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ABSTRACT Ancient stelae are considered important historical sources. However, it is a challenge to
recognize the inscriptions carved on stelae that have rough surfaces due to prolonged weathering. In this
paper, we propose a deep learning-based method to extract engraved regions from the 3D scanned mesh of a
stela. First, the uneven distribution of vertices in the mesh is transformed using a mesh subdivision method
such that the vertices in the mesh are uniformly distributed. Then, surface features (depth, concave features,
and local surface features) are extracted from the subdivided mesh. The depth represents the basic shape of
the mesh and is obtained from the aligned mesh. The concave features effectively represent concave regions
by using a Frangi filter, and the local surface features have the spin image technique applied to describe the
fine shapes of neighboring vertices relative to a vertex. The mesh and the surface features are rasterized into
feature images, and engraved regions are segmented from the feature images by using a FC-DenseNet. Our
experiments confirm that the proposed method effectively extracts engraved regions of the inscriptions from
the rough surface of a stela and it shows robustness to noisy and extremely abraded characters. The proposed
method outperformed the second-best method, obtaining an F1 score, IoU, and SIRI of approximately 2.95%,
3.65%, and 7.53%, respectively.

INDEX TERMS Cultural heritage, relief extraction, mesh processing, engraving segmentation, image
segmentation.

I. INTRODUCTION
Archeological stelae recording events of the past have impor-
tant value when it comes to studying political and cultural his-
tory. However, stelae have usually been exposed to prolonged
physical and chemical weathering from the environments
where they are located, making it difficult to recognize the
characters engraved on them. Weathering causes damage of
various sizes and shapes, such as scratches, cracks, dents,
scaling, and spalling. The damaged regions are morpholog-
ically similar to engraved regions, and are difficult to dis-
tinguish from the strokes of the characters. Moreover, the
colors of the surface, such as stains, moss marks, and stone
patterns, make it more difficult to recognize character strokes.
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The direction of light can be used to detect thin character
strokes through shadows, but it often makes them harder
to find. To recognize characters, it is necessary to separate
external factors such as colors and light from the surface
and to effectively remove noise so as to extract only the
engraved regions. Note that concave regions consist of not
only engraved regions but also noise due to damage.

Rubbing is a traditional method applied directly to the
surface of stelae to extract engraved regions [1]. An image
is obtained by rubbing ink onto paper placed on the surface
of a relic. The areas where the ink and paper touch the surface
become black; elsewhere, the color of the paper ismaintained,
showing results similar to a binary image. Although exter-
nal factors are excluded, and concave regions are extracted,
the results can vary depending on the materials used, the
environment, and the proficiency of the person using the
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rubbing method. In particular, rubbing causes direct physical
and chemical damage to the surface of the relic from ink
contamination.

Recently, 3D scanning-based methods have been intro-
duced to solve the problems associated with the rubbing
method [2], [3]. The 3D scanning process does not require
physical contact with the relic, and as such, the surface of
the relic is not damaged, and the features of the surface are
preserved, excluding the external factors. The transformed
digital data can be easily reproduced and distributed.

The 3D scanning-based methods can be divided into those
that focus on enhancing visualization and those for auto-
matic extraction of engraved regions. The methods relating
to visualization are shading-, curvature-, and morphology-
based. The shading-based methods emphasize thin strokes
by dynamically adjusting the light position or by adapting
lighting effects to reveal surface details of 3D objects [4]–[6].
The curvature-based methods represent in color the con-
vexity or concavity of the surface [7]–[9]. The modified
curvature-based method estimates valleys and ridges of the
surface using improved curvatures, and emphasizes the sur-
face through adaptive filtering and colorization [10]. The
morphology-based method highlights concave regions by
subtracting smoothed mesh with a Laplacian filter [11]. Sev-
eral methods combine multiple visualizations to improve the
detection of engravings [12]–[14]. However, the visualization
results capture both engraved regions and noise, so arche-
ological knowledge is required to analyze and interpret the
results.

The methods automatically extracting engraved regions
without subjective evaluation are as follows. The valley/
ridges-based methods directly extract valleys and ridges
from the surface [15]–[17]. The depth estimation-based relief
extraction (DRE) method [18] estimates the relative depth of
each vertex by using normal vectors of the virtual base sur-
face, and then separates engraved regions with a depth thresh-
old determined from using an expression maximization (EM)
algorithm [19]. The curvature-based methods [20], [21] esti-
mate engraved regions by detecting canal-like shapes with
a Frangi filter [22], which was introduced to identify blood
vessels using curvature from amedical image. However, since
rough surfaces do not follow a Gaussian distribution, and
since these methods lack the ability to distinguish between
engraved regions and noise, a lot of noise is also extracted in
the results.

Machine learning-based methods were proposed to distin-
guish engraved regions from noise. Texture-based methods
are widely used [23]–[25]. The 2D texture-based method
segments an input image containing multiple textures given
a patch of a reference texture [24]. The 3D texture-based
method [25] extracts texture features on local 3D sur-
faces, and classifies engraved regions using a support vector
machine (SVM) [26]. In the deviation map-based method,
a 3D mesh is projected into a 2D image to reduce the
computational complexity and generate an enhanced devia-
tion map [27]. Then, pixel-wise segmentation is performed

using a random forest model trained using the local surface
patches [28]. The segment-based method involves the initial
extraction of concave segments from the 3D mesh [29]. Fea-
tures including local extrema, cross-sectional, and appear-
ance information are extracted from the segments. The
engravings are identified from the classification results
obtained with an SVM model. The machine learning-based
methods showed higher performance, compared to rule-based
methods, but have limitations in that only local surface infor-
mation is mainly used. In other words, they cannot utilize a
global context, mainly using the local context for classifica-
tion of engraved regions and noise.

Despite the previous work, it is still a challenge to sepa-
rate only engraved regions from rough surfaces, except for
noise. It is difficult to extract engraved regions from rough
surfaces of stelae because the reference surface is not flat
and contains a lot of noise. Although engraved regions can
be separated from noise by considering the local surface
characteristics, noise has local characteristics similar to the
engraved regions. Noise appears on the surface of the stela as
a result of prolonged weathering over a long period of time,
just like the engraved regions. In contrast to the noise, the
regions of engraved characters were originally carved on the
surface of the stela. The strokes of the characters are short,
shallow, and thin, and easily confused with, or interpreted as,
noise. Thus, it is necessary to extract not only local shape
features of engraved regions but also the global context for
classification.

In this paper, we propose amethod to segment the engraved
regions of 3D inscriptions using deep learning. First, 3D
scanned data are preprocessed by mesh subdivision to evenly
distribute the position of vertices in the mesh. Then, surface
features consisting of depth, concave features, and local sur-
face features are extracted. The mesh and the surface features
are rasterized into feature images, and the engraved regions
are segmented using a FC-DenseNet. We select surface fea-
tures that effectively represent the surface and utilize both
local and global contexts via the FC-DenseNet to classify
pixel-wise engraved regions.

The contributions of this paper are as follows.
1) We propose a method of segmenting the characters on a

very rough 3D mesh with high-resolution by applying
CNN-based 2D segmentation while preserving the fine
features.

2) The proposed method shows the highest performance,
both objectively and subjectively, when compared to
conventional methods.

3) Multiple surface features are combined instead of using
a single surface feature showing the better perfor-
mance.

4) The proposed method utilizes both local and global
contexts, unlike the approaches of conventional meth-
ods, to classify engraved regions achieving the higher
performance.

5) The proposed method not only shows the best perfor-
mance, but also performed well on extremely abraded
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characters. The experiments show the proposedmethod
is more robust to noise than conventional methods.

This paper is organized as follows. We review related
studies in Section 2. Details of the proposed method are
described in Section 3. We present evaluations of our results
in Section 4, and conclude the paper in Section 5.

II. RELATED WORKS
In this section, we briefly introduce the studies relevant to
the proposed method. For clarity, these previous studies are
divided into subsections relating to the Frangi filter [22], the
spin image [30], and FC-DenseNet [31].

A. FRANGI FILTERS
The curvature-based relief extraction (CRE) method applies
a Frangi filter to extract engraved regions from relics [20].
CRE exploits the advantages of the Frangi filter by using the
principal curvature to extract canal-like concave regions from
a 3D mesh. The concavity, C , of vertex vi is given as

Ci =

exp(−
02

2α2
)(1− exp(−

52

2β2
)), k1 ≥ 0,

0, otherwise,
(1)

where k1 and k2 (|k1| ≥ |k2|) are the maximum and min-
imum principal curvatures at a vertex. The vertex index, i,
is omitted for clarity. The parameters 0 and 5 represent the
ratio of the principal curvature |k2/k1| and the magnitude√
k21 + k

2
2 , respectively. When k1 ≥ 0 (concave), the first

term indicates how similar the local surface is to a canal by
using a ratio of the principal curvatures. The second term
represents the depth of the local surface using a magnitude of
the principal curvature. The principal curvatures calculation
requires the computation of the second derivatives of the
surfaces. In the proposed methods, the principal curvatures
are obtained using Rusinkiewicz’s method [9] that utilizes
tensor representation.

However, CRE is not as effective at extracting engravings
with coarse surfaces as it is in extracting engravings of flat
murals. In particular, the principal curvature is obtained in
quadratic differential form, which is weak against noise,
resulting in very messy boundaries of the extracted regions.

The modified curvature-based relief extraction (MCRE)
method applies Gaussian smoothing to reduce the noise of
the principal curvature and increase the performance of the
Frangi filter [21]. MCRE extracts engraved regions by apply-
ing a threshold value according to obtained concavityC . Sub-
sequently, the dual curvature-based relief extraction (DCRE)
method extracts only deeply engraved regions by using two
Frangi filters with different parameters [21]. MCRE and
DCRE can effectively extract concave regions. Nevertheless,
the methods are less accurate in the detection and removal of
noise, and there are difficulties in adjusting the parameters
according to the degree of weathering on each characters.

The segment-based relief extraction (SRE) method is
employed with MCRE to obtain segments [29]. Features con-
sisting of appearance-based, cross section-based, and local

extrema-based characteristics are extracted for each segment.
Then, SRE classifies each segment into either an engraved
region or noise by using an SVM, and it does not need to
adjust the parameters depending on the degree of weath-
ering [26]. The result obtained by SRE is more accurate,
compared to other methods.

B. SPIN IMAGES
A spin image is a 3D shape descriptor that is invariant to
rotation and translation [30]. The descriptor wasmainly intro-
duced for object recognition, surface matching, and facial
feature point detection [32], [33]. We apply the spin image
as a 2D histogram to represent the distribution of peripheral
vertices at each vertex. The projection function, Si(j), that has
position (ρ, γ ) with respect to the neighboring vertex vj from
a vertex vi, is as follows:

Si(j) → (ρ, γ ), (2)

ρ =

√
||vj − vi||2 − (ni · (vj − vi))2, (3)

γ = ni · (vj − vi), (4)

where ni is the normal vector of vi. The neighborhood vertices
are mapped relative to reference vertex vi.
Then, spin image Si is obtained as a 2D histogram of Si(j)

with a cylindrical subspace having the number of rows, nγ ,
and columns, nρ , in the γ and ρ directions, respectively. The
bin sizes of the 2D histograms are denoted as 1γ and 1ρ.

Fig. 1 shows a representation of a spin image. A space with
a reference vertex and neighboring vertices is illustrated in
Fig. 1 (a). The geometric structure of the spin image is shown
in Fig. 1 (b) where nγ = 4, nρ = 3, and the bin sizes, 1γ
and 1ρ, are arbitrary. The generated spin image is a 4 × 3
(h × w) histogram, as shown in Fig. 1 (c). Thus, the spin
image captures the distribution of vertices located within a
cylindrical subspace with radius of nρ and a height of nγ .

FIGURE 1. A representation of the spin image: (a) a space with reference
vertex vi and neighborhood vertices vj ,(b) the geometric structures of
cylindrical subspaces, and (c) the generated spin image as a 2D
histogram.

C. FC-DenseNet
Image segmentation is considered an essential element in
scene understanding, and is a topic being addressed signif-
icantly in computer vision and machine learning [34], [35].
Image segmentation means classifying images on a pixel-
wise basis, and it is being researched and utilized in various
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FIGURE 2. An overview of the proposed method.

environments, such as face recognition, medical imaging, and
autonomous driving. In pixel-wise classification, the global
context is very important because the local context alone is
not sufficient.

Recently, the advances in deep learning-based convolu-
tional neural networks (CNNs) have achieved high per-
formance in semantic segmentation applications. After the
development of the fully convolutional network [36], many
models based on encoder-decoder structures were proposed,
such as DeconvNet [37], SegNet [38], and U-Net [39]. These
models extract features using the encoder structure, and
restore them to high-resolution images through the decoder
structure.

In particular, U-Net was proposed for cell image seg-
mentation in medical images, and achieved high perfor-
mance despite being trained on a small data size [39].
Bezmaternykh et al. applied U-Net to segment characters
from historical documents [40]. Their research has char-
acteristics similar to the subject of this paper because the
characters were extracted from ancient materials that contain
a lot of noise due to weathering. Although the data available
for the study were not sufficient owing to a limited number of
ancient artifacts, U-Net had acceptable results from character
segmentation.

When the number of layers in a CNN is increased, perfor-
mance can be increased. However, information from previous
layers can be lost due to vanishing gradients, which occurs
when networks are deep. To solve this problem, DenseNet
was presented [41]. DenseNet includes a dense block archi-
tecture in which feature maps of previous layers are con-
catenated with feature maps in the next layers. Through this
structure, a dense block preserves information with a strong
gradient flow. Since the features of each layer are connected
and preserved, DenseNet has fewer channels, reducing the

number of parameters. And the dense block has the effect of
regularization, and it reduces overfitting.

FC-DenseNet combines U-Net with DenseNet, providing a
deep network for image segmentation [31]. FC-DenseNet has
very deep networks but a small number of parameters. The
performance of FC-DenseNet is promising in the extraction
of local and global contexts and has the advantages of both
U-Net and DenseNet.

III. THE PROPOSED METHOD
In this section, we describe the proposed method for segmen-
tation of engravings by using deep learning. An overview
of the proposed method is shown in Fig. 2. The process is
divided into mesh subdivision, surface feature extraction, ras-
terization, and image segmentation. First, we perform mesh
subdivision that transforms the vertices in the mesh from
nonuniform to uniform distribution. We then extract features
consisting of depth, and concave and local features to char-
acterize the surface. Thereafter, the rasterization method is
applied to convert the mesh and features to feature images.
Finally, the engraved regions are segmented and identified
using FC-DenseNet.

The 3D scanned data are expressed as a polygon mesh,
M = {V ,E,F}.. Set V contains the list of vertices repre-
senting the position of the 3D surface, and it is expressed
as V = {vi : 1 ≤ i ≤ nV }, where vi = (xi, yi, zi) ∈ R3 V
is determined by sampling the surface of a real 3D target
through a 3D scan. Set E consists of a list of edges connecting
two vertices. E is expressed as E = {ek : 1 ≤ k ≤ nE }, where
ek = (ik1, i

k
2). The set containing all triangulated faces con-

necting three edges is expressed as F = {fk : 1 ≤ k ≤ nF },
where fk = (ik1, i

k
2, i

k
3). The notations, nV , nE , and nF are

the numbers of vertices, edges, and faces, respectively, in the
mesh.
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The region of interests (ROIs) where the characters can
exist are manually selected. The process of the proposed
method works based on the vertices in the ROIs.

A. MESH SUBDIVISION
The 3D scanned mesh, Mscattered , has uneven distributions
of vertices. During the 3D scanning process, the vertices
of well-scanned areas are dense, and the vertices of poorly
scanned areas are sparse. The unequal distribution of ver-
tices is not suitable for feature extraction. In particular, for
a histogram, a spin image is highly dependent on the number
of vertices. Thus, mesh subdivision is essential in order to
equalize the distribution of the vertices so they have even dis-
tribution at any vertex. To transform the uneven distribution of
vertices in Mscattered into a mesh with evenly distributed ver-
tices (Mgridded ), linear triangular interpolation [42] is applied.
After the faces are regenerated, Mgridded is grid-shaped, and
the vertices are uniformly distributed. This preprocessing is
done before the extraction of features.

Fig. 3 illustrates an example of mesh subdivision. The
surface of a raw mesh and the corresponding mesh with the
positions of vertices are shown in Fig. 3 (a) and Fig. 3 (b),
respectively. Observe the uneven distribution of vertices in
the poorly scanned areas of the mesh in Fig. 3 (b). The mesh
in Fig. 3 (c) is the output of the preprocessed mesh after mesh
subdivision. The sparse areas in the mesh are removed, and
the vertices are uniformly distributed, thereby resulting in the
same mesh resolution across the surface of the stela.

FIGURE 3. An example of mesh subdivision: (a) the raw mesh,
(b) visualization of edges with the white color from (a), and (c) the
gridded mesh after mesh subdivision of (b).

B. SURFACE FEATURE EXTRACTION
1) DEPTH
The depth of the mesh represents the basic surface feature of
the stela.We use principal component analysis for the vertices
in the ROI of a character to remove the slope of the z-axis of
mesh Mgridded , and we approximate the surface into a plane.
The z-value of each vertex in the aligned mesh is used as the
depth, which is normalized as

Di = s · (zi − zmin), (5)

where s preserves the scale for the depth, and normalizes
the depth into the range [0,Dmax]. Since depth deviation is
different for each character, scaling is adapted.

FIGURE 4. Characteristics of a spin image according to surface shape.

FIGURE 5. An example of feature extraction: (a) the depth D, (b) concave
feature C , and (c) the local surface feature S for a channel.

However, certain characters are located on the outer bound-
ary of the stela, and the depth decreases rapidly along the
outside boundary, making the value ofDmax large. Therefore,
the following expression is applied to limit the depth:

Di = max(0,Di + (1− Dmax)). (6)

Equation (6) holds the maximum value to 1, and values
below 0 are clipped to adjust the distribution into the range
[0, 1].

2) CONCAVE FEATURES
We extract all concave regions of the mesh usingMCRE [21].
The Frangi filter effectively extracts concave regions using
the principal curvature. However, since the principal curva-
ture is obtained in quadratic differential form, it is vulner-
able to noise, and the process requires denoising. Gaussian
smoothing is applied to the mesh to address this problem, but
the proper parameters must be applied because a high value
for standard deviation from Gaussian smoothing removes
engraved regions. After Gaussian smoothing, the principal
curvatures of the mesh are obtained using Rusinkiewicz’s
method [9]. Then, concave feature Ci of vertex vi is obtained
using (1) and has a value in the range [0, 1].

3) LOCAL SURFACE FEATURES
To extract a local surface feature, we apply the spin image
because of its effectiveness in describing the surface features
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of 3D objects [30]. The local surface feature denoted as Si
is obtained for every vertex vi. Spin images generated on the
surface of a mesh are illustrated in Fig. 4. Depending on the
shape of the local surface, spin images are classified into four
main forms. For a vertex located on a flat surface, a straight
spin image is obtained, while for a vertex located on a convex
surface, a downward spin image is generated, and for a vertex
in concave areas, an upward spin image is acquired. The last
form is for a vertex located inmixed surface areas, so amixed-
form spin image is obtained.

However, the number of vertices in the spin image shell
increases as the area covered by the spin image expands.
Therefore, if the variables have different sizes, a process for
fitting the units is necessary. The spin image is normalized for
the outside shell volume of the cylinder using the following
expression:

Si(x, y) =
Si(x, y)

2πnγ1γ (2x − 1)(1ρ)2
, (7)

where x ∈
{
1, 2, 3, . . . , nρ

}
and y ∈

{
1, 2, 3, . . . , nγ

}
.

As discussed previously, the spin image is a 2D histogram,
so we apply flattening to represent it with feature vectors for
each vertex. We apply min-max normalization for all Si to
adjust values into the range [0, 1]:

S
nγ×nρ
i → S

1×nγ nρ
i , (8)

Si =
Si − Smin
Smax − Smin

. (9)

The spin image bins of the mesh are uniquely divided into
nγ nρ channels such that each channel of Si has different types
of local surface image representation for the mesh.

Representations of the three surface features extracted
from the raw mesh in Fig. 3 (a) are illustrated in
Fig. 5 (a) to Fig. 5 (c). It is important to note that a single
channel representing the image of the local surface feature is
shown in Fig. 5 (c).

C. RASTERIZATION
Themesh and the three corresponding features extracted from
the mesh are transformed into feature images I such that
the engraved regions are extracted using FC-DenseNet. The
position of vertex vi of the mesh is mapped to the pixel
position. Concurrently, the surface features are also mapped
to the pixel intensity:

Ix,y ← (xi, yi), (10)

Iintensity ← Di,Ci, Si. (11)

When the resolution of the mesh is maintained, the compu-
tation cost increases due to the large number of pixels. How-
ever, if mesh resolution is reduced, fine features cannot be
extracted. Therefore, feature images are generated by apply-
ing subsampling to reduce the size of the input images for
FC-DenseNet while preserving the resolution of the features.

In addition, the characters in an ancient stela have different
sizes, allowing multiple characters to be located in the kernel

FIGURE 6. Generated feature images with zero padding (which forces
only one character per image): (a) depth feature image, (b) concave
feature image, and (c) local surface feature image for a channel.

of the CNN. This leads to learning imbalances, because small
characters can be learned in large numbers. Another problem
that needs to be addressed is characters that are located on the
boundary of the kernel that truncates the character regions.
Consideration of the global context is significant in removing
the noise that shares features similar to the engraved regions.
The training of truncated characters degrades the perfor-
mance of FC-DenseNet because the global context is difficult
to extract. We experimentally confirmed that segmentation
results are better than when a single character exists in the
CNN’s kernel without truncation. Therefore, we apply zero-
padding to the outer region of the ROI so that only one
character exists in the kernel. Fig. 6 shows the result of the
rasterization process on a sample mesh.

D. IMAGE SEGMENTATION
Engraved regions are segmented by using FC-DenseNet in
the image domain. The engraving segmentation of the mesh
domain demands large amounts of memory and incurs com-
putational costs due to the large number of vertices in the
mesh. It is difficult to extract engravings directly in the mesh
domain due to the large number of vertices in the mesh.
A mesh patch of a character contains about 70k vertices,
while the majority of existing 3D segmentation methods
work on small point clouds such as 4,096 point clouds [43].
Furthermore, sufficient training datasets are not available
because the number of ancient artifacts is limited. To address
the computation complexity, we convert the mesh to image
dimensions similar to [27], and use FC-DenseNet [31] for
image segmentation. FC-DenseNet shows excellent perfor-
mance with the extraction of local and global contexts, and
has the advantages of both U-Net and DenseNet.

The structure of the modified version of FC-DenseNet that
we used in this study is shown in Fig. 7. The FC-DenseNet
consists of the encoder structure used for contracting paths,
and the decoder structure for extending paths. Details of the
FC-DenseNet structure are presented in Fig. 8. The input first
passes through the 3 × 3 convolution layer. Then, encoding
is performed on the input data through the dense block and
transition down. And decoding is applied via the dense block
and transition up. In the contracting path, all feature maps
of the dense block are linked to the feature maps of the next
stages, but in the expanding path, only the output channels
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FIGURE 7. The architecture of the modified FC-DenseNet.

FIGURE 8. The details of the FC-DenseNet blocks.

of the dense block are linked to the feature maps of the next
stages. After processing the last 1 × 1 convolution layer, the
sigmoid function is adapted to segment the engraved regions
for pixel-wise classification.

The architecture of the dense block is presented in Fig. 9.
The number of channels for each convolution in the dense
block is referred to as growth rate parameter. Since the feature
maps of a dense block are concatenated with each result of
each convolution, the number of channels in the feature map
increases in the form of an equivalent sequence through the
growth rate. The growth rate of the dense block is 16.
Transition down reduces the resolution through max pool-

ing, and transition up increases the resolution through trans-
posed convolutions with a stride of 2 while maintaining the
same number of channels.

We removed the dropout layers, and initiated a convolution
of 256 channels owing to the large number of channels in our
input images, unlike the original model.

DICE loss is applied during training with the proposed
method [44]. The loss function is expressed as

DICE Loss = 1−
26ptrueppred

6ptrue +6ppred + ε
, (12)

FIGURE 9. An example of a dense block.

where ptrue is ground-truth labels, ppred is predicted labels,
and ε is a very small value to prevent division by zero. Gen-
erally, the character image has a small proportion of character
regions, compared to background regions, so there are many
true negatives (TNs). The loss is suitable for segmenting the
characters because it does not consider TNs. The similarity
between the regions for ptrue and ppred is well represented
by the loss, and when the loss decreases, the result of the
segmentation becomes closer to ptrue.

After prediction, The ppred are converted into meshes using
the linear triangular interpolation for visualization [42].

IV. EXPERIMENTS
A. DATASET
In this paper, we automatically extract only the character
regions (except for noise) from the stela called Musul-ojakbi,
a Korean treasure (No. 516) that was created in the year of
‘‘Musul’’ (578 AD) during the Silla dynasty. The stela was
built to commemorate construction of a reservoir, and records
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FIGURE 10. The Musul-ojakbi stela and its rough surface.

information that includes the construction period, the location
and size of the reservoir, the number of workers, the names
and appointments of the constructionmanagers, and the name
of the inscriptor. The information was written in Chinese in
the Idu script. Musul-ojakbi is regarded as a highly valuable
source in various archeological fields, such as Korean history,
facility history, and Idu script history during the Silla period.
However, despite its historical value, it is difficult to read the
characters due to prolonged weathering.

The reference surface of Musul-ojakbi was not polished.
Therefore, the characters were carved on the unflattened
surface of natural stone. As a result, some strokes were even
carved upon noise. Musul-ojakbi and its very rough surface
is shown in Fig. 10. Moreover, the strokes of the characters
are short, shallow, and thin. In the 3D scanned data from
Musul-ojakbi, the dimensions of the front area, excluding the
sides and back of the stela, are 982.4 × 650.8 × 24.3 mm
(H × W × D). The total number of characters is estimated
at 169, in which the average character size is 30.6 × 29.1 ×
2.0 mm. However, engraved strokes have an average width of
1.97 mm, and an average depth of 0.21 mm. It is noteworthy
that the average depth of the strokes is 0.21 mm, while the
depths of the characters and the entire mesh are 2.0 mm and
24.3 mm, respectively.

Musul-ojakbi contains a lot of noise due to weathering
over a long period of time. The noise regions have features

FIGURE 11. A 3D scan of a character from Musul-ojakbi. The left mesh
shows the raw mesh from colorizing the depth. It shows many dents and
cracks. The right image is ground truth. Noise crosses engraved regions,
making boundaries of the engraved regions ambiguous.

TABLE 1. Categorization of the quality of the 169 characters on
Musul-ojakbi based on human perception.

similar to the engraved regions due to the weathering, making
it difficult to segment the engraved regions. The noise some-
times crosses engraved regions and covers strokes entirely.
An example of a character in Musul-ojakbi is Fig. 11. It con-
tains many dents and cracks, which makes it difficult to
distinguish the engraved region. In addition, a lot of noise
connects engraved regions, so the boundaries of inscriptions
are often ambiguous. Therefore, a global context is required
to separate the engraved regions from the noise.

B. ENVIRONMENTS
Consideration for the centerline of a stroke is more important
for recognition of a character than the boundaries of the
stroke, which is similar to a character font, provided the cen-
terline is not broken. Furthermore, the importance of the
outer boundaries is low, because the boundaries of engraved
regions are ambiguous due to noise and abrasions.

In the experiments, we used a 3D scanned mesh of Musul-
ojakbi. The mesh consists of approximately 23 million ver-
tices with an average resolution of 0.25 mm.

We analyzed and classified the possible characters origi-
nally engraved on the mesh based on weathering. The number
of characters in each classification is presented in Table 1.
The characters were classified based on human observation.
We classified the characters into 4 classes according to the
surface state with the guidance of an archeologist. The esti-
mated number of characters on the stela is 169. These charac-
ters were put into four classifications: high, medium, low, and
bad. In particular, bad characters are difficult for users with
no experience in epigraphy to recognize without guidance
from an expert. Since the distinction of engraved regions is
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FIGURE 12. A subjective comparison of methods: (a) input meshes, (b) DRE [18], (c) CRE [20], (d) MCRE [21], (e) DCRE [21], (f) SRE [29], (g) the proposed
method, and (h) ground truth.

ambiguous due to prolonged weathering, labeling of ground
truth (GT) is subjective. To reduce bias in subjectivity while
generating GT, one person producedGT for all 169 characters
with the guidance of the archeologist.

For evaluation, 134 characters from the total number were
selected. The remaining 35 characters were not included. The
characters have overlapping ROIs, making it difficult to use
for learning and evaluation. For the qualitative evaluation,
we excluded the characters of bad quality from 134 charac-
ters, because the extremely damaged characters deteriorate
the performance of the model. For the noise robustness eval-
uation, we used 134 characters including bad quality.

Since the data size is small, we applied fivefold validation
for investigating the reliability of the proposed method. The
dataset was randomly divided into five subsets, while the

characters of each quality were included in each subset at
the same rate. The four subsets were used as the training set,
and the other subset was used as the validation to tune the
hyperparameters of the model. The process was repeated five
times, leading to five results for each model. The scores of
each model were averaged to identify the results through a
cross validation.

The hyperparameters used in this experiment are as fol-
lows. Since the average resolution of the mesh is 0.25 mm,
and the resolution of dense areas of the mesh is more than
the average, a lower value is required in the mesh subdivi-
sion, so 0.2 mm was selected for the grid resolution. The
scale s= 1/6 was adapted to obtain depth. To obtain concave
characteristics, the values σ = 1.0, α = 0.6, and β =
0.1 were selected. For local surface features, we obtained

VOLUME 9, 2021 153207



Y.-C. Choi et al.: Deep Learning-Based Engraving Segmentation of 3-D Inscriptions Extracted

TABLE 2. The quantitative results from fivefold validation, compared to conventional methods.

10 × 8 spin images by using 1γ = 0.15, nγ = 10,
1ρ = 0.35, and nρ = 8. The mesh and features were
then converted to 128 × 128 images via rasterization, which
were then subsampled to 0.6 mm. The size of a depth feature
image is 128 × 128 × 1, the concave feature image is
128 × 128 × 1, and the local surface feature image is 128 ×
128 × 80. However, certain channels in the local surface
feature images are described as zero matrices, and they were
removed. Consequently, the size of the local surface feature
was reduced to 128 × 128 × 64. The size of all the surface
feature images is 128× 128× 66. Since the proposedmethod
is scale-dependent, we applied only data augmentation for
rotation and translation. The weight initialization method in
FC-DenseNet is HeUniform. The model was trained with
LR = 0.0001, with a mini-batch size of 8 using the Adam
optimizer.

The performance of the proposed method was com-
pared with engravings obtained with DRE [18], CRE [20],
MCRE [21], DCRE [21], and SRE [29]. However, these
conventional methods operate in a mesh dimension, making
it difficult to directly apply a quantitative evaluation owing
to the different resolutions. We performed a quantitative
comparison against the proposed method by transforming
the estimated engraving results of each method into image
dimensions. The boundary accuracy of a character has low
importance when recognizing the character, so evaluation
of the image dimension with a low resolution can be more
accurate for comparison.

C. THE QUALITATIVE EVALUATION
The segmentation results from engravings of seven char-
acters selected from the Musul-ojakbi stela are shown in
Fig. 12. Fig. 12 (a) visualizes the roughness of the sur-
faces by applying color maps to the depth differences. DRE
shows unsatisfactory results in Fig. 12 (b). DRE estimates
the relative depth of each vertex, and then separates the
engraved regions using the EM algorithm, which assumes a
Gaussian mixture model. However, due to weathering, the
depth deviation is so severe that the depth distribution does
not follow a Gaussian distribution. Therefore, DRE showed
unacceptable estimated engraving from the EM algorithm
for certain characters with a high or low threshold. CRE
was significantly affected by noise in the principal curva-
tures. With CRE, the engravings were extracted along with

TABLE 3. The F1 score comparison from engraving segmentation based
on the categories for surface weathering.

noise, as shown in Fig. 12 (c). The engravings identified
with MCRE, shown in Fig. 12 (d), were more accurate than
those detected with CRE, and the improvement is associated
with Gaussian smoothing in MCRE to effectively reduce the
noise of the principal curvature. The results from DCRE,
shown in Fig. 12 (e), provided only deeper concave regions by
using the two Frangi filters. There is considerable reduction
in the noise from DCRE compared to MCRE. However, the
drawback inDCRE is reduction of the stroke thickness, which
resulted in failure to detect shallow or thin strokes. SRE clas-
sifies engraved regions using SVM, and results are illustrated
in Fig. 12 (f). SRE effectively eliminated more noise than
MCRE. However, since it classifies engraved regions based
on candidate segments, it showed unsatisfactory results when
the candidate segments were not well obtained. In SRE, some
noise was connected to the engraved regions, and there were
misclassified regions because the local context was primarily
used for classification. The results from the proposed method
are presented in Fig. 12 (g), and are most similar to GT in
Fig. 12 (h). Comparing the results of the proposed method
with SRE, the incorrectly detected engraved regions of SRE
were accurately classified. The proposed method is more
reliable than MCRE, DCRE, CRE, and DRE. Therefore, the
visualization results show that the proposed method using
both local and global contexts performed better than SRE and
other existing methods.

D. THE QUANTITATIVE EVALUATION
The character regions of the rasterized feature images account
for 3.4% of the pixels on average in the 128 × 128 images.
This occurs because the size of the characters varies greatly.
This basically results in a very high accuracy that considers
TNs. Though higher accuracy is better, it is not the appro-
priate metric for a proper comparison. A higher precision
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FIGURE 13. Comparison of the engraving segmentation results for the entire Musul-ojakbi stela: (a) rubbing with inverted colors,
(b) MCRE [21], (c) SRE [29], and (d) the proposed method.
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indicates that the detection of noise in the background was
reduced, and a higher recall means that segmentation results
of the engravings are acceptable. If the scores for precision
and recall are simultaneously high without bias on either side
of precision or recall, the backgrounds are less noisy, and
the engravings are well extracted, making the character more
recognizable. It is important that neither precision nor recall
is biased in character recognition. The F1 score is a harmonic
mean of precision and recall, as well as a good evaluation
indicator. Intersection over union (IoU) represents the degree
to which the regions overlap as a ratio of the intersection
region and the union region of the predicted regions and the
true regions.

We also considered the segmented inscription recog-
nition index (SIRI) [45], a metric that quantifies the
subjective recognition score from character recognition. Con-
ventional SIRI divides engraved regions into inner and outer
regions [46]. Noise is divided into regions close to and far
from the engraved regions. Breaking the centerlines of strokes
has a great impact on character recognition, but conventional
SIRI simply divides the engraved regions into inner and outer
regions, and assigns the same weight to the same region.
To address this problem, generalized SIRI [45] applies the
level set function to the engraved regions by assigning high
weight values to the center of the stroke and decreasing
the weight values as the centerlines extend outwards. The
equations of generalized SIRI are as follows:

FNw = 6wFN log(|levelset(FN )|), (13)

FPw = 6wFPFP, (14)

SIRI =
26TP

26TP+ FNw + FPw
. (15)

Thus, the generalized SIRI assigns stiff penalties for break-
ing the strokes and character boundaries. The parameterswFN
and wFP were 18.4 and 2.7, respectively.

The quantitative results from fivefold validation are pre-
sented in Table 2. The proposed method outperformed other
methods in accuracy, recall, F1 score, IoU, and SIRI [45]
at 0.0013, 0.0238, 0.0295, 0.0365, and 0.0753 respectively.
The highest accuracy of the proposed method proves that
the engraving segmentation is excellent than the conventional
methods. In the case of precision, the proposedmethod shows
the similar score to SRE. However, since our data is a skewed
data, precision does not change even if the strokes of the
characters are thinned or disappear. The recall of the proposed
method shows the highest score, indicating that the strokes
are well extracted like the GTs. The best SIRI of the proposed
method means that the engraving segmentation shows the
highest subjective recognition. IoU indicates that the pre-
dicted regions and the GT regions are also highly overlapped,
and SIRI indicates that the results show the highest subjective
results. Therefore, although the engraving segmentation of
the proposed method shows that the detection of noises in
the backgrounds is similar to the second-best method, the
strokes of the characters are well extracted like the GTs. The

proposed method shows objectively and subjectively the best
performance compared to the conventional methods.

The scores of each feature were evaluated. Each single
feature outperformed SRE in all metrics except precision. The
result of the single depth feature shows that the proposed
deep learning-based method using both local and global
contexts performed better than SRE using the local context
only. This indicates that the global context must also be
used to extract engraved regions of inscriptions with coarse
surfaces.

E. ROBUSTNESS TO NOISE
The F1 score comparisons from engraving segmentation
according to the degree of abrasion are presented in Table 3.
The proposed method showed the highest performance on
all states of abrasion. Although the proposed method and
SRE produced similar scores for high-quality characters, the
performance of the proposed method was significantly higher
for the other states, regardless of the degree of abrasion.
In particular, for engraving segmentation in the bad state,
we used a model of the fivefold validation that was trained
using only characters in the high, medium, and low states.
The bad characters included characters that are difficult for an
ordinary person to recognize. Nevertheless, the performance
of the proposed method with characters in a bad state was
acceptable. Therefore, the proposed method quantitatively
and qualitatively outperformed the existing methods. The
satisfactory performance of the proposed method is linked to
its robustness to noise.

F. THE PREDICTED ENGRAVED REGIONS FOR THE ENTIRE
STELA
The engraving segmentation for all 169 characters on
Musul-ojakbi is illustrated in Fig. 13. Compared to the other
methods, engraving prediction from the proposed method
showed the best performance. The proposedmethod achieved
very good performance compared to rubbing (the most
common investigation method for archeology). The pro-
posed method extracted the engraved regions accurately,
with less influence from noise, compared to MCRE. And
the proposed method showed the best results by classifying
the engraved regions misclassified by SRE into engraved
regions.

V. CONCLUSION
In this paper, we proposed a deep learning-based approach
to the extraction of engravings from a 3D scanned mesh of
a severely weathered stela. The deep learning model was
trained using a basic depth feature, a concave feature, and a
local surface feature. Frangi filters and the spin image were
employed in the extraction of concave features and local
surface features, respectively. The local and global contexts
of the features were considered in FC-DenseNet for the seg-
mentations. Through experiments, we confirmed that each
subfeature of the proposed features is effective in describing
the surface of the stela. The proposed method outperformed
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conventional methods objectively and subjectively. F1 score,
IoU, and SIRI values from the proposed method were
2.95%, 3.65%, and 7.53%, respectively. Furthermore, the
proposed method showed robustness to noise and achieved
an acceptable F1 score of approximately 5.2%—higher than
the second-best method with extremely abraded characters.
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