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ABSTRACT 3D object detection is playing a key role in the perception process of autonomous driving
and industrial robots automation. Inherent characteristics of point cloud raise an enormous challenge to
both spatial representation and association analysis. Unordered point cloud spatial data structure and density
variations caused by gradually varying distances to LiDAR make accurate and robust 3D object detection
even more difficult. In this paper, we present a novel transformer network POAT-Net for 3D point cloud
object detection. Transformer is credited with the great success in Natural Language Processing (NLP) and
exhibiting inspiring potentials in point cloud processing. Our method POAT-Net is inherently insensitive to
element permutations within the unordered point cloud. The associations between local points contribute
significantly to 3D object detection or other 3D tasks. Parallel offset-attention is leveraged to highlight
and capture subtle associations between local points. To overcome the non-uniform density distribution
of different objects, we exploit Normalized multi-resolution Grouping (NMRG) strategy to enhance the
non-uniform density adaptive ability for POAT-Net. Quantitative experimental results on KITTI3D dataset
demonstrate our method achieves the state-of-the-art performance.

INDEX TERMS 3D object detection, non-uniform density, parallel offset-attention, point cloud, transformer.

I. INTRODUCTION
Robust and accurate 3D object detection from point cloud
is becoming an urgent in autonomous driving and indus-
trial robots automation. For instance, in autonomous driv-
ing, walking pedestrians, cyclists, lanes, overtaking and
lane-changing vehicles are all considered to be real-time
3D objection detection targets for the running self-driving
vehicles [1]. By far, most of the environment perception data
is collected from 3D LiDAR sensor mounted on autonomous
driving vehicles. And the output of 3D LiDAR is unordered
and spatial discrete points set. What’s more, the density of
point cloud varies according to the distance between 3D
LiDAR and different target objects. In other words, 3D
LiDAR data is a kind of non-uniform sampling sensor to the
surroundings to some extent [2].
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FIGURE 1. Comparative 3D object detection results of POAT-Net. Camera
image and 2D bounding boxes at top row are provided for reference.
Middle row is single offset-attention version without normalized
multi-resolution grouping (NMRG), failing to detect cars with large
occlusions on right and left side. Bottom row is the full version of
POAT-Net.

Non-uniform density distribution of point clouds of dif-
ferent distances poses a challenging problem for 3D object
detection [2].
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FIGURE 2. Architecture of POAT-Net. The NMRG in this paper mainly consists of three groups of down-sampling and three groups of
up-sampling modules. The encoder comprises six stacked offset-attention modules that extract varying scales of offset-attention
features. Numbers above each module denote for number of output features. Max-Pool and Average-Pool are concatenated
together to form MA-Pool. LBRD is for Linear, BatchNorm, ReLU and Dropout layer.

Transformer vanilla assumes that all the elements within
the point cloud set are uniformly sampled [3]. There-
fore, feature extraction module of transformer vanilla per-
forms poorly on non-uniform density point cloud, which
we would explain and compare in Section IV. And this
is also the reason that we do not use ModelNet40 or
ShapeNet Datasets to verify our method as they are uniform
density models without autonomous driving backgrounds.
If extracting associations of local points at different sam-
pling levels, we obtain more robust local information with
density variations. We present a novel adaptive density struc-
ture named Normalized multi-resolution Grouping (NMRG),
which enables our system to be robust to non-uniform density
sampling.

Feature extraction using transformer is insensitive to per-
mutations of elements within the point cloud. Transformer
for Natural Language Processing (NLP) presents a novel
representation for the input, which constructs the feature of
each input by linear transformation of all the inputs [4]. Trans-
former adopts attentionmechanism to calculate weight scores
of every input. Point cloud data could be fed to transformer
network directly even point cloud is not highly regularized
data format. Inspired by [2] and [3], we do not transform point
cloud data to a canonical data space, such as voxelizing the
whole point cloud data into cubes or projecting it to multiple
2D images from different views. We prefer feeding point
cloud data to the 3D coordinate based input embedding layer
of POAT-Net to reduce feature dimensions and prepare for the
association mining between points for later works. Through
exploiting inherent characteristics of transformer, our system
is more computational efficient since POAT-Net needs not
to preprocess every point cloud frame. This is quite useful
for practical autonomous driving perception applicationswith
limited vehicular computing resources.

Parallel offset-attention module is derived from self-
attention of transformer vanilla. Self attention is the core
innovation of transformer, which extracts distinctive features
from the local associations [5]. The input of self-attention is
the sum of embedding and positional encoding of raw point
cloud. The intermediate products of self-attention include
three vectors q, k, v via linear operation for every compo-
nent of input respectively. The attention weight matrix is

calculated using dot-product between the key k and query
q vectors of two arbitrary components. The final attention
feature is produced by attention weighted sum of all value
vectors v. Calculated using the linear transformation of all
input information, the attention mechanism is able to capture
the distinctive information. Parallel Offset-attention (POA)
is an upgraded version of self-attention along with preced-
ing module of NMRG. Parallel offset-attention takes the
output multi-scale vectors of NMRG as input features and
utilizes the subtraction between input and attention feature
as the output of each scale level. The subtraction operation
sharpens the attention features just as removing direct-current
(DC) part in Control Theory. And concatenating different
offset-attention features from varying scales enhances the
robustness of POAT-Net.

We conduct quantitative experiments on KITTI3D bench-
mark to verify the correctness and efficiency of our sys-
tem. The experimental results demonstrate that POAT-Net
achieves state-of-the-art performance compared with existing
mainstream approaches. We also visualize the feature captur-
ing results of various 3D objects in ModelNet40 with parallel
offset-attention to inspect the ability of POAT-Net to capture
distinctive features using comparative query points. The main
contributions of our work are listed as below:
• Parallel Offset-Attention. We propose this novel
method to facilitate POAT-Net the ability of captur-
ing the distinguishing features at different scale levels.
There are two advantages for 3D object detection using
parallel offset-attention. Firstly, relative 3D geometry
positions between points are much more robust than
absolute coordinates in real world especially when point
cloud transforms with a tiny rigid translation or rota-
tion. Secondly, parallel offset-attention benefits from
the offset subtraction) operation, which is analogous to
the Laplacian matrix proved to be effective by [18].
The Laplacian matrix in [18] is the difference between
adjacency matrix and degree matrix. The attention map
of POAT-Net could be regarded as adjacency matrix and
respectively the degree matrix is equivalent to identity
matrix if we normalize attention map to the sum of
every row to one. Therefore, the parallel offset-attention
can be understood as Laplacian process. In section IV,
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FIGURE 3. Architecture of Parallel Offset-Attention (POA). Query, Key and Value are three terminologies derived from Natural
Language Processing (NLP). Query and Value are produced by linear transformation of output feature of NMRG module. L1
normalization is leveraged to sparse the multiplication result between Key k and Query q. Offset-attention feature is obtained by
subtraction between original attention and NMRG feature. The final addition of offset-attention and NMRG is kind of encoder of
low-level features of multi-resolution grouping and high-level distinctive features.

we perform quantitative and comparative experiments
to verify the effectiveness of parallel offset-attention
module.

• Normalized multi-resolution Grouping (NMRG).
NMRG aims at enabling our system to be adaptive
to non-uniform density distribution of 3D object point
cloud. NMRG constructs two pyramids of different
scales regarding the scale coefficient of raw point cloud
as dividing line. Thereafter, NMRG concatenates fea-
tures from down-sampling pyramid and up-sampling
pyramid together and transforms the information of the
complete pyramid into normalized feature space, which
is more suitable for subsequent detection works when
scale problem occurs.

• Invariant to initial states of point cloud. Leveraging
encoder and decoder structure of transformer, POAT-Net
is insensitive to the permutations of point cloud fed to
3D coordinate based input embedding layer. Through
incorporating T-net into the structure of POAT-Net, our
system tolerates any initial rigid translation, rotation of
the raw point cloud or the order of the points fed to
POAT-Net.
The rest of our paper is organized as follows: Section II
discusses the related works of 3D object detection from
point cloud using transformer. Section III describes our
method in detail, including parallel offset-attention, nor-
malized multi-resolution grouping, etc. Section IV per-
forms experiments to verify efficiency and robustness of
POAT-Net onKITTI3D benchmark dataset and visualize
the features learned in POAT-Net.

II. RELATED WORKS
A. TRANSFORMER FOR NLP
Transformer is achieving dominant position after
Devlin et al. [6] proposes Bidirectional Encoder Represen-
tation from Transformer (BERT). Unlike previous language
representation models, BERT pre-trains its bidirectional rep-
resentations by jointly conditioning unlabeled text on left

and right context in all layers. And BERT is convenient to
be applied to language inference and question answering
scenarios [7].

B. TRANSFORMER FOR 2D OBJECT DETECTION
Transformer has been applied to computer vision since
its success in Natural Language Processing (NLP). Car-
ion et al. [8] adopt encoder-decoder structure of transformer
to reason about the relationships between the objects and
the global image context and then output the final set of
predictions in parallel. Ding et al. [9] proposes ROI (region
of interest) transformer to overcome the highly complex
backgrounds, variant appearance of objects problem. They
feed spatial transformer with oriented bounding box anno-
tations to learn transformer parameters. Srivinas et al. [10]
incorporates global self-attention transformer with multiple
computer vision tasks. They explain why ResNet bottle-
neck blocks with self-attention can be regarded as trans-
former blocks and the importance in image processing.
Zhu et al. [11] proposes deformable transformer to put atten-
tion mainly on key sampling points around the reference
annotations. What’s more, deformable transformer achieves
better performance than their previous DETR method [8].

C. TRANSFORMER FOR 3D DETECTION FROM POINT
CLOUD
As the key idea of transformer, attention mechanism has
been introduced into many deep learning frameworks for
point cloud tasks. Zheng et al. [12] focuses on single-stage
point cloud 3D object detection in an anchor-free man-
ner. They fit the sparse feature maps to dense based on
object regions through the deformable convolution tower and
supervised mask-guided attention. Yuan et al. [13] uses the
temporal-channel encoder of the transformer to encode the
information of different channels and frames and the spatial
decoder of the transformer to decode the information for
each location. Yin et al. [14] adopts attentive Spatiotemporal
Transformer GRU to aggregate the features, which is encoded
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by its feature encoder structure. However, We exploit Par-
allel Offset-Attention (POA) to capture the distinctive fea-
tures from normalized multi-resolution grouping mechanism.
Guo et al. [3] leverages farthest point sampling and nearest
neighbor search to enhance input embedding and capture
better local information of point cloud.

Inspired by [3], [15], [16], we present parallel offset-
attention assisted transformer POAT-Net to overcome permu-
tations issue of elements within point cloud and normalized
multi-resolution grouping to mitigate non-uniform density
distribution of point cloud.

III. SYSTEM DESCRIPTION
In this section, firstly, we clarify the problem discussed in this
paper and describe the end-to-end framework of POAT-Net
through the whole data flow from input-embedding to 3D
object detection output layer in Fig. 2. Thereafter, we explain
offset-attention mechanism in detail about how to better
extract local features. And then normalized multi-resolution
grouping (NMRG) is interpreted on how to overcome density
distribution variations of different objects.

A. PROBLEM STATEMENT
In autonomous driving, real-time 3D object detection is an
indispensable and fundamental function providing the per-
ception information for the vehicle. The input of POAT-Net is
raw point cloud from 3D LiDAR PCraw = {p1, p2, · · · , pN }.
Given consideration that we leveraging distance metricDeu ∈
Rn inherited from Euclidean space, the metric space could be
written as χ = {PCraw,Deu}. The goal of our system is to
optimize a set of 3D bounding boxes B ∈ {b1, b2, · · · , bNI }
for one frame of point cloud and assign a class vector C ∈
{c1, c2, · · · , cM } to every 3D bounding box, where NI is the
number of instances within the FOV (field of view) of LiDAR
and M is the number of classes.

B. SYSTEM ARCHITECTURE
As shown in Fig. 2, the unified framework of POAT-Net
consists of four parts, input embedding, NMRG, encoder
and detection. Input embedding is fed with raw point cloud
PCraw = {p1, p2, . . . , pN } ∈ R3+de , where N is the total
number of points within one frame of point cloud raw data.
Therefore, de is the number of other properties, such as
reflectivity, aligned RGB color or normal vectors and so on.
Input embedding layer transforms the raw point cloud PCraw
into higher dimensional space Fin_em ∈ RN∗(dem), where
dem is determined by the 3D coordinate based input embed-
ding. Then normalized multi-resolution grouping (NMRG)
and parallel offset-attention (POA) of the whole pipeline are
explained in detail sequentially.

C. NORMALIZED MULTI-RESOLUTION GROUPING (NMRG)
Input embedding layer transforms raw point cloud into
higher dimensional space Fin_em ∈ RN∗de to obtain asso-
ciations between discrete points based on combination of
raw positions and input embedding. However, it does not

FIGURE 4. Schematic diagram of Normalized multi-resolution Grouping.
We adopt scaling pyramids S ∈ {s1, s2, · · · , s6}} strategy for
down-sampling and up-sampling modules based on experimental results.
The output features of down-sampling and up-sampling are normalized
and then concatenated together as NMRG feature for later processing.

take non-uniform density sampling into account. Therefore,
we present NMRG to overcome this issue as its network struc-
ture is shown in Fig. 4. NMRG network structure consists
of three modules, down-sampling, up-sampling and post-
processing. Down-sampling and up-sampling process point
cloud in parallel and produce density groups of different
scales. Post-processing includes normalization and concate-
nation. Given consideration to efficiency and accuracy, the
scale coefficient we adopt for later experiments between two
adjacent levels is 2 and total number of levels is 5.We normal-
ize features from different scale groups separately in case of
the interaction between adjacent sampling levels. Six groups
of normalized features are concatenated together to form an
integral scaling association.

As explained earlier, non-uniform density Dt,sid,x,y,z,r of
point cloud at different parts of one object or multiple objects
challenge the accuracy and robustness of perception system.
Features we extracted from sparse density areas could not
be generalized to that from dense areas. Therefore, it is not
reasonable to aggregate all the features directly from each
point without consideration of non-uniform point cloud den-
sity. Models trained regardless of non-uniform density may
not achieve satisfactory results both on sparse and dense part
of the point cloud data obtained from vehicular 3D LiDAR
sensors.

Theoretically, the denser the driving environment is sam-
pled, the more abundant local information we obtain. How-
ever, sampling deficiency at low-density areas corrupts
the local patterns compared with the same scale of the
dense areas. In these circumstances, we concentrate on
multi-resolution grouping to capture local features of dif-
ferent scales with density adaptive NMRG module (Fig. 4).
NMRG extracts local features from different scaling levels
and then concatenates them together. Therefore, POAT-Net
is gathering environment information with gradually varying
scales in essence rather than a single scale of various density
distributions.

Structure of down-sampling and up-sampling modules are
designed utilizing almost the same idea as shown in Fig. 4.
Input embedding FN ,de based on 3D coordinate is fed to
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down-sampling and up-sampling in parallel with N ∈ {m, n},
dem ∈ {x, y, z, r}, where {x, y, z} is the 3D coordinate and
r is reflectivity of the point. In practical applications, N ∈
{m, n} = {len, 1}, where len is usually the total number
of points within one data frame of 3D LiDAR. For down-
sampling, each adjacent feature map size is calculated as
Sdwn,n+1 = 0.5 × Sdwn,n. Similarly, each feature map in
up-sampling size is Sup,n+1 = 2.0 × Sn as the convolu-
tion kernel is twice the size larger than that of the previous
level. However, this down-sampling or up-sampling is quite
computationally expensive when high-accuracy 3D LiDAR
is used. The number len of points within one data frame is
quite large and its time complexity is T (N ) = O(N ). And it
is not reasonable to resize the raw point cloud inputPCraw to a
smaller size directly as irreversible information loss occurred
during this process. In terms of computation efficiency and
detection accuracy, we selectively concatenate feature vectors
together at some scales Sn to avoid expensive computation
cost but still preserve the adaptive ability of non-uniform
density distributions.

Thereafter, We encounter a problem that whether it is the
best way to combine every output of down-sampling with
that of up-sampling. Obviously and experimentally direct
aggregation of their outcomes corrupts the robustness of
detection and prolonged computation time. We propose a
regularization method to accelerate the large computation
cost brought by NMRG and guarantee the converge speed by
using regularization in the subsequent selective concatena-
tion. Each pair of features produced by down-sample Fdwni
and up-sampling Fupi within one combination Fcomb =
Concat(Fdwni,Fupj), i 6= j; i, j ∈ {1, 2, · · · , s−1} at different
scales should have almost the same Information Entropy
metric IENunif . This is reasonable that the dense part and
the sparse part of the point cloud complement each other
to form approximate uniform density distribution. Therefore,
the combination of NMRG is composed of down-sampling,
up-sampling, normalization, combination and random drop
layer. The regularization of selective combination choice
strategy could be written as below:

Lossreg = ‖IENunif − IEN (Fdwni,Fupj)‖
2
Fcomb

(1)

where IENunif denotes for the information entropy of one
point cloud data frame with uniform density distribution.
D(Fdwni,Fupj) is the information entropy of down-sampling
or up-sampling point cloud data frame concatenated with
Fdwni and Fupj.

D. PARALLEL OFFSET-ATTENTION
The Network Structure of parallel offset-attention is shown in
Fig. 3. The input of parallel offset-attention is the output of
NMRG. The output of each thread of parallel offset-attention
is the difference between its input and features processed
by self-attention. Instead of extracting global features only
once, we propose parallel offset-attention to refine distinctive
features with gradually changing scales in parallel.

FIGURE 5. Visualization of attention map produced by parallel
offset-attention module for person, bench and car with different spatial
query points. Query point of each attention map is indicated with yellow
circle (•).

Parallel offset-attention is designed to capture distinctive
local features at different scales so as to generalize POAT-Net
well when different 3D objects own almost the same point
cloud representation. The amount of points representing the
same 3D object varies significantly for the 3D LiDAR when
the distance changes between autonomous driving vehicle
and various 3D objects within the Field of View (FOV).
Sometimes, the distinctive parts of different objects is not so
easy to be obtained at one scale level. For example, on the
street distinguishing a standing pedestrian and charging pile
at a long distance is a great challenge as the different parts
of the two objects are quite difficult to grab. Features of
one level show poor generalization abilities on 3D objects at
another scale. Therefore, we present parallel offset-attention
mechanism to enhance the scale generalization ability of our
system.

Offset-attention is a kind of variation of multi-head atten-
tion mechanism in transformer vanilla, which backbones
POAT-Net without gradient vanishing and processing the data
one by one [17]. The core idea of transformer attention is to
learn global context vector U and capture the most important
parts of the whole target. For example, we could implement
soft attention mechanism via applying linear operation to
three learnable weight matrixQ,K ,V and the raw input point
cloud PCraw. Thereafter, we to obtain q, k, v weight coeffi-
cient vectors, which will be used in self-attention (SA) calcu-
lation. Parallel offset-attention is produced by element-wise
subtraction between self-attention (SA) features and input
features. The key idea of offset-attention is inspired by [Spec-
tral networks and locally connected networks on graphs],
which replacing adjacency matrix E with a Laplacian matrix
La = D − E. Where D is the diagonal degree matrix.
Therefore, the process of offset-attention (OA) FO_Aout could
be formulated as below:

FO_Aout = O_A(Fin) = LBR(Fin − Fsa)+ Fin (2)

Fin − Fsa is an offset operator analogous to the [Spectral
networks and locally connected networks on graphs]. The
mathematical proof is as below:

Fin − Fsa = Fin − AW × V
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= Fin − AW × Fin ×Wv

= Fin × (I − AW ∗Wv) (3)

where AW is attention weights coefficient matrix. V denotes
for value matrix following the terminology of Natural
Language Processing (NLP). Since the Wv is the lin-
ear layer’s weight matrix, we can regard it as a unit
matrix I . Therefore, Fin − Fsa could be rewritten as
below:

Fin − Fsa = Fin × (I − AW ∗Wv)

≈ Fin × (I − AW ) (4)

where I is unit identity matrix equivalent to the diagonal
degree matrix D of Laplacian matrix calculation and AW rep-
resents attention weight matrix corresponding to adjacency
matrix E [18].
We enhance the attention weight Ã calculation for par-

allel offset-attention module by refined normalization in
case of the mutual interference between features from dif-
ferent scales. Ã of transformer vanilla is calculated as
below:

Ã = Q·KT (5)

where V , Q and K are query matrix produced by linear
operators of output features of NMRG FNMRG and learnable
{WV ,WQ,WK } as:

{V ,Q,K } = FNMRG· (WV ,WQ,WK )

= {FNMRGV ,FNMRGQ,FNMRGK }

{Q,K } ∈ RN×da ,V ∈ RN×de

{WQ,WK } ∈ Rde×da ,WV ∈ Rde×de (6)

Thereafter, after normalization Ã could be rewritten
as:

Ã =
exp(̃αi,j)∑K
1 exp(̃αk,j)

(7)

Compared with transformer vanilla only scaling the first
dimension by 1/

√
da and normalizing the second dimen-

sion by softmax, we leverage softmax operator to process
the first dimension and L1-norm to normalize the atten-
tion map of the second dimension. Via such an approach,
POAT-Net mitigates the noise and make the attention weights
more distinctive, which could be proved in Fig. 5 that
the attention map weights vary significantly and are more
semantically meaningful when the location of query point
changes.

IV. EXPERIMENTS
We conduct experiments to verify the robustness and effi-
ciency of POAT-Net on KITTI3D datasets. KITTI3D con-
tains more than seven thousand training and test images
and their corresponding point clouds, including eighty differ-
ent objects. KITTI3D has more than one hundred thousand
images and eighty thousand LiDAR point clouds for vary-
ing conditions and traffic densities in urban traffic scenes.

FIGURE 6. Experiments on NMRG. The left three rows are POAT-Net
without NMRG module. The density from the top row to the bottom row
is 12.5%, 25%, 50% of the original point cloud respectively. Right three
rows are full POAT-Net with NMRG module.

TABLE 1. Experimental results of comparison with state-of-the-art
methods on KITTI3D Car Test Dataset. Superscript 1 denotes for the
method of one-stage and 2 is the method of two-stage. ‘‘Moda.,’’ ‘‘Mod.,’’
‘‘M1,’’ ‘‘M2’’ denotes for LiDAR, LiDAR+RGB respectively.

We adopt single variable method to test the effectiveness of
NMRG and parallel offset-attention on the datasets.

A. IMPLEMENTATION DETAILS
1) DATA PREPROCESSING
POAT-Net adopts mere one modality of environment infor-
mation 3D LiDAR point cloud as input. POAT-Net does
not voxelize or project objects within raw point cloud to
multiple views. We truncate range of the three dimensions
{x, y, z} of raw point cloud into [0, 60.5], [−30, 30] and
[−2.5, 1] respectively, where the range unit is meter. Empir-
ically, we set de as four with {x, y, z, r} (see Part C of
Section III). We leverage three kinds of data augmentation:
(1) Rigid spatial transformation, which includes random
translation between [−2,+2] meters and rotation between
[−π/4,+π/4] radians on the whole point cloud frame;
(2) Cross frameAddition, which randomly copies ground-truth
objects within 3D bounding box of another point cloud frame
into current data frame without interference with objects
existing within the current frame; (3) Local jittering, which
rotates and translates ground-truth 3D objects within the
current point cloud frame between [−0.5,+0.5] in meter and
[−π/4,+π/4] in radian.
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2) DETAILS OF TRAINING
Cosine annealing strategy for learning rate and ADAM
(Adaptive Moment Estimation) optimizer for gradient
descent are used in POAT-Net. The initial learning rate,
batch size and the number of epoches are 0.01, 32 and
1000. All the initial values of WV ,WQ,WK matrix are
1.0/len, where len is 123000, the approximate average num-
ber of points within the original point cloud data frame of
KITTI3D tested. The number of up-sampling and down-
sampling is 3. POAT-Net runs six threads in parallel when it is
started.

B. COMPARISON WITH STATES-OF-THE-ARTS ON KITTI3D
The experimental results are produced by submitting predic-
tion data of POAT-Net to KITTI server and we compare them
with the mainstream state-of-the-art methods in Table 1. Our
method ranks 1st among all difficulty levels except moderate
level. Our POAT-Net improves 1.4% compared with the best
two-stage method CLOCs PVCas, which uses two modalities
of RGB and 3D point cloud, and 0.8% compared with best
one-stage method CIA-SSD on the easy level. POAT-Net
improves 2.83% compared with the best one-stage method
SA-SSD on the hard level and 2% of mAP compared with
CIA-SSD.

C. ABLATION STUDY
Next we perform an ablation study of POAT-Net to inves-
tigate the contribution and effectiveness of each mod-
ule we proposed using KITTI val split. Table 2 lists
the ablation results of input embedding (IEM), NMRG
(normalized multi-resolution grouping) and POA (parallel
offset-attention). NMRG of POAT-Net overcomes the non-
uniform density distribution problem via regularized normal-
ization of multi-resolution grouping of point clouds. Objects
in 3D Point clouds samples of KITTI3D are located from far
hundreds of meters to near tens of centimeters. Therefore,
the variations of distances of 3D objects to LiDAR provide
us real non-uniform density distribution conditions to verify
the effectiveness of POAT-Net. We replace input embedding
based on 3D coordinates with the voxelizing method since we
cannot remove it directly. The data we reported are produced
with 40 recall points.

1) EFFECTIVENESS OF NMRG
As the third and first rows show in Table 2, NMRG we
proposed improves the hard AP (Average Precision) by about
0.8 percentages. This significant improvement indicates that
the proper combination of different scaling features comple-
ments the weakness brought by non-uniform density distribu-
tion. In contrast, we observe a tiny increase in easy AP. The
reason in our view is that the point cloud density distribution
is nearly uniform. Therefore NMRG strategy contributes less
to the easy AP improvement. We also perform comparative
experiments to check the effects with NMRG and without
NMRG as shown in Fig. 6 with different densities.

TABLE 2. Ablation study of NMRG, Parallel offset-attention (POA) and
Input Embedding (IE) modules we designed.

TABLE 3. Experimental results of study effectiveness of POA on 3D
bounding box regression and classification. The data are reported based
on moderate difficulty level.

2) EFFECTIVENESS OF POA
As the first and second rows show in Table 2, POA boosts AP
rates of the moderate level and the hard level by about 0.6 and
0.9 respectively. The AP increase on the hard level is larger
than that of NMRG, thus indicating the effectiveness of POA
with more occlusions. The information of the occluded cars
or pedestrians of the hard level is not complete as that in the
easy level. This phenomenon shows that POAowns ameasure
of shape prediction ability for the occluded point cloud but it
is limited and not perfect.

What’s more, we further study the effectiveness of POA for
3D bounding box regression and classification confidence.
As shown in Table 3, the improvement from the confidence
module is larger than that from 3D bounding box regression
module. We argue that POA may assist confidence optimiza-
tion with mitigation the misalignment between classification
confidence and localization accuracy.

3) EFFECTIVENESS OF IEM
In Table 2, the fourth and first rows indicate that IEM (Input
Embedding) brings about 0.3 points improvement for the
hard level and about 0.2 points for the moderate level. The
AP increase in hard and moderate levels shows that IEM
refines the associations between limited existing points and
the global distinctive information. We think this is because
relative 3D geometry positions the IEM leveraging between
points are more robust than voxelizing method.

D. RUNTIME ANALYSIS
The inference time of POAT-Net is about 29ms on average,
including 3.01ms for input preprocessing, 5.83ms for NMRG,
7.45ms for POA, 12.71ms for 3D bounding box regression
and 4.03ms for classification. All the experiments are done
on Intel Xeon Gold CPU and 4 TITAN GPU.

V. CONCLUSION
In this paper, we propose a 3D point cloud objects detection
framework for Autonomous Driving. POAT-Net is insen-
sitive to the permutations of point cloud, leveraging the
inherent characteristics of transformer. POAT-Net mitigates
the impact of non-uniform density caused by 3D sampling
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sensor. By combining normalized multi-resolution Group-
ing (NMRG) and Parallel offset-attention (POA),
POAT-Net successfully improves the detection rate of
occluded objects. NMRG mechanism normalizes and con-
catenates feature groups of down-sampling and up-sampling
to assist POA with capturing local associations at different
scales. Overall, the experiment results verify the effectiveness
and robustness of our POAT-Net.
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