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ABSTRACT Transmission expansion planning is a complex problem that deals with the selection of new
transmission lines that guarantee meeting future demand/generation and technical limits with the minimal
investment cost. The transmission expansion planning problem has been solved through approaches and
techniques aimed at reducing the computational effort required for its solution. Nevertheless, finding the
optimal solution or even good-quality solutions for large-scale transmission systems is still challenging.
In that context, an efficient multi-start with path relinking search strategy for the transmission expansion
planning problem is proposed. The proposed strategy has two phases: constructive phase and local search.
In the former, the multi-start applies a diversification process to guide the search along different regions to
obtain good-quality solutions. Then, the local search phase executes an intensive search in the neighborhood
of the best feasible solutions found in the constructive phase. The intensification process is performed in two
steps: application of the Villasana-Garver-Salon algorithm in the best solutions after consecutive removal of
transmission lines and path relinking using elite solution pairs. Tests performed using data from four systems
show the efficiency of the proposed search strategy. Thus, the optimal solutions were obtained with a very
low computational effort.

INDEX TERMS Multi-start metaheuristic (MSM), path relinking (PR), power system optimization, trans-
mission expansion planning (TEP).

NOTATION
The notation used throughout this paper is reproduced below
for quick reference.

Indices:
i Index for buses.
ij Index for corridors.
Sets:
�b Set of all network buses.
�l Set of all corridors.
�0
l Set of all existing transmission lines (lines

in the initial configuration plus the lines
added during the iterative process).

The associate editor coordinating the review of this manuscript and

approving it for publication was Salvatore Favuzza .

Function:
υ Investment to build new transmission lines.
Constants:
k1 Number of solutions obtained in the

constructive phase.
k2 Number of solutions employed in the local

search phase I.
k3 Number of solutions employed in the local

search phase II (path relinking).
NoC Number of corridors.
γij Susceptance for a line in corridor ij.
cij Cost of a new line in corridor ij.
di Load demand at bus i.
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f̄ij Maximum power flow allowed for a line in
corridor ij.

ḡij Maximum generation at bus i.
n̄ij Maximum number of lines that can be built

in corridor ij.
n0ij Number of existing lines in corridor ij.
1 Maximum random percentage variation

in line costs cij.
θref Angular reference.
gi Generation at bus i (without rescheduling).
Variables:
θi Voltage angle at bus i.
f 0ij Power flow in the existing lines of corridor ij.
fij Power flow in candidate lines of corridor ij.
nij Number of lines to be added in corridor ij.
gi Generation at bus i (with rescheduling).

I. INTRODUCTION
Transmission expansion planning (TEP) is a classic problem
for the optimization of electrical transmission systems (ETS).
TEP aims the minimization of investment costs related to the
installation of new transmission lines (TL) and transformers
in the ETS such it properly operates for the new load and gen-
eration defined in the planning horizon. New contributions
related to the TEP problem can be made through research in
mathematical modeling or in the solution technique.

In the TEP problem, the simplest mathematical modeling
considers only constraints related to Kirchhoff’s laws and the
operating limits of the TL and the voltage level in the system
buses. The network modeling related to Kirchhoff laws can
be represented with different levels of precision, such as the
transport model, the hybrid model, the DCmodel (or its linear
disjunctive equivalent model), and the AC model. Currently,
the ACmodel is considered the ideal mathematical model, but
the DC model is still used when additional operational con-
straints are taken into account as in the proposals presented
in [1]–[3]. Details related to those mathematical models can
be found in [4]–[5]. Regarding the planning horizon, the
TEP problem can be considered static (only one horizon) or
multistage, in which the planning horizon is separated into
several stages. Also, the TEP problemmay include additional
requirements, such as planning considering contingencies
(N-1), additional reliability criteria, electric market require-
ments, and the integration of renewable generating sources,
among others. Therefore, the TEP problem can present more
complex modeling. Thus, in [6], a TEP model with electric
market constraints is presented; in [7], a mathematical model
is presented that incorporates HVAC/HVDC links, security
constraints, and power losses and, in [8], a detailed disjunc-
tive linear mathematical model of the multistage TEP prob-
lem is presented to reduce the search space and incorporating
security constraints and, in [9], the proposal to use linear
sensitivity factors in the TEP problem appears as a way to
incorporate security constraints.

A new modeling proposal regarding the TEP problem
suggests incorporating energy storage systems as an expan-
sion element in addition to adding transmission lines. Thus,
in [10], a TEP model is presented considering line losses
and the allocation and sizing of energy storage systems, and
the results show that expansion plans with lower costs can
be found. Also, in [11], a modeling proposal to incorporate
energy storage systems as an expansion element is presented,
and the results found are promising. Thus, storage systems are
consolidating as elements of expansion in the TEP problem,
and this trend is expected to increase in the future as the
costs of this type of device decrease. In [12], the mathemat-
ical modeling that considers multiple generation scenarios
appears, and this model can be used for real cases or to solve
reliability problems that represent generation uncertainties
through generation scenarios.

In [13], an AC model of the TEP problem is presented
that considers contingencies (N-1), and this model is solved
in two stages. In the first stage, the DC model is used, as a
way to circumvent the complexity of the solution process.
In [14], the traditional AC model of the TEP problem is
also used. In [15], the impact of incorporating uncontrolled
generation in the TEP problem is analyzed, especially solar
and wind generation, in addition to comparing the perfor-
mance of DC and AC models. In [16], a model of the TEP
problem is presented that considers probabilistic reliability
criteria related to the problem’s uncertainties. Thus, two prob-
abilistic reliability criteria are used as constraints. In [17],
an integrated disjunctive linear model is presented to solve
the TEP problem and the natural gas network problem. This
modeling considers the contingencies (N-1) for both systems,
in addition to transforming the non-linear model into an
equivalent linear model. In all these high complexity models,
low complexity test systems are used, that is, systems with
expansion plans that add a reduced number of transmission
lines in the optimal solution.

To solve the TEP problem, many optimization tech-
niques have been presented in the specialized literature.
They can be categorized into heuristics, metaheuristics, and
classical techniques that solve the complete mathemati-
cal model. Important heuristics can be found in [18]–[20].
Among applications that use metaheuristics, the proposals
presented in [21] showed an efficient scatter search method
with a genetic algorithm (GA) for the TEP problem. The
proposed method was tested in Garver 6-bus and IEEE
24-bus test systems. The proposed method was validated
through a comparison with conventional methods such as
GA, simulated annealing (SA), and tabu search (TS) in terms
of solution quality and computational time. The authors
in [22] also presented a hybrid method with the applica-
tion of an ant colony optimization search algorithm to solve
the static TEP problem including security constraints. The
proposed method presented a better performance in com-
parison with conventional GA and TS methods in com-
putational effort, solution quality, and stable-convergence
characteristics.
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The TEP problem is characterized by the presence of a
very large search space. Therefore, in many works, the first
step aims to reduce the search space; then, a local search is
performed in the reduced search space. In this context, [23]
presented a constructive heuristic algorithm (CHA) to iden-
tify the most relevant routes to reduce the search space and
increase the efficiency of the particle swarm optimization
(PSO). Reference [24] followed the same line because it also
used a CHA to reduce the search space and applied PSO in the
reduced search space. This hybridization between CHA and
PSO identified good-quality solutions in the tests presented.
Following the same line again, in [25], a reduced set of routes
was obtained through the heuristic’s information to identify
relevant paths for the TEP problem and reduce the search
space. In the next step, firefly optimization used heuristic
information to find the optimal solution.

Reference [26] presented an efficient GA to solve static and
multistage TEP problems. Results using Garver 6-bus, IEEE
24-bus, and Southern Brazilian 46-bus test systems showed
that the proposed GA solved a smaller number of linear
programming (LP) problems to find the optimal solutions.
The study in [27] showed a high-performance hybrid GA
to solve static and multistage TEP problems. The proposed
algorithm was able to find high-quality solutions for all
test systems. An enhanced GA also was applied to solve
the long-term TEP problem in [28]. Results using Southern
Brazilian 46-bus and Colombian 93-bus systems showed that
the proposed enhanced GA presented higher efficiency in
solving the static and multistage TEP problems. Finally, [29]
showed a methodology to solve the TEP problem considering
active power losses. The problem was formulated as a mixed-
integer nonlinear programming (MINLP) problem. The Chu-
Beasley genetic algorithm (CBGA)was used to solve the TEP
problem.

Nowadays, researchers use efficient general-purposemath-
ematical optimization solvers to solve the TEP problem. Pro-
posals that use classical optimization are presented in [1]–[3],
[30], and [31].

This paper’s contribution is in the solution technique
aspect. Thus, to demonstrate the performance of the solu-
tion technique, the DC model is adopted because it allows
one to find the optimal solution in problems of reason-
able size using the disjunctive linear model, whose opti-
mal solution is the same as the DC model. Thus, the
optimal solution, for comparison purposes, can be found
by solving the disjunctive linear model. Thus, the multi-
start metaheuristic (MSM) applied to the TEP problem is
presented.

Regarding the first steps of the optimization process, meta-
heuristics can be separated into two groups. In the first group,
there are metaheuristics such as TS, SA, and GA, where the
optimization process is carried out based on a proposal for
an initial solution or a set of initial solutions, and the search
space is explored according to the logic of each metaheuristic
until a stopping criterion is fulfilled. A critical flaw of those
metaheuristics is that, in highly complex problems and with

combinatorial search spaces, a final solution depends on the
initial solution or the set of initial solutions. Moreover, there
are also stagnation problems. In addition, in most of them,
the initial solution or set of initial solutions are randomly
generated. The second group includes the MSM, in which an
optimization process is repeated many times and very swiftly,
using different proposals for initial solutions. In this case,
a good-quality initial solution is generated and improved
using a local search strategy or more sophisticated forms of
optimization. This process is repeated through a specified
number of iterations with another starting solution. As each
search process is very fast, this optimization proposal does
not suffer from stagnation and has low dependency on the
initial solution, as it is repeated many times. An obvious crit-
icism is that very fast optimization processes can hardly find
optimal or almost optimal solutions and that the same strategy
used only with different initial solutions can hardly exploit
the search space properly. Therefore, an efficient multi-start
proposal is one that bypasses these criticisms. Thus, a multi-
start proposal can be very efficient if each initial solution
generated is significantly different from the other generated
solution proposals, and all of these proposals must be of
excellent quality. Finally, it should be mentioned that GRASP
is the best-known MSM. Additional literature on MSM can
be found in [32] and [33].

The bibliography related to the TEP problem is very exten-
sive. Thus, the most active topics are related to reducing the
problem search space and incorporating uncertainties into the
TEP problem. Among the most important references in these
topics in [34], a proposal for reducing the search space to
more efficiently solve the TEP problem is presented. In [35],
a robust adaptive optimization model is presented, separat-
ing the problem into two structures related to investment
and operation decisions. In [36], a model is presented that
considers the uncertainties in generation and demand, with
the ability to consider the correlation between the sources
of uncertainty, and, in [37], a robust technique is presented
that considers the uncertainties, short-term and long-term,
of the demand and the intermittent renewable generation.
Additionally, in [38], the TEP problem is solved for the
multistage AC model and considering contingencies (N-1).
To get around the complexity of the model, the proposed
solution has four stages, and in two of these stages, the DC
model is used. In [39], a significantly different mathematical
model is presented in which the possibility of reconductoring
transmission lines with the possibility of changing the voltage
level appears, in addition to considering the addition of series
compensation devices as an expansion element. In relation to
constructive type proposals, in [40], a two-stage constructive
strategy is presented where the sensitivity indicator is found
solving nonlinear programming problems, and in [41], the
proposal to solve the TEP problem with security constraints
appears and also considers load uncertainties. The modeling
proposal is solved using a constructive metaheuristic, which
is a genetic algorithm with specialized operators for the TEP
problem.
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In this work, an MSM with the capacity to generate initial
good-quality solutions with great diversity among them to
solve the TEP problem is presented. This proposal is used for
the static planning problem and the DCmodel so that the opti-
mality of the found solutions is verifiable by solving the same
problem using the disjunctive linear model. In summary, the
main contributions of this work are the following:

• The formulation of the specialized MSM metaheuristic
for the TEP problem. To the authors’ knowledge, the
MSM has not yet been used to solve the MSM problem
but has been used successfully in the field of operations
research.

• The idealization of an efficient strategy that allows the
generation of excellent quality solution proposals in the
MSM construction phase. This proposal can be incorpo-
rated into other metaheuristics.

• The formulation of a generic MSM proposal that can
be easily extended to more complex models of the TEP
problem.

In the rest of this paper, Section 2 presents the DC
model and the hybrid Villasana-Garver-Salon (VGS) model,
as well as the way it is used via multi-start with path
relinking – MSPR. The proposed methodology consists of
three steps: the Constructive Phase, Local Search Phase I, and
Local Search Phase II. In Section 3 the proposed method is
applied in four standard test systems: 6-bus Garver, 24-bus
IEEE, 46-bus South Brazilian, and Colombian 93-bus. After
that, the quality of the solution is verified using the CPLEX
solver, and the obtained results are compared with other
works of the specialized literature. Finally, the conclusions
of this paper are presented in Section 4.

II. MATHEMATICAL MODELING AND SOLUTION
STRATEGY
The DC model is still widely used in TEP and is adopted
in this work. However, the DC model is a highly complex
MINLP mathematical model. For this reason, metaheuristics
are still widely employed to solve the TEP problem when
using the DC model.

This section presents the DC and the linear hybrid models
for the TEP problem. The linear hybrid model (LHM) is
integrated into the MSM as an auxiliary model within the
generalized CHA and in a local search. The DC model is pre-
sented here to contextualize the problem. It should be noted
that metaheuristics do not always employ the mathematical
model to solve a complex problem. In the constructive phase,
the modified hybrid model provides a sensitivity index. Thus,
the constructive phase is a generalization of the CHA of the
VGS algorithm [18].

After introducing the mathematical models, the MSM is
presented to generate solution proposals with high diversity
and quality as a strategy to explore the search space to obtain
good-quality solutions. The path relinking (PR)metaheuristic
is used in the intensification process to explore regions that
connect pairs of elite solutions.

A. DC AND LINEAR HYBRID MODELS
The DC model takes the following form in
TABLE 1–TABLE 2, according to [4]. The objective function
(1) corresponds to the expansion cost, while the set of con-
straints (2) represents Kirchhoff’s current law for each bus
of the ETS; (3) is an approximation of Kirchhoff’s voltage
law (KVL) for each fundamental loop formed by a TL and the
grounded loads. Constraint (4) limits the power flow through
each TL, and (5) limits the generation capacity. Moreover,
(6) limits the addition of TLs in each path, (7) sets the phase
angle at the reference bus, and (8) states the integer nature
of the decision variable for the number of TL, nij. The DC
model is a difficult to solve MINLP problem for large-size
and highly stressed systems.

The linear hybrid model (LHM) for the TEP problem
is presented in (9)-(17). The fundamental difference in the
model, regarding the DC formulation, is that, for each path,
the flows on existing lines are separated from the candidate
line flows. This separation is done because, in the LHM,
the fundamental loops formed by existing lines in the base
topology must comply with the KVL, whilst the candidate
lines are not required to comply with the KVL. This change in
the modeling turns the LHM into a mixed-integer linear pro-
gramming problem (MILP) and; therefore, renders it much
easier to solve.

min v =
∑
ij∈�l

cijnij (1)

subject to:
∑
ji∈�l

fji −
∑
ij∈�l

fij + gi = di ∀i ∈ �b (2)

fij = γij
(
n0ij + nij

) (
θi − θj

)
∀ij ∈ �l (3)∣∣fij∣∣ ≤ (n0ij + nij) f ij ∀ij ∈ �l (4)

0 ≤ gi ≤ ḡi ∀i ∈ �b (5)

0 ≤ nij ≤ n̄ij ∀ij ∈ �l (6)

θref = 0 (7)

nij integer ∀ij ∈ �l (8)

It is worth mentioning that, if the optimal solution of
the LHM is found, this optimal solution will generally be
infeasible for the DC model. Therefore, this work does not
intend to find the optimal solution for the hybrid model. The
fundamental idea is to use a relaxed and modified version of
the LHM to be incorporated into a constructive strategy to
generate good-quality solutions for the DC model. This pro-
posal consists of a generalization of the constructive heuristic
proposal of the VGS algorithm.

The VGS heuristic algorithm employs a modified version
of the LHM as a sensitivity index of the CHA. A CHA
is an algorithm that adds, at each step, a line to the TEP
problem. The line identified by the sensitivity index is added
to the electrical system. Thus, the VGS algorithm solves the
modified and relaxed LHM to quantify the sensitivity index
and identifies the line that should be added to the system at
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each step.

min v =
∑
ij∈�l

cijnij (9)

subject to:
∑
ji∈�l

fji −
∑
ij∈�l

fij +
∑
ji∈�0

l

f 0ji

−

∑
ij∈�0

l

f 0ij + gi = di ∀i ∈ �b (10)

f 0ij = γijn
0
ij
(
θi − θj

)
∀ij ∈ �0

l (11)∣∣∣f 0ij ∣∣∣ ≤ n0ij f̄ 0ij ∀ij ∈ �0
l (12)∣∣fij∣∣ ≤ nij f̄ij ∀ij ∈ �l (13)

0 ≤ gi ≤ ḡi ∀i ∈ �b (14)

0 ≤ nij ≤ n̄ij ∀ij ∈ �l (15)

θref = 0 (16)

nij integer ∀ij ∈ �l (17)

The LHM (9)-(17) is transformed through the following
strategies:

1. The integrality of the TL is relaxed; therefore, the vari-
ables nij can be continuous, and the model becomes an
easy-to-solve LP problem, even for large-size systems.

2. The lines that must satisfy the KVL are those existing
in the base topology, as well as those added throughout
the iterative process. Therefore, a line added during the
iterative process will obey the KVL in the following
step.

After adding some TL, if the solved LP indicates υ = 0,
then the system does not need new TL additions, and most
importantly, the proposed solution will also be feasible for the
DCmodel. It is important to emphasize that the VGS strategy
employs the modified LHM to find a good-quality solution
for the DCmodel. In addition, VGS CHA is the most efficient
heuristic when the DC model is used.

B. MULTI-START METAHEURISTIC WITH PATH RELINKING
An MSM performs a specified number of iterations. In each
iteration, an initial solution proposal is generated in the con-
structive phase, and it is improved through a local improve-
ment strategy. MSPR strategy, there are three consecutive
steps:

1. A set of good-quality and diverse feasible solutions is
generated in the construction phase using the general-
ized VGS algorithm;

2. A subset of the solutions found in the construction
phase goes through a local search process;

3. Finally, a PR search process is applied to a subset of the
best solutions found in the previous step.

After finishing the optimization process, the obtained solu-
tion is represented by the incumbent, i.e., the best solution
found during the whole iterative process.
The proposal presented follows the suggestion of

[32]–[33], in which every metaheuristic must have an appro-
priate balance between diversification and intensification

throughout the search process. This balance is critical to
generate high-quality solutions and find the overall optimal
solution.
Diversification is important to explore the search space

by reducing the possibility that the algorithm will stagnate
in local optimal solutions. Therefore, the chance of finding
the optimal solution of the problem under analysis increases.
The intensification aims to improve the solutions obtained in
the construction phase in search of the optimal solution. The
MSM usually incorporates powerful forms of diversification
to generate feasible solutions. Without the diversification
strategy, this method can remain confined to small regions
of the solution space [32].
In the local search, Phase I and Phase II, intensification

methods involving the application of the VGS algorithm in
the best solutions after consecutive removal of TL along
with PR are used. The MSPR strategy proposed in this paper
assumes three main phases:

1. Constructive Phase: Application of the constructive
phase of the MSM. A generalized CHA is used to
generate k1 feasible solutions from the step-by-step
addition, of TL in the initial configuration.

2. Local Search Phase I: The best k2 solutions obtained
in the construction phase are selected – those with the
lowest cost. A local search is implemented to improve
the quality of each solution proposal.

3. Local Search Phase II: PR application. k3 elite solu-
tions from the previous step are selected. From this set,
two solution proposals are formed to perform a local
search. One proposal is called the initial solution, and
the other is the guide solution. The process starts from
the initial solution toward the guide solution and vice
versa. Along this route, the objective is to find high-
quality solutions.

These three phases of the proposed MSPR method are
described in more detail.

1) CONSTRUCTIVE PHASE: THE GENERALIZED
CONSTRUCTIVE HEURISTIC ALGORITHM OF
VILLASANA-GARVER-SALON
The CHA is an optimization technique that, in a step-by-
step process, generates a good-quality feasible solution for
a complex problem. At each step, the CHA selects a compo-
nent of the solution being built and, in the last step, it ends
with a feasible solution. The element chosen in each CHA
step is defined using a sensitivity index, which points out
the most convenient TL to be incorporated into the solution
under construction. The fundamental difference among the
numerous CHA employed to solve the same problem is the
adopted sensitivity index.
The VGS CHA is used to generate feasible solutions

in the MSM constructive phase for the DC model. Thus,
an LP is solved by relaxing the integer variables nij in (9)-
(17) to find the optimal non-integer solution for the current
configuration. The VGS algorithm generates only one solu-
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tion proposal. To generate many good and diverse solution
proposals, a simple but very efficient strategy is applied.
Whenever the constructive phase is executed to generate an
initial solution, a random perturbation in the costs of the TL
is performed using the relation cij ← cij (1±1 � rand())
where 1 is the maximum random percentage variation in
line costs cij, and rand() is a function for generating pseudo-
random numbers in the interval [0, 1]. Each randomly gen-
erated (1±1 � rand()) disrupts the cost of a TL by making
the line more or less attractive in the generation of a solution
proposal. After solving each LP in the construction phase, the
variables nij are known, which allows one to find the power
flow in each line added in the LP solution.

The sensitivity index chosen here corresponds to the flow
through the circuits with nij 6= 0 in the LP solution. At each
step of the CHA, the line to be added to the ETS is identified
by the sensitivity index, SI ijwp , defined by II-B2:

SI ijwp = max
{
nij.f̄ij

}
∀nij 6= 0, ij ∈ �l (18)

The winning path (wp) ijwp, i.e., the path ij with the higher
power flow is the most attractive one to add the new TL.
At each CHA step, the current topology must be updated.
The current topology is formed by the initial topology and
the lines added during the iterative process.

The algorithm attempts to solve TEP and satisfy the con-
straints of the mathematical model only by using the existing
lines in the current topology. Adding new lines is required
only when the existing lines in the current topology are
insufficient to solve the operation problem.

A contribution of the VGS CHA is the requirement that
all lines of the current topology (with the lines added in
the iterative process) must obey Kirchhoff’s laws. With this
strategy, it is possible to find a good and feasible topology for
the DC model.

In summary, the CHA proposes to add a line to the current
topology on the most attractive path. This strategy is repeated
by adding, at each step, the most attractive line. The process
ends when the LP solution for the current topology has nij =
0 and υ = 0. At this point, TL additions are no longer
required, and the set of additions made corresponds to a
feasible solution for the DC model. The three steps of the
VGS CHA are as follows:

1. Assume the initial configuration n0ij as the current one.
2. An LP problem is solved by relaxing the integrality

of the integer variables nij in (9)-(17) in the current
topology. If the value of the objective function is zero
(υ = 0) stop; a feasible solution of good quality was
found for the DC model.

3. Calculate the power flows in all-new lines. Through
the sensitivity index (18), the winning path ijwp with
the higher sensitivity index SI ijwp is identified. The
current topology is updated by adding a line in that
path. Go back to step 2.

Fig. 1 shows the flowchart of the MSM constructive phase
with the steps of the VGS CHA.

FIGURE 1. Flowchart of the MSM constructive phase.

At the end of the constructive phase, an additional line
removal step is performed to remove the addition of redun-
dant lines. Each of the added lines is removed alternately
in each case. The LP in (9)-(17) is solved by relaxing the
integrality of the integer variables nij. If υ = 0, the line under
analysis is removed from the current topology because it is an
irrelevant line; otherwise, the line is preserved, and the next
line added in the constructive phase is analyzed. The process
is repeated until all lines added in the constructive phase are
analyzed.

2) LOCAL SEARCH PHASE I: NEIGHBORHOOD SEARCH
HEURISTIC
The Local Search Phase I is a neighborhood search heuris-
tic applied to the k2 best feasible solutions obtained in the
constructive phase. It is an adaptation of the VGS CHA to
explore the neighborhood of the best solutions in search of
feasible solutions with lower costs.

The process removes added lines during the constructive
phase one by one and applies the VGS CHA. It starts with
a good-quality solution (ngqsij ) that is assigned to the current
solution. A line is removed in the corridor nijk for nijk 6= 0.
Otherwise, increment k and repeat the process for k ≤ NoC ,
in which NoC is the number of corridors. The LP in (9)-(17)

153218 VOLUME 9, 2021



S. M. L. Silva et al.: Efficient Multi-Start With PR Search Strategy

is solved by relaxing the integrality of the integer variables nij
from the obtained solution.

The winning path ijwp is the one with the higher sensitivity
index SI ijwp , defined by II-B2, such that k 6= wp. Then, the
current solution is updated by adding a line in the winning
path ijwp. At the end of the VGS CHA, a feasible solution can
be obtained after consecutive line additions.

The incumbent solution nincij is updated if a feasible and
better-quality solution is obtained. If the incumbent solution
is updated with nijk 6= 0, then another TL is removed from
that same corridor; otherwise, the k counter is incremented,
a good-quality solution (ngqsij ) is assigned to the current solu-
tion again, and a line is removed from another corridor not
evaluated with nijk 6= 0.
The process ends after evaluating all corridors with lines

added, i.e., when k > NoC .
The steps of the Local Search Phase I are summarized

below. They are applied in a good-quality solution ngqsij .
Step 1) Read test system data, k ← 0,
Step 2) The value of a good-quality solution (ngqsij ) is

assigned to the current solution, nij← ngqsij ,
Step 3) The counter is incremented, k ← k+1. If k > NoC

then stop,
Step 4) Are there lines added in the k-th corridor,

i.e., nkij 6= 0? If true, go to the next step; otherwise, go back
to step 3,
Step 5) A line is removed from the k-th corridor,

nijk ← nijk − 1,
Step 6) Solve the LP in (9)-(17) with nij ∈ R,
Step 7) If the objective function is null υ = 0 (feasible

solution), go to the next step; otherwise, go to step 9,
Step 8) If the cost of the feasible solution obtained is less

than the cost of the incumbent solution (ninc), then update
the incumbent solution ninc ← nijk and go back to step 4;
otherwise, go back to step 2,
Step 9) Solve (18) to find the most attractive path or winner

path ijwp for add lines,
Step 10) If wp 6= k then increment a line in the winner path

wijwp ← wijwp + 1 and go to step 6; otherwise, go to step 2.

3) LOCAL SEARCH PHASE II: PATH RELINKING
PR performs an intensive neighborhood search between two
high-quality solutions to find better quality solutions along
this route. A path is generated between the initial solution
and the guide solution. During the trajectory between the
initial solutions toward the guide solution, the neighborhood
is carefully assessed to find lower-cost solutions [33]. The
fundamental idea of PR is to try to find excellent quality
solution proposals in the region that unites two considered
elite solutions proposals. PR is a neighborhood search strat-
egy starting from the base solution until reaching the guide’s
solution. In this process, few LP problems are solved with
less computational effort, especially for larger ETS.

The local search phase II, implemented via PR, is applied
to all pairs of elite solutions (k3 ≥ 2) formed by the best

solutions with Ck3
2 = k3!/ {2! (k3 − 2)!}, in which Ck3

2 is
the number of distinct pairs that can be formed. The steps
of the PR metaheuristic are as follows [42]. The internal
composition of each vector in Fig. 2 indicates the path where
a TL was added. The steps of the Local Search Phase II are
summarized below.
Step 1) One of the elite solution pairs consisting of the

initial solution and the guide solution is selected.
Step 2) The initial solution value is assigned to the current

solution.
Step 3) The values at each position of the current solution

are added or subtracted by one unit. Move them toward the
values of the corresponding positions of the guide solution
one by one. Each change will represent a new candidate
solution.
Step 4) The feasibility is verified. The LP model is solved

by relaxing the integrality of the integer variables nij in
(9)-(17) for each candidate topology.
Step 5) The better solution is updated if there is a feasible,

better-quality solution with lower cost among the candidate
solutions.
Step 6) If one of the candidate solutions is the same as the

guide solution, stop; otherwise, the current new solution will
be the better and feasible candidate solution.
Step 7) Repeat steps 3 through 6 until some candidate

solution becomes identical to the guide solution verified in
step 6.
Step 8) After the process in step 7 is completed, the per-

mutation between the initial solution and the guide solution
is performed: the initial solution becomes the guide solution
and vice versa. Repeat steps 2 through 7.

Fig. 2 illustrates the execution steps of PR applied to the
Garver 6-bus test system without generation rescheduling.
After the execution of the previous phases, two elite solutions
are selected: the initial solution and guide solution, step 1.

As shown in Fig. 2 (a), the initial solution costs MUS$
230 and there is the addition of lines in three paths: n2−6 = 5;
n3−5 = 1; n4−6 = 2. The guide solution costs MUS$ 238
and adds lines in four paths: n2−6 = 3; n3−5 = 2; n3−6 = 1;
n4−6 = 2. The initial solution value is assigned to the current
solution, step 2.

In step 3, the values at each position of the current solution
are modified by one unit to approximate the corresponding
values in the guide solution. Each substitution will represent
a new candidate solution. Thus, the number of lines added
in the first position of the guide solution (n2−6 = 5) is
subtracted by one unit to move it toward the value of that
same path in the guide solution to produce the first candidate
solution with a cost of MUS$ 200, which adds lines in three
paths: n2−6 = 4; n3−5 = 1; and n4−6 = 2.

There are two lines added in the second position of the
guide solution: n3−5 = 2. This number of lines is attributed
to this same path in the current solution. Thus, the second
candidate solution is produced with a cost of MUS$ 250 and
additions of lines in paths: n2−6 = 5; n3−5 = 2; and
n4−6 = 2.
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FIGURE 2. Example of the execution steps of path relinking.

Finally, the same number of lines existing in the third posi-
tion of the guide solution (n3−6 = 1) is assigned to the same
path in the current solution. In this way, the third candidate
solution is constructed with a cost ofMUS$ 278 and additions
of lines in paths: n2−6 = 5; n3−5 = 1; n3−6 = 1; and
n4−6 = 2.
The fourth candidate solution cannot be built, because the

fourth position of the guide solution (n4−6 = 2) has an
equal number of lines added on the same path in the current
solution.

The feasibility is verified. The LP model is solved by
relaxing the integrality of the integer variables nij in (9)-(17)
for each of the three candidate configurations, step 4.

The better solution is updated if there is a feasible solution
with a lower cost among the candidate solutions, step 5.
The better solution is updated because, among the candidate
solutions, there is one feasible solution whose cost is lower
than the cost of the initial and guide solution. According to
step 6, the process continues, because no candidate solution is
identical to the guide solution. Thus, the new current solution
will be the feasible candidate solution with the lowest cost.
Therefore, the first candidate solution will be the new current
solution. Repeat steps 3 through 6 until all positions of the
guide solution are equal to the current solution. This occurs
in Fig. 2 (c).

It is observed that the example presented in Fig. 2 achieves
the optimal solution for the Garver 6-bus test system without
generation rescheduling, that is, the first candidate solution
at Fig. 2 (a). It is worth mentioning that, in the MSPR,
constants k1, k2, k3, and 1 are empirically obtained through
simulations.

FIGURE 3. Initial configuration of the 6-bus garver test system.

Finally, it should be noted that one of the advantages of
metaheuristics is that it does not solve the original model,
and, in some applications, it may also completely dispense
with the original mathematical modeling. Thus, the MSPR
algorithm does not directly solve the model (1)–(8) and at all
stages of the process, it solves only LP problems.

III. TESTS AND RESULTS
The results using the Garver 6-bus, the IEEE 24-bus, the
Southern Brazilian 46-bus, and the Colombian 93-bus test
systems are presented. The MSPR method was implemented
in the MATLAB programming environment. Since no spe-
cialized toolbox was used, the algorithm could be imple-
mented in any high-level programming language. MATLAB
linprog (linear programming) function was used for the solu-
tion of the LP problems. Tests were carried out, considering
the original generation values (without generation reschedul-
ing) and with generation rescheduling, in which the genera-
tion can vary from 0 to ḡ. All simulations were executed in
a personal computer with an Intel Core i7 4.2 GHz processor
with 16 GB of RAM.

A. GARVER 6-BUS TEST SYSTEM
The Garver 6-bus test system has 15 paths, 3 generation
buses, and loads in 5 buses with a total value of 760 MW,
and up to 5 lines per path are allowed. The initial topology
is shown in Fig. 3, and the electrical data of this system can
be found in [4]. This system is too simple to be solved via
MSPR. Thus, it was relatively easy to find the optimal solu-
tions for this system for cases with and without generation
rescheduling. The optimal solution for Garver’s test system
with generation rescheduling has a cost of MUS$ 110 and
takes the following form:

• n3−5 = 1; and n4−6 = 3.
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TABLE 1. Optimal solutions of the 6-bus garver test system for the DC
model.

The optimal solution for the case without rescheduling has
a cost of MUS$ 200 and is defined by the following added
lines:
• n2−6 = 4; n3−5 = 1; and n4−6 = 2.
Table 1 contains the results of the simulations performed

for Garver’s test system. The optimal solution, the number
of LP problems, the number of constructive phase iterations,
the constant1 for maximum variation in TL costs during the
constructive phase, and the computational time are presented.
It was not necessary to perform the Local Search I and Local
Search II phases to achieve the optimal solutions.

B. IEEE 24-BUS TEST SYSTEM
The 24-bus IEEE test system has 41 paths. There are 10 gen-
eration buses with a maximum generation capacity of 10,215
MW. There are 17 buses with a total demand of 8,550 MW.
Up to three lines are allowed in each path. Fig. 4 shows the ini-
tial topology, whose electrical data can be found in [6], [12].
This system was solved using MSPR with and without gener-
ation rescheduling. Similar, to Garver’s system, the optimal
solutions were found for the DC model.

The optimal solution for the case with generation
rescheduling has an investment cost of MUS$ 152, corre-
sponding to the following lines:
• n6−10 = 1; n7−8 = 2; n10−12 = 1; and n14−16 = 1.

Without generation rescheduling, the G4 plan data indicated
in [12] were used. The optimal solution has a cost of MUS$
342 and the following added lines:
• n3−24 = 1; n6−10 = 1; n7−8 = 2; n9−11 = 1; n10−12 =
1; n14−16 = 2; and n16−17 = 1.

Table 2 presents a summary of the simulations performed for
the 24-bus system with and without generation rescheduling.
It was not necessary to perform the Local Search II phase to
achieve the optimal solutions.

C. SOUTHERN BRAZILIAN 46-BUS SYSTEM
The Southern Brazilian 46-bus system is a real ETS with
46 buses and 79 paths. It has 12 active power generation
buses, with a maximum generation capacity of 10,545 MW.
There are 19 load buses, with a total demand of 6,880 MW.
Up to 3 TL can be added per path. The initial topology is
shown in Fig. 5, and the electrical data can be found in [4].

FIGURE 4. Initial configuration of the IEEE 24-bus test system.

FIGURE 5. Initial configuration of the southern brazilian 46-bus system.

For the case of generation rescheduling, a solution with an
investment of MUS$ 72.87 was found, which proposed the
addition of the following lines:
• n2−5 = 1; n13−20 = 1; n20−23 = 1; n20−21 =
2; n42−43 = 1; n46−6 = 1; and n5−6 = 2.

For the case without generation rescheduling, a solution
with an investment of MUS$ 154.42 was found, correspond-
ing to the following added lines:
• n20−21 = 1; n42−43 = 2; n46−6 = 1; n19−25 =
1; n31−32 = 1; n28−30 = 1; n26−29 = 3; n24−25 =
2; n29−30 = 2; and n5−6 = 2.
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TABLE 2. Optimal solutions of the IEEE 24-bus system for the DC model.

TABLE 3. Optimal solutions of the southern brazilian 46-bus test system
for the DC model.

Table 3 summarizes the relevant information regarding the
simulations carried out with the 46-bus system.

D. COLOMBIAN 93-BUS SYSTEM
The Colombian 93-bus system is a real ETS with 93 buses,
193 existing circuits at the base topology, and 155 paths. It has
a total active power generation and demand of 12,162 MW.
Up to four TL can be added per path. The initial topology
is shown in [42]. Colombian system data are only available
without generation rescheduling with the P2 plan data indi-
cated in [20], [23], and [30]. To solve the expansion planning
problem under the mentioned conditions, a solution with
MUS$ 443.494 was found with the following added lines:

• n57−81 = 2; n55−57 = 1; n55−62 = 1; n27−29 =
1; n62−73 = 1; n45−81 = 1; n64−74 = 1; n19−82 = 10;
and n82−85 = 1.

Table 4 summarizes the relevant information regarding the
simulations carried out with the 93-bus system.

E. COMPARATIVE ANALYSIS OF THE RESULTS
A joint analysis of the four simulated systems is made in
this section along with a comparison with other approaches
of the specialized literature. Compared with other meta-
heuristics, the MSPR algorithm finds the optimal solu-
tion with fewer LP problems solved for the Garver system

TABLE 4. Optimal solution of the colombian 93-bus system for the DC
model.

(compared with [21] and [30]), for the 24-bus system (com-
pared with [29], and [30]), for the 46-bus system (compared
to [22], [28] and [30]), and for the 93-bus system (compared
with [30]), as shown in Table 5. No time comparisons were
made because the tests were carried out under very differ-
ent conditions. This difference can be very important when
MSPR is used to solve more complex models like those used
in [1]–[3].

Additionally, MSPR solves fewer LP problems than the
disjunctive linear model solved with CPLEX [43]. For exam-
ple, MSPR finds an optimal solution of the 46-bus system
after solving 324.9 LP problems on average (see Table 6),
while CPLEX solves the same system after generating 5,654
branch and bound nodes. However, CPLEX solves this sys-
tem with less processing time due to the sophistication inher-
ent to the solver. Nevertheless, for more complex models
and more complex instances of the TEP problem, CPLEX
converges with a very large gap, i.e., it finds only a local
optimum very far from the global optimum [3].

Additionally, it is well known that a metaheuristic does not
always converge to the same solution in each independent
test, because most metaheuristics have a stochastic compo-
nent. Thus, to assess the overall performance of the proposed
MSPR strategy for the TEP, 100 executions for the four
systems, for cases with and without generation rescheduling,
are evaluated. The results are shown in Table 6. From that
table, it can be noted that the MSPR found the optimal solu-
tion in all simulated instances. However, as expected, there
was no convergence to the optimal solution in all performed
simulations. Due to this, the average cost, the worst cost, the
percentage difference between the worst and the best cost,
and the standard deviation obtained on over 100 executions
of the proposed strategy are presented.

It should be noted that, in the case of the Southern Brazilian
system, the case without generation rescheduling is greatly
restricted, and other metaheuristics need to solve a large num-
ber of LP problems to find the optimal solution. However,
the MSPR solves this case quickly and with a computational
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TABLE 5. Comparison among the optimal investment solutions for the garver 6-bus; IEEE 24-bus, southern brazilian 46-bus, and colombian 93-bus test
systems with and without generation rescheduling.

TABLE 6. Summary of 100 executions of the proposed MSPR strategy for
the test systems.

effort near to the one related to the case with generation
rescheduling.

The best solution found for each instance shown in Table 6
is an optimal solution verified by performing tests with
CPLEX and using the linear disjunctive model that has the
same optimal solution as the DC model.

Finally, it should be noted that the main contribution of
this work is the application of the MSPR metaheuristics
for the TEP problem. Thus, initial solution proposals of

excellent quality were generated using the VGS algorithm
and, with high diversification, using disruptions in the TL’s
costs, bypassing the main difficulties of MSM. The static
planning model that incorporates the DC model was chosen
to facilitate the presentation of the strategy and show the per-
formance of the MSPR algorithm and a comparative analysis
with other existing methods. Thus, MSPR can be extended
to more complex models of the TEP problem, such as those
presented in [1]–[3], [13], [14].

IV. CONCLUSION
In this work, a specialized multi-start meta-heuristic for the
transmission system expansion planning problem was pre-
sented. Multi-start strategies showed adequate performance
in operational research problems but were not yet used to
solve the TEP problem. The results presented show the effi-
cient performance of the multi-start strategy when compared
with other recent meta-heuristics applied to the TEP prob-
lem, especially in relation to the number of LPs solved. All
metaheuristics applied to the DCmodel solve LP problems to
assess the quality of a proposed solution. In the constructive
phase, a generalization of one of the best CHAs proposed for
the DC model of the TEP problem was used. This proposal
generates initial solutions of excellent quality and with great
diversity, which can explain the performance of the multi-
start strategy. In the local search phase, a path relinking
strategy was implemented, which also presents an efficient
performance. The tests presented show that the MSPR meta-
heuristic finds the optimal solutions of four systems widely
used in the literature, solving a reduced number of LP prob-
lems. These optimal solutions were confirmed using the
CPLEX solver.

Future works should introduce additional improvements in
the MSPRmeta-heuristic and perform tests for the DCmodel
of the TEP problem in highly complex systems where the
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CPLEX solver does not have the ability to find the optimal
solution and ends the process with a very high gap. A natural
extension is also to use the MSPR metaheuristic for the
AC model and in more complex models, such as the TEP
problem models that use reliability (N-1), and multistage
planning, among others. For these more complex models,
meta-heuristics need small changes when compared with
other optimization strategies.
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