . Besides, the velocity of
EMM along n = (0, 0, 1) calculated through equation (37)
is {vp, vs1, vs2} = {4233, 1979.2, 1032.4} m/s, smaller than
the cladding. Therefore, the absorbing boundary condition is
used to truncate the cladding.

First, the good agreement between the 5th-order SEM
numerical results and the 10th-order results of the extremely
fine mesh is demonstrated in Table 12. Then, the relative
errors of the first three modes plotted in FIG. 17 indicate

FIGURE 16. The cross section of the anisotropic density waveguide
consist of a square EMM core and an unbounded Zinc cladding truncated
by a square outer absorbing boundary condition boundary.

TABLE 12. kN
i,z of the anisotropic mass density EMM waveguide problem

in FIG. 16.

FIGURE 17. Relative errors of the first three modes for the anisotropic
mass density EMM core waveguide problem in FIG. 16.

FIGURE 18. Magnitude distributions of uuu correspond to ki,z (i = 1,2,3)
of the anisotropic density EMM core in FIG. 16. (a)-(c) correspond to the
first to the third modes. All of them are dominated by ux . In contrast to a
normal material core, no modes dominated by uy and uz are found in
this EMM waveguide.

the exponential convergence. Moreover, the magnitude dis-
tributions of u are plotted in FIG. 18 and all of them in
the xy plane are along the x direction and dominated by the
x-component of the u. On the other hand, we conduct another
experiment on an normal anisotropic elastic core with the
isotropic mass density ρ = 3772.5 kg/m3 (the geometric

average 3
√∏3

i=1 ρii) and the same elastic coefficients C . The

magnitude distributions of u in this waveguide with normal
materials are plotted in FIG. 19 and they are dominated
by the components along three principal axis respectively.
In contrast to the configuration with an EMM core, it can be
found that the propagation mode dominated by uy, uz shown
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FIGURE 19. Magnitude distributions of uuu for eignmodes ki,z (i = 1, ·,4)
obtained in an open elastic waveguide problem with a normal isotropic
density core with the EMM core in FIG. 16 replaced by an isotropic mass
density ρ = 3772.5 kg/m3. (a)-(d) correspond to the first to the fourth
modes. Note that the 2nd, 4th modes dominated by uy and uz
respectively are absent in the EMM waveguide in FIG. 18.

in FIG. 19 (c),(d) cannot be obtained in the example with
the anisotropic mass density core. The phenomena are due
to the difference between the EMM core and the normal core
in view of the locally resonance frequencies in each principal
axis, which is caused by the different mass density tensors.
In conclusion, the above explains the phenomena caused by
the use of the EMM core with the anisotropic mass density
and demonstrates the rationality of our results.

V. CONCLUSION
This paper presents a spectral element method (SEM) solver
for the general elasticmatematerials (EMM)waveguide prob-
lems with negative index and anisotropic mass density as well
as normal materials. The solver can treat inhomogeneous and
anisotropic solids, but also include the fluid-solid coupling.
Meanwhile, the discussions about four boundary conditions
(the hard, the soft, the Bloch periodic, the absorbing boundary
condition) are provided. Both excellent agreement between
SEM results and those from the commercial FEM solver
COMSOL and less computational costs are demonstrated in
the numerical validations. Moreover, some interesting phe-
nomena brought by the application of the EMM can be
observed in the numerical experiments, for instance, unusual
modes generated by the negative refractive or commonmodes
eliminated by the anisotropic mass density.
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