
Received October 17, 2021, accepted October 29, 2021, date of publication November 10, 2021, date of current version November 18, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3127195

Histogram Entropy Representation and Prototype
Based Machine Learning Approach for Malware
Family Classification
BYUNGHYUN BAEK1, SEOUNGYUL EUH2, DONGHEON BAEK3,
DONGHOON KIM4, AND DOOSUNG HWANG 5
1GI VITA, Seoul 06536, South Korea
2Security Technology Institute, KSign, Seoul 06231, South Korea
3Department of Oral Microbiology and Immunology, Dankook University, Cheonan 31116, South Korea
4Department of Computer Science, Arkansas State University, Jonesboro, AR 72467, USA
5Department of Software Science, Dankook University, Yongin-si 16890, South Korea

Corresponding author: Doosung Hwang (dshwang@dankook.ac.kr)

This work was supported by the Institute for Information and Communications Technology Promotion (IITP) funded by the
Government of Korea (Ministry of Science and ICT (MSIT), Trust-based cyber security platform for smart facility
environment) under Grant 2019-0-00197.

ABSTRACT The number of malware has steadily increased as malware spread and evasion techniques have
advanced. Machine learning has contributed to making malware analysis more efficient by detecting various
behavioral and evasion patterns. However, when analyzing large-scale malware datasets, malware analysis
through learning models has both high temporal and spatial complexity. In order to address these problems,
this work proposes a low-dimensional feature using histogram entropy and a prototype selection algorithm
using hyperrectangles. The low-dimensional feature forms an L × 256 map according to the preselected
parameter L. The prototype selection algorithm divides the input space into overlapping subspaces where
each subspace is decided by its hyperrectangle that becomes a prototype in the same class. A set cover
optimization algorithm is employed to select a small number of prototypes that construct a new training
dataset. A set of prototypes selected by the prototype selection algorithm is used to classify malware families.
The experiment compares the performance of machine learning models for the histogram entropy feature
using both the BIG 2015 dataset and the collected dataset. The integrated approach is evaluated using learning
algorithms, such as Decision Tree, Random Forest, XGBoost, and CNN. The experimental results indicate
that learningmodels perform competitivelywhen compared to the entire dataset, while the proposed selection
approach benefits from smaller datasets and lower time complexity.

INDEX TERMS Malware family classification, histogram entropy, low-dimensional feature, hyperrectangle,
prototype selection, ensemble model, machine learning.

I. INTRODUCTION
Malware is software that is installed silently and secretly on
computers, servers, clients, and networks to perform actions
that users do not expect. Computers connected to the network
are more likely to spread malware and pose a significant
threat to the advancement of information and communication
technologies. Malware that has recently been discovered is
spreading out through its own evasion technology as well
as advanced vulnerability analysis technology. The detec-
tion and response to new or modified malware is critical

The associate editor coordinating the review of this manuscript and

approving it for publication was Jad Nasreddine .

to the advancement of information technology, and ongoing
research and improvement efforts are required.

Malware with evasion technology can be detected through
continuous monitoring, but it takes an inordinate amount of
time and effort to execute and analyze dubious executables.
Furthermore, it is difficult to define rules of malicious behav-
ior, and lower high false positive detection rates. Malware
detection technologies based on machine learning have been
investigated in order to address these drawbacks [1]–[3].

Machine learning for malware detection explores classi-
fication rules based on feature vectors or employs similar-
ity based metrics for classifiers. In general, classification
prediction is accomplished through the learning process by

152098 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-1840-9296
https://orcid.org/0000-0002-1711-3007

B. Baek et al.: Histogram Entropy Representation and Prototype Based Machine Learning Approach

discovering hidden pattern rules. Such detection methods can
also distinguish intrinsic but hidden patterns among benign
and malware. However, in order to ensure a robust analy-
sis using machine learning, a sufficient number of training
examples must be collected. For malware detection sys-
tems, feature extraction methods such as opcode (operation
code) [4], [5], function call graph [6], [7], string signature [8],
entropy [9] and byte n-gram [10], [11] have been studied.
Low-dimensional features has been studied because features
with high-dimensional presentation need a huge amount of
training time.

Malware developers are constantly creating new malware
or employing variant technologies to avoid detection by anti-
virus software. As a result, the number of malware families
grows year after year, raising issues that increase time com-
plexity and space complexity to analyze malware variants.
In the case of a large amount of training data, there is a high
possibility of redundant and noisy data, which increases the
complexity of learning model, and a large amount of training
time is required [12], [13]. These issues have been targeted to
select a small set of prototypes which can replace the original
dataset [13], [14]. Therefore, classification based on a set of
prototypes can achieve comparable performance to the entire
dataset while eliminating inessential data and reducing time
complexity [15], [16].

Prototype selection methods employ similarity metrics
and class labels from the dataset [14], [17]. The similar-
ity among instances is measured using Euclidean distance,
Manhattan distance, Mahalanobis distance, and so on [18].
A prototype represents a subset of instances that are placed
at a constant distance in the same class. A selected proto-
type covers as many instances of the same class as possi-
ble and becomes a new training instance for classification
models. Previous research has employed hyperspheres [15],
[19], [20], and hyperrectangles [21] as prototype selection
approaches to divide multidimensional space into subspaces
and select a small subset of instances to replace the entire
dataset.

This study proposes a low-dimensional feature represen-
tation of fixed size based on histogram entropy, as well as a
prototype selection method for large-scale malware datasets
based on hyperrectangles. The contribution of this study is as
follows:

• Two dimensional (2D) histogram entropy map is
designed to characterize malware for statistical analy-
sis. The feature is a low-dimensional feature extraction
method based on entropy information and a fixed size.

• A prototype selection method is proposed on the basis
of hyperrectangles that select a small set of prototypes
which machine learning algorithms can learn instead of
the entire dataset.

• The process of extracting features can be visualized to
identify key patterns for malware detections.

• Experimental results show that it provides comparable
performance for machine learning algorithms with only

a relatively small new dataset generated from the entire
dataset using our prototype selection method.

This paper is organized as follows. Section II discusses
related work. Section III addresses data collection and feature
extraction methods. Section III-D proposes the prototype
selection algorithm. Section IV evaluates learning models for
identifying malware. Finally, Section V concludes this paper
with future works.

II. RELATED WORK
Feature engineering for malware static analysis makes use
of opcode or byte data from executable binaries. Feature
extraction using opcode must include a disassembly phase,
but this phase has the limitation that packed and obfuscated
parts may result in invalid and incorrectly assembled code [2],
[3]. As another way, an entropy based feature representation
has been chosen to quantitatively compare the entire structure
of malware at the byte level [22]–[27].

Various representations of static features have been pro-
posed for malware detection: n-gram byte feature, entropy
or hashing feature for binaries and n-gram opcode feature,
DLL call or API call graph feature from assembly code, etc.
However, if the feature space of these malware becomes too
large, the feature vector size will change. This tends to make
feature engineering more difficult. Efforts have been made to
convertmalware into fixed size data tomakemalware features
robust. Examples include a 2D grayscale image, window
entropy map [27], histogram entropy map [23], and hashing
based map [28]. The values calculated by applying a sliding
window over an executable file were integrated to represent
malware features.

Table 1 summarizes the studied approaches including clas-
sification type (Class), feature type, detection model and
the details on the datasets in use. The datasets are feder-
ated from the known datasets or self-collected datasets. For
example, there are Microsoft Malware Classification Chal-
lenge (BIG 2015, [29]), Malica-project [30], Virus Total [31],
Vx Heaven [32], VIPRE [33], MalImg [34], Malwares [35],
etc. The classification type is defined as a binary classifica-
tion for malware detection or as a k-class classification for
malware family identification. The feature type is categorized
into one of data, entropy, or image driven feature engineering.

Data driven feature engineering was studied by
Burnap et al. [36] and Fan et al. [37]. A dynamic analysis
of the data collected through the Cuckoo sandbox [43] was
performed, and the feature vectors were made up of file
access log, registry key access, process execution, packet
log, and usage patterns of CPU and memory [36]. There
have also been studies that divide the data into a certain
number of chucks and run binary codes using clustering and
classification to analyze it dynamically in order to reduce
overhead with a large amount of malware data [41]. The
winner of the SOFM (Self-Organizing Feature Map) model
of the input feature vector was selected, and its class was pre-
dicted with the closest class to the BMU (BestMatchingUnit)

VOLUME 9, 2021 152099

B. Baek et al.: Histogram Entropy Representation and Prototype Based Machine Learning Approach

TABLE 1. A summary of studied malware detection systems.

through the Euclidean distance. In case of multiple winners,
the predictive class with the highest frequency was selected.
The highest accuracy of 90%was demonstrated when the size
of the feature map was set to 80 × 80. Fan et al. [37] pro-
posed the pattern mining approach to codify malware feature
vectors and All-Nearest-Neighbor (ANN) algorithm to detect
malware. In addition, features were reselected by applying the
MIE (Malicious Instruction Extraction) technique to remove
unnecessary information and their detection rate was about
96.0%. Yuxin and Siyi [38] adopted a deep belief network to
encode opcode sequences and applied the backpropagation
algorithm to learn the final classifier. Their feature was coded
by generating 3-gram according to the control flow analysis
of opcode sequences. The experiment yielded about 98.0%
accuracy.

Researchers investigated entropy driven detection because
malware identification becomes difficult due to encryption,
packing, obfuscation and polymorphism [9], [39], [44]. The
entropy values of malware belonging to different malware
families tend to differ significantly. Lyda and Hamrock [9]
suggested the entropy analysis method by examining the
statistical difference among executables. They utilized the
confidence-interval based method by calculating the amount
of statistical variation of bytes in a data stream and summing
the frequency of each observed byte value in a fixed length
data block. They found that higher entropy values tend to
correlate with the presence of encryption or packing.

Sorokin [44] proposed the structural entropy approach
divided files into segments: executable code, text, and
packed area. Each segment was characterized in terms of
size and homogeneity by entropy information. First, the
wavelet analysis was used to divide the file into segment
sequences of varying entropy levels. The next step detected
malware by calculating the Levenshtein distance between
segment sequences to determine the degree of similarity.
Han et al. [39] converted PE (Portable Executable) files into
bitmap images and compared the entropy changing tendency.
Their analysis identified the malware family by comparing
the similarity of both two entropy graphs of the test malware

and of the previously known malware family. The database
consisted of 1,000 malware of 50 families from Vx Heaven
and an accuracy was approximately 98.0% when the thresh-
old was 0.75.

Nataraj et al. [22] reshaped malware binaries into 8-bit
grayscale images based on their file size range. The grayscale
image was converted into GIST feature vectors by using
the Gabor filter to compute local feature maps. All of the
local feature maps were combined into a single GIST fea-
ture, which was then downsampled to a fixed size training
instance. Using k-NN among MalImg’s GIST feature vec-
tors, they reported the detection rate of 97.2% for malware
family identification. Llauradó et al. [25] employed a CNN
(Convolutional Neural Network) model with 2D grayscale
images of BIG 2015 and MalImg datasets. The input size for
MalImg was 256× 256, and the input size for BIG 2015 was
128 × 128, with their dimensions adjusted by experiments
to learn the CNN model with fixed length. For 5-fold and
10-fold cross validation, the experimental results achieved
accuracy of 97.3% and 97.5%, respectively. Luo and Lo [40]
also created theMalImg and BIG 2015 training datasets using
the local binary pattern (LBP) and tested a CNN detection
model. Their CNN model demonstrated that the LBP feature
outperformed the GIST feature, with accuracy of 93.92%
for MalImg and 93.57% for BIG 2015. Using both Haralick
and LBP to Nataraj’s grayscale image, Ahmadi et al. [24]
generates 2D images from BIG 2015. Their XGBoost model
yielded an average of 95.0% for both training vector and the
detection model in 5-way cross-validation.

Ni et al. [28] proposed the MCSC (Malware Classification
using SimHash and CNN) approach. They decreased feature
extraction time by selecting the main blocks only because it
took a long time to extract all opcode as features. The main
code block tends to include malware behavior information as
well as the CALL instruction. The opcode sequence differs
depending on the size of the malware file and is hashed to
generate a binary vector of the fixed size. Thus, the sum of
weights of all binary vectors in the sequence is calculated,
and the weight sum vector is converted into a 16× 16 image.

152100 VOLUME 9, 2021

B. Baek et al.: Histogram Entropy Representation and Prototype Based Machine Learning Approach

TABLE 2. Malware families in BIG 2015.

TheMCSCperformance reported an accuracy of about 87.0%
for the CNN model with BIG 2015.

Dey et al. [26] proposed a detection method for improving
Natarj’s image driven algorithm with entropy filtering for
2D image transformation [22]. The variants of metamorphic
engines can avoid detection by anti-virus programs based
on signatures and primary obfuscation techniques that dis-
guise malicious commands. This method, however, leaves
suspicious patterns at the bit level. This can be identified
through entropy calculations. The local entropy value of
the gray image determines the structure of entropy filter-
ing in response to an entropy image. The k-NN classifier
experiment produced slightly better results than Natarj’s
method [22].

Hu et al. [42] used opcode to do static analysis to com-
pensate for the limitation of dynamic analysis, called
MutantX-S. Their static-feature-based approaches are far
more scalable than their dynamic-feature-based approaches.
They converted malware binaries into an opcode sequence,
allowing n-gram features to be extracted more quickly. With
a linkage clustering and a prototype-based nearest classifi-
cation [41], Rieck et al. addressed the scalability issues in
terms of run-time performance and memory requirement.
Their incremental approach was proposed for behavior-based
analysis of malware classifications, which could handle the
behavior of thousands of malware per day.

Multiple features for malware detection in
Ahmadi et al. [24], Saxe and Berlin [23], and Euh et al. [27]
were proposed. These features were built using data, entropy,
and images. Ahmadi et al. [24] proposed the malware fam-
ily detection with combined features from hex dump-based
features, assembled code features and entropy images. They
applied the XGBoost [45] to BIG 2015 through 5-way cross-
validation. Each independent feature demonstrated 75.6% to
99.1% accuracy, and the entire collection of features, includ-
ing the entropy feature, demonstrated approximately 99.8%
accuracy. Saxe et al. [23] designed a four-layer neural net-
work (1024×1024×1024×1) to detect malware and benign.
The final feature was composed of byte entropy histogram,
PE import and meta-data, and string data. Their prediction
results of the learned model were calibrated through the
Bayesian method. The detection rate was 95.0% for all the
integrated feature vectors of the prepared PE Import, byte

TABLE 3. The collected data from Malwares.com.

entropy, metadata, and strings. Euh et al. [27] employed tree
ensemble models for 2-gram, gram matrix, WEM (Window
Entropy Map), API-DLL, and API from executable and
disassembled files. Their features were designed to reduce
the original feature dimensionality and decreased the time
complexity of ensemble models. For each proposed feature,
they compared the performance of AdaBoost, XGBoost,
Random Forest, Extra Trees, and Rotation Trees. WEM’s
XGBoost performed best with 98.0% in terms of accuracy
and AUC-PRC evaluation.

III. RESEARCH APPROACH
A. MALWARE DATASET
Our proposed method is evaluated with BIG 2015 and the
Malwares dataset, where the total size is about 115 GB.
Each instance includes its own assembly code and binary
file. Table 2 and 3 show the number of data and information
on the test datasets. Each malware family contains at least
42 (0.4%) of instances and up to 2,942 (27.1%) of instances
(Table 2). The dataset for malware and benign classifications
was collected from Malwares.com [35]. The number of
malware is 65,704 (76.7%) and the number of benign is
20,000 (23.3%) (Table 3). The benign dataset is also used for
a malware detection problem with the BIG 2015 dataset.

B. HISTOGRAM ENTROPY
As malware vectorization, a 2-gram feature showed excellent
performance, but has a tendency of high dimensional ele-
ments to represent a single malware [24], [27], [38]. If the
data dimension increases, the input space increases propor-
tionally, resulting in a sparse distribution. Additionally, the
number of model parameters increases and a training dataset
should consist of sufficient instances in order to construct
a robust learning model. We design a low-dimensional fea-
ture using histogram entropy information of byte sequences.
Fixed length and low-dimensional malware vectorization
takes advantage of reducing training model complexity, pre-
venting overfitting, and expecting high generalization perfor-
mance.

Figure 1 illustrates the process of generating our histogram
entropy feature from an executable through applying a sliding
window and computing histogram frequency and entropy.
Figure 1 (a) is the 2D image of an Obfuscator.ACY
instance which is shaped withN×L through applying sliding
window size L and stride size s. Figure 1 (b) is the same
representation of Figure 1 (a) in hexadecimal. The actual size
of the input image is 1, 469, 952× 1, 024. The k th window is

VOLUME 9, 2021 152101

B. Baek et al.: Histogram Entropy Representation and Prototype Based Machine Learning Approach

FIGURE 1. Steps from 2D image to entropy histogram.

represented by vector wk .

wk = [b(k)0 , b
(k)
1 , . . . , b

(k)
L−1]

for k = 0, 1, . . . ,N−1 and bkj stands for a byte value between
0 and 255. When L = 1, 024 and s = 256, Figure 1 (c) is
the normalized byte histogram transformation of Figure 1 (b).
The histogram vector hk of the k th window wk becomes

hk = [h(k)0 , h
(k)
1 , . . . , h

(k)
255],

where h(k)j is the jth bin value. The histogram entropy vector
ek of wk is

ek = [e(k)0 , e
(k)
1 , . . . , e

(k)
255].

The bin entropy e(k)j of the jth bin of the k th window is
calculated by the Shannon entropy.

e(k)j = −h
(k)
j log2 h

(k)
j − (1− h(k)j) log2(1− h

(k)
j)

Every bin entropy e(k)j is associated with a state of uncer-

tainty in terms of two discrete probabilities. If h(k)j is close to

0 or 1, then e(k)j is a lower value. However, if h(k)j approaches

0.5, then e(k)j shows a high value. The value of e(k)j ranges over
[0, 1].

Figure 2 illustrates the process to construct a fixed length
feature map. The horizontal direction of a feature map M
goes along histogram bin indexes and the vertical direction
indicates L discretized values: M = [mlj]L×256 for a small
value δ.

loc(e(k)j) = (l, j) if e(k)j ∈ (δ(l − 1), δl]

mlj =
N−1∑
k=0

255∑
i=0

1[loc(e(k)j) = (l, j)]e(k)i ,

where l = 1, 2, . . . ,L and 1[x] is 1 if x is true or 0 otherwise.
loc(e(k)j) returns the coordinates where e(k)j will be added.
Therefore, the malware representation becomes a 2D array.

Figure 2 is an example of L = 10 and δ = 0.1, and the
y-axis is divided into 10 steps: (0, 0.1] for level 1, (0.1, 0.2]
for level 2, and (0.9, 1.0] for level 10. In the right figure,
a place labeled ? sums two inputs of 0.81 and 0.87 resulting
in 1.68. This is because 0.81 and 0.87 belong to section

(0.8, 0.9] whose level is l = 9. The coordinates of each
element appearing for all e(k)j are calculated and accumulated
to the proper cell over M.

M represents the degree of uncertainty accumulated in bin
(horizontal directions) and L (vertical direction) to construct
a 2D map of an executable file with a fixed size. In addition,
the distribution of the vertical direction expresses the change
by level on the horizontal direction. A fixed size feature con-
figuration is required and a preemptive condition for applying
various machine learning algorithms.

C. HISTOGRAM ENTROPY VISUALIZATION
Visualization provides one way to identify key patterns in
analyzing malware. The analysis phase considers the number,
location, and shape of peaks appearing on the histogram
and place high weights on the largest peaks [46]. Figure 3
and 4 shows the examples of the proposed histogram entropy
method which are generated from BIG 2015. The entropy
datagram with 256 × L was created by setting L = 1, and
the y-axis represents the summed entropy value over bins.
Histogram entropy depicts different patterns which is able to
determine the malware families.

Figure 3 (a) and (b) are Gatak examples, where the
change of entropy values is generally lower than 0.4 and
peaks of values are intermittently visible. Figure 3 (c) to (f)
are the examples of Kelihos. They show various patterns
depending on the version, repeatedly display a pattern that
occurs lower than 0.4 in case of version 1, and peaks above
0.8 are seen before the 20th bin. The example of version 3,
on the other hand, has zigzag patterns throughout, with peaks
above 0.6 in the second half.

Figure 3 (g) and (h) are the examples of Lollipop.
They have a number of peaks above 0.6 before the 50th bin,
and the remaining part retains entropy values of 0.2 or less.
Figure 3 (i) and (j) are the examples of Obfuscator.ACY.
There is a continuous and distinct change in entropy his-
togram according to the x-axis. They decrease at first, then
increases in the middle, and tend to decrease gradually after-
ward. It is evident that the changes between neighboring bins
gradually decrease or increase.

Figure 4 (a) and (b) are the examples of Ramnit. They
show a similar pattern to Gatak, but a value greater than

152102 VOLUME 9, 2021

B. Baek et al.: Histogram Entropy Representation and Prototype Based Machine Learning Approach

FIGURE 2. Generation of the fixed 2D entropy feature.

0.1 appears overall, and high peaks are greater than 0.4.
Figure 4 (c) and (d) show the examples of Simda which are
composed of values below 0.2. There are repetitive patterns
that gradually appear after increasing. Figure 4 (e) and (f) are
the examples of Tracur. They have a entropy value of 0.4 or
more in bins 40 to 60, and other parts are composed of values
less than 0.2. Figure 4 (g) and (h) are the examples of Vundo.
They have a tendency to rise and drop rapidly in the range of
0.0 and 0.3.

The histogram changes in the same malware family appear
with its own unique patterns and these patterns are very
similar. This is because this change is reinforced when the
degree of disorder of Shannon entropy is high, and the change
in low entropy is poorly expressed. The entropy change of
Obfuscator is distinct from other malware families, and
the change of entropy value is expressed at a high level. That
is, the change in entropy on the x-axis is analyzed in the
form of continuously increasing or decreasing, and high peak
values do not appear. In the pattern of other malware families,
high peak values appear repeatedly, and there are patterns
showing low changes in other parts.Simba andVundo show
similar patterns, but Vundo displays repeated and fluctuated
patterns within some range.

D. PROTOTYPE SELECTION APPROACH
To solve problems arising from learning through large-scale
malware, we propose a prototype selection algorithm via
building hyperrectangles. A hyperrectangle is determined as
a partial area within the homogeneous class distribution and
includes the same class instance. The selected set of proto-
types preserves the class distributions and constructs a new
training dataset.

1) PROBLEM FORMALIZATION
A c-classification problem is defined with D = {(xi, yi)|i =
1, . . . ,N } where xi ∈ Rd and yi ∈ {1, . . . , c}. The dataset of
class l becomes Dl = {(xi, l)|i = 1, . . . , nl}, and the size
of Dl is Nl = |Dl |. Thus, the size of the entire dataset is

6c
l=1Nl = N . The hyperrectangle based prototype selection

algorithm (PSA) takes D as an input and yields P = {Pl |l =
1, . . . , c} as a prototype dataset, where |Pl | � Nl for l =
1, 2, . . . , c.

2) HYPERRECTANGLES EMBEDDING HOMOGENEOUS DATA
A hyperrectangle takes an area of the input space which
includes some training instances in D. A hyperrectangle
is usually defined with d coordinate points. Alternatively,
a hyperrectangle h is represented only with the maximum
and minimum coordinates and instance index set: h =<
hmax,hmin, I >. The distance between x ∈ Rd and h is
calculated by Equation (1).

dist(x,h) = max
i∈[1,d]

{|x−mid| − r} (1)

Here, mid = 0.5(hmax
+ hmin) and r = 0.5(hmax

− hmin).
The index of x is appended to I if dist(x,h) ≤ 0. Otherwise,
x exists out of the hyperrectangle h. dist(x, h) becomes a
distance measure that determines whether x is located within
the input space represented by h.
Hyperrectangles separate the input space into smaller

regions, where each region contains some instances within
the same class. Two hyperrectangles can overlap or include
the same instances. Let s(h|D) stand for a covering set of a
hyperrectangle h from D.

s(h|D) = {z|dist(z,h) ≤ 0 and z ∈ D} (2)

Figure 5 shows a contour plot for the Equation (1) appear-
ing in the range [−0.5, 0.5], assuming that h is the minimum
point hmin

= (−0.15,−0.15) and maximum point hmax
=

(0.15, 0.15). The size of hyperrectangle h is determined by
the diagonal length between hmin and hmax, and the parameter
θ is defined to adjust the increasing size of h. A hyperrectan-
gle h extends itself by adding an instance x if dist(x, h) ≤ θ
and their class is the same. Through constructing hyperrect-
angles from D with θ , the hyperrectangle set H is acquired as
follows.

H = {hi =< hmax
i ,hmin

i , Ii > |i = 1, . . . ,N }, (3)

VOLUME 9, 2021 152103

B. Baek et al.: Histogram Entropy Representation and Prototype Based Machine Learning Approach

FIGURE 3. Examples of entropy histogram visualization.

where Ii is the index set of instances that hi covers and
hmax
i (or hmin

i) is the element-wise maximum (or minimum)
coordinates for all instances in Ii.

3) PROTOTYPE SELECTION ALGORITHM
The solution of PSA is to find a small set Hopt from H
(|Hopt| � |H|) satisfying D = ∪h∈Hopts(h|D). After

152104 VOLUME 9, 2021

B. Baek et al.: Histogram Entropy Representation and Prototype Based Machine Learning Approach

FIGURE 4. Examples of entropy histogram visualization.

generating H, Hopt becomes the solution of a set covering
problem [47]. So, the greedy approach is generally chosen
to find the solution Hopt.
For given D and θ , instead of generating H, an improved

greedy method of finding a solution is adopted by construct-
ing hyperrectangles one by one. PSA gradually approach
the final solution Hopt through random selection. Randomly
selected instance expands its coverage area while finding and
storing instance indexes of the same class included within the
distance according to Equation (1).

Algorithm 1 is the pseudocode of PSA. The input parame-
ters in PSA(D, θ) are the training dataset D and parameter θ ,

and the output is the set of hyperrectangles. A random number
is used to shuffle the order of the instances in D. H denotes
the set of hyperrectangles to be constructed as a solution and
is initially empty. C is the set of instance indexes existing in
the hyperrectangle set H. If i ∈ C, (xi, yi) ∈ D has already
been covered by a certain h ∈ H. Initially, C is the empty set.

The outer loop selects a candidate hyperrectangle index
and the instance indexes that h ∈ H covers are added one
by one at the inner loop. If the index i of (xi, yi) ∈ D of
the outer loop does not belong to C , the inner loop starts to
compose a new hyperrectangle h. A hyperrectangle h =<
hmax
i ,hmin

i , Ii > is initialized from (xi, yi), where Ii includes

VOLUME 9, 2021 152105

B. Baek et al.: Histogram Entropy Representation and Prototype Based Machine Learning Approach

FIGURE 5. Contour plot for Equation (1).

Algorithm 1 Prototype Selection Algorithm (PSA)
1: procedure PSA(D, θ)
2: D← Shuffle D randomly
3: H← φ

4: C← φ

5: for (xi, yi) ∈ D do
6: if i 6∈ C then
7: // Generate a new hyperrectangle
8: h←< hmax

i , hmin
i , Ii >

9: hmax
i ← xi; hmin

i ← xi; Ii← {i}
10: for (xj, yj) ∈ D and i 6= j do
11: if yj = yi and j 6∈ C and dist(xj,h) ≤ θ then
12: // Add a new member to a hyperrectangle
13: hmax

i = ele_wise_max(hmax
i , xj)

14: hmin
i = ele_wise_min(hmin

i , xj)
15: Ii← Ii ∪ {j}
16: end if
17: end for
18: H← H ∪ {< hmax

i , hmin
i , Ii >}

19: C← C ∪ Ii
20: end if
21: end for
22: return H
23: end procedure

the index i. The inner loop expands the coverage area of h
by searching for a new (xj, yj) that has not been included yet.
The selected (xj, yj) is j 6∈ C and satisfies dist(xj,h) ≤ θ , and
at the same time, update hmax

i and hmin
i through element-wise

operations. An a new element of h, the index j is added to Ii.
When h is created from all j 6∈ C and i 6= j that have not

been covered yet, the inner loop terminates, and h becomes
a member of H, and every element of Ii is included to C.
The same process is repeated for the selected instances in the
next outer loop. If the size of C is equal to |D|, the algorithm
returns H as the final solution.
A new training dataset is generated from H. A training

instance of h =< hmax,hmin, I >∈ H is considered as the
mean or median of all instances in I. New instances by the
mean divide the sum of all instances in h by the number

of elements. Meanwhile, the median of h is the coordinate
average of hmax and hmin. A new instance has a one-to-one
correspondence to its own hyperrectangle and can be not
placed outside the subregion by h. Therefore, the distribution
of the new dataset created by H is comparable to that of the
original dataset. In addition, the class boundaries induced by
a machine learning algorithm from the new dataset become
similar to those learned from the original dataset.

By dividing the input data space via hyperrectangles,
a small number of new training data can be generated while
maintaining the distribution of class data. The total number of
new training instances is equal to the number of elements in
H. Moreover, the size of the new training dataset is affected by
θ . When class instances are mixed and distributed, the num-
ber of selected hyperrectangles increases, whereas when class
areas are kept isolated, the number of hyperrectangles tends to
decrease. The preselected θ is also a factor in determining the
number of selected hyperrectangles and their coverage areas.

4) ALGORITHM COMPARISON
We compare and analyze the PSA performance with proto-
type selection algorithms using hyperspheres. Interpretable
prototype selection [15] (IPS) constructs a hyperspheres that
divide class areas using a distance measure and a fixed
radius. PSA proposes an optimization technique for selecting
a small number of prototypes containing all possible train-
ing data. The technique employs a stepwise algorithm that
transforms the prototype selection problem into a set cover
optimization problem and selects prototypes from each class
independently. However, the prototypes contain instances of
other classes and the radius of the hyperspheres is prese-
lected through the prior experiments. Prototype based learn-
ing [48] (PBL) adjusts the radiuses of prototypes by taking
into account the classes of instances which a prototype can
cover. PBL does not include heterogeneous instances within
potential prototypes, as it manages the radiuses of hyper-
spheres in constructing covering sets.

Figure 6 is the examples of the prototype selection algo-
rithms. The data in this experiment is randomly generated
data in this experiment and the total of data is 900. Figure 7(a)
is an example of selected prototypes with a fixed radius
(r = 0.1). A total of 56 prototypes are selected. Figure 7(b)
is a hypersphere of variable radiuses. The number of data
within the prototype domain is more than one, with a total
of 110 prototypes selected. No prior definition of radius is
required because the radius is set by considering the different
classes of data within the region of each prototype. Fig-
ure 7(c) is an example of our hyperrectangle based prototype
selection (HRPS) and a number of 47 prototypes are chosen
with θ = 0.4.

Figure 7 compares IPS, PBL and HRPS in terms of θ ,
data size and time complexity. The test problem consists of
three classes of 2D data that are generated at random between
300 and 3000. Figure 8(a) compares the number of prototypes
selected as θ changes. As θ increases from 0.1 to 1.0, the
coverage area of a hyperrectangle expands, resulting in fewer

152106 VOLUME 9, 2021

B. Baek et al.: Histogram Entropy Representation and Prototype Based Machine Learning Approach

FIGURE 6. Results of IPS, PBL and HRPS for a toy problem.

FIGURE 7. Comparison of IPS, PBL and HRPS.

prototypes selected. When a small θ is set, a large number of
prototypes are selected. So, the maximum number of selected
prototypes is equal to the size of the training dataset. A new
training dataset, consisting of a small number of prototypes,
should be constructed while reflecting the distribution of
the input data space. Therefore, it is necessary to find an
appropriate θ value in order to improve generalization per-
formance.

Figure 8(b) compares the execution time. IPS and HPRS
takes lower time than PBL. The reason is because PBL takes
time to find hyperspheres with variable radiuses, requiring
much computation time. HRPS has a prototype selection time
similar to IPS and the runtime remains nearly constant even
though the number of instances increases. In the method of
dividing the class input space, the method of extending the
coverage area of IPS is simpler than that of HRPS.

IV. EXPERIMENT
Model experiments were performed on a computer with Intel
Xeon(B) Silver 4120 CPUs and Nvidia GPU. The computer
supports 256 GB of main memory and 2 CPUs at 2.20 GHz.
TheGPUmodel is Tesla V100 and has 32GB ofmemory. The
GPU was used to compare the training time of CNN models.

The proposed malware feature is compared to the
test results of Decision Tree (DT, [49]), Random Forest

(RF, [50]), XGBoost (XGB, [45]) and CNN [51] algorithms.
The final learning model was determined through the 5-
fold cross-validation for the BIG 2015 dataset. We adopted
DT and RF models from scikit-learn [52], XGB from
XGBoost [53] and CNN from Keras [54]. The whole exper-
iments were conducted by 50 times per cross-validation and
analyzed the average of the mentioned metrics for objective
comparison.

A. ASSESSMENT METRICS
The chosenmetrics of themalware detection system are accu-
racy, recall and precision, balanced accuracy and F1-score
under 5-way cross-validation [55]. The predictive result of
each malware family was evaluated and their average was
analyzed for the overall performance. N is the size of the test
dataset, l = {1, · · · , c} is the class label, Nl is the number
of instances in each class. Let ŷi be the prediction result for
the ith instance of the test dataset and then c = 9 for the BIG
2015 dataset. Each evaluation metric is defined as follows.

Accuracy measures how correctly a model predicts test
instances where the basic unit is a single instance. Each unit
is weighted equally to the model accuracy.

Accuracy =
1
N

c∑
l=1

N∑
i=1

1(ŷi = yi = l)

VOLUME 9, 2021 152107

B. Baek et al.: Histogram Entropy Representation and Prototype Based Machine Learning Approach

A c-class classifier has a tendency to focus more on clas-
sification learning of majority class data rather than minority
class data. This makes it difficult to objectively evaluate when
the class data is imbalanced. Balanced accuracy can alleviate
this problem and is equal to the sum of the proportion of cor-
rectly predicted instances divided by the number of classes.
This metric is less sensitive to the majority class and gives
high weight to data from minority classes. Therefore, the
difference between balanced accuracy and accuracy appears
when the test dataset shows an imbalanced distribution over
the classes.

Balanced accuracy =
1
c

c∑
l=1

1
Nl

N∑
i=1

1(ŷi = yi = l)

When evaluating a c-class classifier, the precision and
recall of class l is computed from the prediction result.

prel =

∑N
i=1 1(ŷi = yi = l)∑N

i=1 1(ŷi = l)

recl =

∑N
i=1 1(ŷi = yi = l)

Nl
Precision prel of class l is the ratio of the number of

instances correctly answered by class l to the number of
instances predicted to class l. Recall recl of class l becomes
the proportion of the correctly predicted instances to the
total number of instances in class l. Precision indicates the
correctly predicted proportion of the predicted class data,
while the recall analyzes the correctly predicted proportion
of the class data. It is a measure that compares the analysis
evaluation of a correctly classified specific class through the
same class and another class. When both precision and recall
are close to 1, the generalization performance of the training
model is highly regarded. The overall precision and recall of
a c-class classifier is calculated as follows.

Precision =
1
c

c∑
l=1

prel, Recall =
1
c

c∑
l=1

recl

F1-score is the harmonic mean of all the precision and
recall values. F1-score calculates the overall average of preci-
sion and recall, since the numerator consists of values in the
range [0, 1]. This implies that the influence of the majority
class has the same importance as the minority class. The
high F1-score indicates that the predictive model has good
performance, whereas the low F1-score means that it is a poor
model.

F1-score = 2×
Precision× Recall
Precision+ Recall

B. MODEL COMPARISON FOR MALWARE FAMILY
CLASSIFICATION
The DT structure was decided through the preliminary exper-
iments with the subsample dataset of a sampling ratio of
30.0% at random. While deciding the DT structure, the tree
depth increased from 5 to 30 by step 2. The node splitting
criterion of DT uses Shannon’s entropy, theminimumnumber

of a node’s instances is set to 4. The internal nodes were
applied to split if their number of instances was more than
10. When splitting nodes, the same number of features is
checked.

RF and XGB employed 100 decision trees where each
tree structure was the same as DT. Similarly, the number of
DTs was chosen by changing the number of DTs from 50 to
200 by adding 10 each through the preliminary experiments.
When learning RF, all DTs were trained with only 80% of the
selected data. The learning rate of XGB was set to 0.05 and
the conventional gradient decision tree was chosen. To avoid
overfitting, the sample ratio in decision tree construction
was 0.7, implying that XGB randomly selects 70.0% of the
training data prior to growing trees.

From the related works, the CNN architecture consists of
7 layers as shown in Figure 8. There are 3 convolution layers,
one max pooling layer and 3 layers of the fully connected
layer. The 5th and 6th layers are composed of ReLU (Rectified
Linear Unit) nodes, and the nodes of the output layer adopted
a softmax activation function. The maximum epoch of train-
ing was 100 and the mini-batch size was 256. The input layer
of the fully connected neural network is configured to prevent
overfitting using a 30.0% dropout strategy.

The shape of the proposed 2D feature representation
depends on θ and L. To determine the optimal θ and L values,
the grid search method was used for repeated experiments. L
changes the discrete value by increasing by 1 from 1 to 20,
and θ decreases from 1 to 10−5. For a given L, θ is set to
θ = 2−d∗e

k
2 × 5d

k
2 e−k , k = 0, 1, . . . , 20. As L increased, the

continuous improvement was analyzed, but after L ≥ 6, the
performance improvement of all models was insignificant.
For each L, when θ = 1, the prediction performance showed
less than 50%. After θ = 10−5, there was no performance
improvement, and all training data were determined as proto-
types. Therefore, the L values of 1, 2, 4, and 6 were chosen
for the visualization analysis.

Table 4 and Figure 9 compare the performance of the
learning models when θ = 0.01 and L changes. As L changes
from 1 to 6, the performance of each model tends to increase.
For XGB, RF, and CNN, all the metrics are increasing as L
increases. Furthermore, at L = 1, these learning algorithms
achieve above 96.0% and reach 100.0% at L = 6. However,
in DT, as the level of L increases, the accuracy index shows a
tendency to increase,, but the changes in recall, precision, and
balanced accuracy were observed. When L = 6, all models
achieve their best performance, which is around 98.5% for
all evaluation metrics except the DT model. Overall, RF and
XGB outperform DT, however the difference in performance
is just approximately 5.0% at most.

In comparison of precision, recall, and F1-score, CNN
shows a little higher than RF and XGB. When comparing
the generalization performance of CNN with that of other
algorithms, it shows about 2% to 5% with DT, and a dif-
ference of about 10−2 with RF and XGB is analyzed. The
difference between CNN, RF, and XGB is negligible at all
L values.

152108 VOLUME 9, 2021

B. Baek et al.: Histogram Entropy Representation and Prototype Based Machine Learning Approach

FIGURE 8. CNN structure to detect malware.

TABLE 4. Performance comparison for BIG 2015.

On the other hand, CNN requires significantly more time
to train than the other algorithms (Figure 9 (f)). The train-
ing time of XGB places 2nd. But the training time of CNN
exceeds 10 times than that of XGB except the case of L = 1.
DT shows the shortest training time, but RT requires twice as
much time as DT.

We evaluated both CPU-based CNN (column CNN in
Table 4) and GPU-based CNN (column GPU in Table 4). The
two experiments were evaluated similarly, but the training
time of the model using the GPU was approximately 9 to
18 times faster. Furthermore, GPU-based CNN was trained
faster than XGB in terms of time complexity. As a result,
in terms of metrics and training time, GPU-based CNN out-
performed XGB.

In the experimental evaluation, the ensemble approach
based on the decision tree shows slightly lower performance
than CNN, but is analyzed much higher than DT. The gen-

eralization performance of RF, CNN, and XGB from the
evaluated scales show high robustness. We found that RF and
XGB are more effective at malware classification using the
2D histogram entropy because of their low time complexity
and high generalization performance.

C. MODEL COMPARISON FOR MALWARE DETECTION
The binary classification for malware detection was con-
ducted on both 2-class BIG and 2-class Malwares datasets.
The 2-class BIG consists of about 85,000malware and benign
collected in Table 3. In BIG 2015, the Malware Challenge
dataset does not include benign examples, so we include
the benign dataset of the Malwares dataset to define the
classification problem (2-class Malwares) which consists of
30,868 malware and benign.

The Prototype selection rate from 2-class BIG was
about 70% (58,878) and analyzed as θ = 0.01. This θ

VOLUME 9, 2021 152109

B. Baek et al.: Histogram Entropy Representation and Prototype Based Machine Learning Approach

FIGURE 9. Performance comparison.

value was the same value found in the Malware family
test, and the addition of benign data did not affect the
optimal θ value. In the 2-class Malwares dataset, when
θ = 0.0001, about 49.11% (14,816) prototypes were
selected.

Table 5 compares the experimental results of 2-class BIG
and 2-class Malwares. The result of 2-class BIG is L =
6, and 2-class Malwares is L = 4. From the 2-class
BIG results, the performance of all models including DT
was analyzed to be higher than 99%. In particular, CNN
using GPU approaches 100% in all performance indica-
tors, but requires about 10 times more training time. For
2-class Malwares, the precision, recall, and F1-score of DT
do not reach 90%, but the ensemble model approaches
95%. CNN’s precision is about 90%, but recall is 88%.
CNNs required several times the training time due to
the huge amount of training data. In both experiments,
XGB shows higher performance than other models, and is
analyzed as a more robust model for malware detection
problems.

Based on various thresholds, the precision-recall (PR)
curve diagnoses the impact of precision and recall rates on
malware classes, whereas the ROC examines the trade-off
between false positive and true positive rates in terms of mal-
ware and benign instances within the test dataset. Figure 10
shows PR AUC and ROC graphs for 2-class BIG and 2-class
Malware. The results prove that the proposedmethod is effec-
tive for malware detection analysis because it does not cause
overfitting and the effect of class imbalance. For both the
2-class problems, DT showed the lowest AUC, but showed
the highest performance in the order of XGB, RF, and CNN.
This trend was similar to malware family detection. The PR
AUC and ROCAUC of 2-class BIG are close to 1.0 for XGB,
RF, and CNN. The PR AUC of the two types of malware was
analyzed to be excellent in the order of XGB, RF, and CNN,
and the ROC graph shows the same trend.

D. ANALYSIS OF THE EFFECT OF PROTOTYPE SELECTION
A new dataset generated by selecting a prototype is ana-
lyzed for its suitability through the case of RF. The model

152110 VOLUME 9, 2021

B. Baek et al.: Histogram Entropy Representation and Prototype Based Machine Learning Approach

FIGURE 10. Precision-recall AUC and ROC analysis for binary problems.

FIGURE 11. Performance of Random Forest by θ versus L.

parameters were the same as in Subsection IV-B. The size
of the new training dataset is influenced by the number of
prototypes, which is determined by parameter θ . Therefore,
we compare and analyze between the size of new datasets and
RF performance as θ and L change. This type of evaluation

can compare the relationship between the size of prototypes
and learning model.

Without loss of generality, a new dataset was generated by
scaling the training data to the range [0, 1] and decreasing
θ from 0.5 to 0.00005. We compared prototype selection

VOLUME 9, 2021 152111

B. Baek et al.: Histogram Entropy Representation and Prototype Based Machine Learning Approach

FIGURE 12. Performance comparison of BIG 2015 with Random Forest.

TABLE 5. Performance comparison for malware detection.

ratios and the accuracy of RF according to the change of L
and θ (Figure 10). Because the volume of hyperrectangles
decreases as θ decreases, the number of selected prototypes
approaches closer to the size of the original dataset. In the
case of L = 6, when θ changes from 0.5 to 0.01, the accuracy
increases in proportion as the number of selected prototypes
increases. The number of prototypes increases from 0.005 to
0.00005, but the effect on accuracy is insignificant. The
best case occurs at L = 6 and θ = 0.01 when consid-
ering the number of selected prototypes and generalization
performance.

Figure 12 compares the performance of the malware fam-
ily detection by RF when θ = 0.01 and L = 6. The
average prototype selection rate for each malware fam-
ily is less than 40.0%. However, the detection rate of
Simda is 87.5%, but the detection rate of other families
exceeds 95.0%.

The prototype selection rate for Ramnit, Lollipop,
Tracur and Gatak is 56.59 % to 66.06 %. The result
shows similar or higher performance than before the pro-

totype selection algorithm was applied. We note that the
prototype instance representing the class similarly reflects
the original class data distribution. In addition, it is expected
that the boundaries between malware families are dis-
tinguishable to some extent. Kelihos_ver3, Vundo,
Kilihos_ver1 and Obfuscator.ACY show relatively
low prototype selection rates ranging from 13.6% to 41.9%,
and similar classification performance. It is anticipated that
the instances of these malware families are clustered together
and that several family groups are dispersed throughout the
feature space.

The performance of Simda is 2.4% lower than that
of the others but the prototype selection rate is around
93.0%. The number of Simda instances in the orig-
inal dataset is too small (0.4%) to reflect the data
distribution only with gathered instances. The selected
prototypes do not contain sufficient information on its
malware family distribution. The same analysis can be
considered for Rammit, Lollipop, Tracur, and
Gatak.

152112 VOLUME 9, 2021

B. Baek et al.: Histogram Entropy Representation and Prototype Based Machine Learning Approach

V. CONCLUSION
As malware variants increase, both the time and model com-
plexities are raised for malware classification. To address
these challenges, this paper proposed an integrated system
of both the fixed size feature design and the prototype selec-
tion method based on hyperrectangles. Unlike the previously
studied high-dimensional malware features, the histogram
entropy benefits from low dimensions, reducing learning time
and avoiding overfitting. The hyperrectangle based proto-
type selection method generates a smaller dataset with more
meaningful instances from the original dataset. As a result,
the approach can save storage space and training time while
retaining high generalization performance. The histogram
entropy can be interpretable through 2D images, allowing
features to be visually analyzed for comparative analysis.
We found that the distinct patterns appeared across cases of
the same malware family or that the histogram change trend
was consistent.

The proposed approach was shown to be effective in
malware analysis using both the BIG 2015 dataset and
the Malwares dataset. The performance of the histogram
entropy feature was compared using decision tree, ensem-
ble model, and convolution neural network. The histogram
features entropy showed high classification performance of
approximately 98% or higher, and the ensemble model was
the most efficient in terms of learning time and performance
metrics. Furthermore, the proposed prototype selection algo-
rithm performed similarly to the entire dataset in malware
family classification and malware detection. The overall pro-
totype selection rate was about 50% which could reduce
the training time. The proposed feature transformation of
malware can account for structural variations per malware
family such as entropy peak count, location, shape, etc. There
is a need for more research on malware feature design with
low dimensionality and prototype selection methods using
class boundary instances.

REFERENCES
[1] C. LeDoux and A. Lakhotia, ‘‘Malware and machine learning,’’ in Intelli-

gent Methods for Cyber Warfare. Springer, 2015, pp. 1–42.
[2] A. Souri and R. Hosseini, ‘‘A state-of-the-art survey of malware detection

approaches using data mining techniques,’’ Hum.-Centric Comput. Inf.
Sci., vol. 8, no. 1, pp. 1–22, Dec. 2018.

[3] J. Singh and J. Singh, ‘‘A survey on machine learning-based malware
detection in executable files,’’ J. Syst. Archit., vol. 112, Jan. 2021,
Art. no. 101861.

[4] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. Elovici, ‘‘Detecting
unknown malicious code by applying classification techniques on opcode
patterns,’’ Secur. Informat., vol. 1, no. 1, pp. 1–22, Dec. 2012.

[5] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, ‘‘Opcode
sequences as representation of executables for data-mining-based
unknown malware detection,’’ Inf. Sci., vol. 231, pp. 64–82, May 2013.

[6] X. Hu, T. C. Chiueh, and K. Shin, ‘‘Large-scale malware indexing
using function-call graphs,’’ in Proc. CCS, New York, NY, USA, 2009,
pp. 611–620, doi: 10.1145/1653662.1653736.

[7] Y. Ki, E. Kim, and H. K. Kim, ‘‘A novel approach to detect malware based
on API call sequence analysis,’’ Int. J. Distrib. Sensor Netw., vol. 11, no. 6,
Jun. 2015, Art. no. 659101.

[8] K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh, ‘‘Automatic generation
of string signatures for malware detection,’’ in Proc. Int. Workshop Recent
Adv. Intrusion Detection. Berlin, Germany: Springer, 2009, pp. 101–120.

[9] R. Lyda and J. Hamrock, ‘‘Using entropy analysis to find encrypted
and packed malware,’’ IEEE Security Privacy, vol. 5, no. 2, pp. 40–45,
Mar./Apr. 2007.

[10] N. Nissim, R. Moskovitch, L. Rokach, and Y. Elovici, ‘‘Novel active
learning methods for enhanced PC malware detection in windows OS,’’
Expert Syst. Appl., vol. 41, no. 13, pp. 5843–5857, 2014.

[11] S. M. Tabish, M. Z. Shafiq, and M. Farooq, ‘‘Malware detection using
statistical analysis of byte-level file content,’’ in Proc. ACM SIGKDD
Workshop CyberSecur. Intell. Inform., 2009, pp. 23–31.

[12] N. Bhatia and F. Vandana, ‘‘Survey of nearest neighbor techniques,’’ 2010,
arXiv:1007.0085.

[13] I. Triguero, J. Derrac, S. Garcia, and F. Herrera, ‘‘A taxonomy and experi-
mental study on prototype generation for nearest neighbor classification,’’
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 42, no. 1, pp. 86–100,
Jan. 2012.

[14] S. Garcia, J. Derrac, J. R. Cano, and F. Herrera, ‘‘Prototype selection
for nearest neighbor classification: Taxonomy and empirical study,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 34, no. 3, pp. 417–435, Mar. 2012.

[15] J. Bien and R. Tibshirani, ‘‘Prototype selection for interpretable classifica-
tion,’’ Ann. Appl. Statist., vol. 5, no. 4, pp. 2403–2424, Dec. 2011.

[16] R. M. O. Cruz, R. Sabourin, and G. D. C. Cavalcanti, ‘‘Analyzing differ-
ent prototype selection techniques for dynamic classifier and ensemble
selection,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017,
pp. 3959–3966.

[17] J. A. Olvera-López, J. A. Carrasco-Ochoa, J. F. Martínez-Trinidad, and
J. Kittler, ‘‘A review of instance selection methods,’’ Artif. Intell. Rev.,
vol. 34, no. 2, pp. 133–143, 2010.

[18] S.-S. Choi, S.-H. Cha, and C. C. Tappert, ‘‘A survey of binary similarity
and distance measures,’’ J. Syst., Inform., vol. 8, no. 1, pp. 43–48, 2010.

[19] D. Marchette, ‘‘Class cover catch digraphs,’’Wiley Interdiscipl. Rev., Com-
put. Statist., vol. 2, no. 2, pp. 171–177, 2010.

[20] R. Younsi and A. Bagnall, ‘‘A randomized sphere cover classifier,’’ in
Proc. Int. Conf. Intell. Data Eng. Autom. Learn.Berlin, Germany: Springer,
2010, pp. 234–241.

[21] J. Hamidzadeh, R. Monsefi, and H. Sadoghi Yazdi, ‘‘IRAHC: Instance
reduction algorithm using hyperrectangle clustering,’’ Pattern Recognit.,
vol. 48, no. 5, pp. 1878–1889, May 2015.

[22] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, ‘‘Malware
images: Visualization and automatic classification,’’ in Proc. 8th Int. Symp.
Vis. Cyber Secur. , 2011, pp. 1–7.

[23] J. Saxe and K. Berlin, ‘‘Deep neural network based malware detection
using two dimensional binary program features,’’ in Proc. 10th Int. Conf.
Malicious Unwanted Softw. (MALWARE), 2015, pp. 11–20.

[24] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,
‘‘Novel feature extraction, selection and fusion for effective malware
family classification,’’ in Proc. 6th ACM Conf. Data Appl. Secur. Privacy,
Mar. 2016, pp. 183–194.

[25] D. Gibert, C. Mateu, J. Planes, and R. Vicens, ‘‘Using convolutional neural
networks for classification of malware represented as images,’’ J. Comput.
Virol. Hacking Techn., vol. 15, no. 1, pp. 15–28, Mar. 2019.

[26] A. Dey, S. Bhattacharya, and N. Chaki, ‘‘Byte label malware classifica-
tion using image entropy,’’ in Proc. Adv. Comput. Syst. Secur. Singapore:
Springer, 2019, pp. 17–29.

[27] S. Euh, H. Lee, D. Kim, and D. Hwang, ‘‘Comparative analysis of low-
dimensional features and tree-based ensembles for malware detection sys-
tems,’’ IEEE Access, vol. 8, pp. 76796–76808, 2020.

[28] S. Ni, Q. Qian, and R. Zhang, ‘‘Malware identification using visualiza-
tion images and deep learning,’’ Comput. Secur., vol. 77, pp. 871–885,
Aug. 2018.

[29] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi,
‘‘Microsoft malware classification challenge,’’ 2018, arXiv:1802.10135.

[30] A. Nappa, M. Z. Rafique, and J. Caballero, ‘‘The MALICIA dataset:
Identification and analysis of drive-by download operations,’’ Int. J. Inf.
Secur., vol. 14, no. 1, pp. 15–33, Feb. 2015.

[31] Virus Total. Accessed: Feb. 21, 2021. [Online]. Available: https://www.
virustotal.com/gui/

[32] Vx Heaven. Accessed: Feb. 21, 2021. [Online]. Available: http://vxheaven.
org/

[33] VIPRE. Accessed: Feb. 21, 2021. [Online]. Available: https://www.vipre.
com/

[34] Analyzing Unknown Binaries. Accessed: Feb. 21, 2021. [Online].
Available: http://anubis.iseclab.org/

[35] Malwares. Accessed: Feb. 21, 2021. [Online]. Available: https://www.
malwares.com

[36] P. Burnap, R. French, F. Turner, and K. Jones, ‘‘Malware classification
using self organising feature maps and machine activity data,’’ Comput.
Secur., vol. 73, pp. 399–410, Mar. 2018.

VOLUME 9, 2021 152113

http://dx.doi.org/10.1145/1653662.1653736

B. Baek et al.: Histogram Entropy Representation and Prototype Based Machine Learning Approach

[37] Y. Fan, Y. Ye, and L. Chen, ‘‘Malicious sequential pattern mining for
automatic malware detection,’’ Expert Syst. Appl., vol. 52, pp. 16–25,
Jun. 2016.

[38] D. Yuxin and Z. Siyi, ‘‘Malware detection based on deep learning algo-
rithm,’’ Neural Comput. Appl., vol. 31, no. 2, pp. 461–472, Feb. 2019, doi:
10.1007/s00521-017-3077-6.

[39] K. S. Han, J. H. Lim, B. Kang, and E. G. Im, ‘‘Malware analysis using
visualized images and entropy graphs,’’ Int. J. Inf. Secur., vol. 14, no. 1,
pp. 1–14, Feb. 2015.

[40] J. Luo and D. C. Lo, ‘‘Binary malware image classification using machine
learning with local binary pattern,’’ in Proc. IEEE Int. Conf. Big Data,
Boston, MA, USA, Dec. 2017, pp. 4664–4667.

[41] K. Rieck, P. Trinius, C. Willems, and T. Holz, ‘‘Automatic analysis of
malware behavior using machine learning,’’ J. Comput. Secur., vol. 19,
no. 4, pp. 639–668, 2011.

[42] X. Hu, K. G. Shin, S. Bhatkar, and K. Griffin, ‘‘MutantX-S: Scalable
malware clustering based on static features,’’ in Proc. Annu. Tech. Conf.,
2013, pp. 187–198.

[43] Cuckoo. Accessed: Feb. 21, 2021. [Online]. Available:
https://cuckoosandbox.org/

[44] I. Sorokin, ‘‘Comparing files using structural entropy,’’ J. Comput. Virol.,
vol. 7, no. 4, pp. 259–265, Nov. 2011.

[45] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
2016, arXiv:1603.02754.

[46] V. V. Strelkov, ‘‘A new similarity measure for histogram comparison and its
application in time series analysis,’’ Pattern Recognit. Lett., vol. 29, no. 13,
pp. 1768–1774, Oct. 2008.

[47] V. V. Vazirani, Approximation Algorithms, vol. 1. Berlin, Germany:
Springer, 2001.

[48] D. Hwang and Y. Son, ‘‘Prototype-based classification and error analy-
sis under bootstrapping strategy,’’ Int. J. Data Mining, Model. Manage.,
vol. 10, no. 4, p. 293, 2018.

[49] J. R. Quinlan, ‘‘Learning decision tree classifiers,’’ ACM Comput. Surv.,
vol. 28, no. 1, pp. 71–72, Mar. 1996, doi: 10.1145/234313.234346.

[50] T. K. Ho, ‘‘The random subspace method for constructing decision
forests,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8,
pp. 832–844, Aug. 1998.

[51] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016. [Online]. Available:
http://www.deeplearningbook.org

[52] Scikit-Learn. Accessed: Feb. 21, 2021. [Online]. Available: https://scikit-
learn.org/

[53] XGBoost. Accessed: Feb. 21, 2021. [Online]. Available:
https://xgboost.readthedocs.io/en/latest/index.html

[54] Keras. Accessed: Feb. 21, 2021. [Online]. Available: https://keras.io/
[55] J. Kelleher, B. Mac Namee, and A. D’Arcy, Fundamentals of Machine

Learning for Predictive Data Analytics: Algorithms, Worked Examples,
and Case Studies, 2nd ed. Cambridge, MA, USA: MIT Press, 2020.

BYUNGHYUN BAEK received the B.S. and M.S.
degrees from Dankook University, South Korea.
He is currently a Researcher at the Digital Health-
care Institute, GI VITA, South Korea. His research
interests include machine learning, parallel pro-
cessing, and image processing.

SEOUNGYUL EUH received the B.S. and M.S.
degrees from Ajou University, South Korea. He is
currently pursuing the Ph.D. degree with the
Department of Software Science, Dankook Uni-
versity, South Korea. He is also the Vice Pres-
ident with the Security Technology Institute,
KSign, South Korea. His research interests include
machine learning, parallel processing, and threat
intelligence.

DONGHEON BAEK received the Ph.D. degree
from Seoul National University, South Korea.
He was a Public Health Doctor at the Korean
Food & Drug Administration and worked on reg-
ulatory affairs of medical devices certification.
He is currently a Professor with the Department
of Oral Microbiology and Immunology, School
of Dentistry, Dankook University, South Korea.
His research interests include the T-cell immunity,
pathogenicity of periodontal diseases and evalu-

ation of public healthcare devices, bioinformatics and applications, and
information systems.

DONGHOON KIM received the M.Sc. degree
from Auburn University, USA, and the Ph.D.
degree from North Carolina State University,
USA. He is currently an Associate Professor with
the Department of Computer Science, Arkansas
State University, USA. He formerly worked at
Samsung Electronics, South Korea, as a Software
Engineer. His research interests include cyberse-
curity, machine learning, high-performance com-
puting, and software engineering.

DOOSUNG HWANG received the Ph.D. degree
from Wayne State University, USA. He is cur-
rently a Professor with the Department of Soft-
ware Science, Dankook University, South Korea.
Previously, he was a Senior Researcher at the
Electronics and Telecommunications Research
Institute (ETRI), South Korea, and worked on
learning algorithm design and intelligent systems,
such as expert systems, image recognition, time-
series analysis, and parallel computing.

152114 VOLUME 9, 2021

http://dx.doi.org/10.1007/s00521-017-3077-6
http://dx.doi.org/10.1145/234313.234346

