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ABSTRACT The sap flow of plants directly indicates their water requirements and provides farmers
with a good understanding of a plant’s water consumption. Water management can be improved based
on this information. This study focuses on forecasting tomato sap flow in relation to various climate and
irrigation variables. The proposed study utilizes different machine learning (ML) techniques, including linear
regression (LR), least absolute shrinkage and selection operator (LASSO), elastic net regression (ENR),
support vector regression (SVR), random forest (RF), gradient boosting (GB) and decision tree (DT). The
forecasting performance of different ML techniques is evaluated. The results show that RF offers the best
performance in predicting sap flow. SVR performs poorly in this study. Given water/m2, room temperature,
given water EC, humidity and plant temperature are the best predictors of sap flow. The data are obtained
from the Ideal Lab greenhouse, in the Netherlands, in the framework of the European Funds for Regionale
Ontwikkeling (EFRO) EVERGREEN Greenport Noord Holland Noord project (2018-2020).

INDEX TERMS Sap flow, tomato, future forecasting, machine learning, feature importance, hyperparame-
ters, adjusted R2.

I. INTRODUCTION
In alignment with artificial intelligence (AI) and big data
technology, machine learning (ML) introduces new opportu-
nities to unravel, measure, mine and understand the hidden
patterns of data processes in dynamic and static environ-
ments [1]. ML is defined as the scientific field of statis-
tical techniques that confers machines with the ability to
learn from a series of input and output examples. ML is
applied in many scientific fields, for example, bioinformatics,
medicine, finance and economic sciences, robotics and vision
engineering, sentiment analysis of social media, agriculture,
climatology and food security. One important use of ML is
predicting possible factors that influence crop management,
specifically yield forecasting, crop growth forecasting, health
prediction, decision making and crop mapping [2]. ML has
potential to address existing and future challenges in agricul-
ture by means of massive volumes of data containing a wide
variety of indicators that can be captured, analyzed, processed
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and used for decision making. It is essential to gather data
from various sources when making predictive decisions e.g.,
preventing crop loss and increasing yield while minimizing
the use of resources. Many studies have investigated appli-
cations of ML in agriculture. Kaul et al. [3] applied artifi-
cial neural networks for highly accurate corn and soybean
yield prediction. Logan et al. [4] applied generalized linear
model (GLM), Bayesian additive regression tree (BART), and
classification and regression tree (CART) methods together
to utilize the high predictive power to achieve efficacy in
the decision-making process with respect to Royal Gala
apples. In another study, Delgado et al. [5] adapted a fuzzy
logic information network and a decision-support system to
address imprecision and inaccuracy for effective decision
making in olive cultivation. Furthermore, Utkarsha et al. [6]
focused on clustering ML for crop growth prediction, while
Jing-Xian et al. [7] performed regression supervised learning
to forecast sugarcane yield.

This study aims to predict sap flow in cherry tomatoes.
Currently, automated irrigation systems are commonly used
in greenhouses. In contrast to the manual effort required to
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water plants, farmers need only one person to control the
computer. The amount of the water to be given is deter-
mined by solar radiation. However, with the use of new
technologies, the current irrigation strategy does not meet
the required accuracy for greenhouse applications. According
to Sutton and Barto [8], the water given to plants based on
solar radiation might be wasted by the low water storage
capacity substrate (Rockwool), which contradicts the energy-
saving strategy and might cause declines in production and
quality. Sap flow sensors make the water requirements of
plants more obvious, accurate and direct. In contrast to the
mass-balance technique to check plant water uptake, the sap
flow sensor provides real-time data [9] and shows precise
changes in water use in response to different environmental
conditions. For commercial purposes, such sensors can help
farmers to improve or adjust their watermanagement strategy,
as according to Gimenez et al. [10], sap flow can be used as
an indicator of a plant’s water status. Sap flow sensors are
commonly used in forestry and vine production for research
and commercial purposes and have even been adopted in the
orchid industry. However, there is a gap in the use of sensors
for edible herbaceous plants. Some features of cherry tomato
plants make them good research objects. Tomato plants are
perennials that are grown throughout the entire year in green-
houses, which provides a long time for research. Moreover,
tomato plants have strong and thick stems, which simplify
sensor installation [8]. Another motivation of this study is to
avoid water drainage or loss, which is directly proportional to
the amount of given water.We can prevent excessive drainage
or loss by providing only the required amount of water to the
plant.

To contribute to the application of sap flow information,
this study attempts to predict tomato sap flow based on
multiple variables using ML algorithms. Three categories of
variables are considered in this study: climate data, irrigation
data, and sap flow data. These data were collected from
the Ideal Lab greenhouse [11] in Naaldwijk, the Nether-
lands. To achieve optimum monitoring, various sensors with
actuators are installed on and around the tomato plants in
our experimental greenhouse lab. The sensors on the plant
provide information about sap flow. In addition, sensors
are installed in the greenhouse to obtain (big) data about
the conditions within the greenhouse: for example, climate
sensors for measuring temperature, humidity, sunlight and
irrigation water supply. Moreover, sensors in the substrate
mat continuously measure mat weight and the pH and elec-
trical conductance (EC) of water. The forecasting problem
in this study is considered as a regression problem, and ML
regression models, such as linear regression (LR), least abso-
lute shrinkage and selection operator (LASSO), elastic net
regression (ENR), support vector regression (SVR), random
forest (RF), gradient boosting (GB) and decision tree (DT),
are used to predict sap flow. The models are trained using the
climate, irrigation and sap flow datasets provided by Ideal
Lab greenhouse in Naaldwijk, the Netherlands. The dataset
is divided into a training set, including 80% of the records,

and a test set, with the remaining 20%, and the R-squared
score (R2), adjusted R-squared score (adjusted R2), mean
square error (MSE), root mean square error (RMSE) and
mean absolute error (MAE) are used as performance metrics.

The key findings of this study are listed as follows:

• RF offers the best sap flow prediction capability with the
highest R2 value of 81% (approx.) and an MSE of 0.25.

• Given water/m2, room temperature, given water EC,
humidity and plant temperature are the best predictors.

This paper is divided into five sections. Section I describes
the background and goals of this study; in Section II, the
materials and methods are described. The methodology is
presented in Section III. Section IV presents the results and
discussion of the results, including figures and tables. Finally,
Section V concludes this paper.

II. MATERIALS AND METHODS
A. DATASET
A cherry tomato variety is used in this project. Tomato plants
were grown in the Ideal Lab greenhouse (length: 12.50 m,
width: 6.50 m; height: 6 m) located at theWorld Horti Center,
Naaldwijk, the Netherlands [11]. The seedlings (16 cm) were
provided by Axia Vegetable Seeds company [12] and were
grafted onto rootstocks (Maxifor, provided byRijk Zwaan) on
8th November 2018 [13]. Rockwool slabs were provided by
Grodan’ GTMaster [14]. Artificial light was applied between
7:00 am and 6:00 pm each day, the average day temperature
inside the greenhouse was 23 ◦C, the average night temper-
ature was 17 ◦C, the CO2 application was 533 ppm, and
the irrigation system applied water at a rate of 0.5 L/m2 on
average. These amounts can be adjusted to meet the Dutch
cultivation strategy depending on the weather outside the
greenhouse. A total of 364 records from 12 samples of cherry
tomato plants were considered.

1) CLIMATE AND IRRIGATION DATASETS
The climate dataset includes the room temperature, air
humidity, carbon dioxide (CO2), outside radiation, air den-
sity, outside temperature, outside air humidity, outside air
density, wind speed and plant temperature. The irrigation
dataset consists of given water EC, given water pH, given
water/m2, drained water EC, drained water amount, and
absorbed water amount. All these data were monitored and
recorded automatically via the Priva [15] climate system on
a daily basis.

2) SAP FLOW DATASET
The sap flow dataset was recorded using Dynagage SF
sensors provided by 2GROW [16]. The sap flow rate was
recorded every 2.5 seconds. One sensor was installed on
tomato plant, and data were monitored and recorded auto-
matically for the entire project period. The data are pre-
sented visually using the Phythosense software package of
2GROW [17].
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TABLE 1. Sap flow data sample.

TABLE 2. Climate data sample.

TABLE 3. Irrigation data sample.

Data samples from each dataset are shown in
Tables 1, 2, and 3. The variables selected for inclusion in the
study are as follows:
• Room temperature
• Air humidity
• Carbon dioxide (CO2)
• Plant temperature
• Given water EC
• Given water pH
• Given water/m2

• Drained water amount
• Sap flow

B. SUPERVISED MACHINE LEARNING MODELS
The purpose of this study is to construct models to predict sap
flow based on input predictors: seven supervisedMLmethods
are considered in this study.

1) LINEAR REGRESSION
LR is a supervised ML algorithm [18] based on independent
and dependent variables. According to the number of vari-
ables, LR can be categorized as simple LR or multiple LR,
as shown in the following equations. The goal of LR is to
identify the best combination of weight (w) and bias (b) that
leads to the lowest cost (J).

f (x) = wx + b (1)

Or

J =
1
n

n∑
i=1

(f (xi)− yi)2 (2)

J is the cost function, f (xi) is the predicted value, and yi is
the actual value.

2) LEAST ABSOLUTE SHRINKAGE AND SELECTION
OPERATOR
LASSO is an LR regression technique [19] that performs well
in cases of high multicollinearity and sparse models [20].
In contrast to normal multiple LR, LASSO performs auto-
matic selection among the predictors. The goal of LASSO is
to minimize a coefficient, i.e., to minimize (sum of squared
residuals + λ∗|slope|). The equation is shown below.

n∑
i=1

(yi −
∑
j

xijβj)2 + λ
p∑
j=1

|βj| (3)

λ is the shrinkage. When λ equals 0, the estimate is the same
as that from LR.

3) ELASTIC NET REGRESSION
ENR is a regularized regression algorithm that combines
LASSO and ridge regression [21]. The estimates for ENR
are the minima (sum of the squared residuals + λ∗|slope | +
λ∗slope2). ENR addresses the disadvantage of LASSO by
removing the limitation on the number of selected variables.
The equation is shown below.

n∑
i=1

(yi −
∑
j

xijβj)2 + λ
p∑
j=1

|βj| + λ

p∑
j=1

|βj|
2 (4)

4) SUPPORT VECTOR REGRESSION
SVR is widely used in classification problems in ML [22].
A line, also called a hyperplane, is constructed to separate
the training data in N dimensions. Multiple hyperplanes can
be used to classify the data. The hyperplane with the best
performance is the one that achieves the largest separation.
Subsequently, the regression is performed based on the hyper-
planes. The equation of SVR is as follows:

f (x) = x ′β + b (5)

5) RANDOM FOREST
RF is a supervisedML algorithm that is used for classification
and regression tasks [23]. RF is an ensemble of multiple
regressions, where multiple DT regressions are performed
in a parallel manner. The result aggregates many DTs into
a single ensemble regression via voting or by taking the
mean value of different DTs. The goal of RF is to perform
forecasting based on the regression trees.

6) GRADIENT BOOSTING
GB converts weak learners into strong learners [24], typically
starting with a DT model. GB builds upon a previous model
by adding another DT. If the new DT does not correlate
with the previous forecasting system, it will be selected out.
The final prediction is the weighted sum of the previous
predictions.
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7) DECISION TREE
DT builds regression models in a tree structure and uses a set
of binary rules to calculate a target value [25]. The model
can be trained to fit any historical data and to learn any
relationships between data and variables.

C. EVALUATION PARAMETERS
The performance of each model was evaluated in terms of
the R-squared (R2) score, adjusted R-squared (adjusted R2)
score, mean square error (MSE), root mean square error
(RMSE) and mean absolute error (MAE).

1) R-SQUARED SCORE
The R-squared score represents the performance of the
regression model [26]. When R2 is less than 0, the model
has no value. When it is equal to 0, the predicted value is
equal to the mean value of the dependent variable. When it is
equal to 1, the model performs the best. The value of R2 score
∈ (0, 1); the higher the R2 score is, the better the performance
of the model.

R2 = 1−

∑
(yi − ŷ)2∑
(yi − ȳ)2

(6)

2) ADJUSTED R-SQUARED SCORE
Adjusted R2 can avoid the over-feeding data problem, which
leads to a continuously increasing R2 score [27]. When
useless variables are added to the model, the adjusted R2

decreases.

R2adj = 1− [
(1− R2)(n− 1)
n− k − 1

] (7)

3) MEAN SQUARE ERROR (MSE)
Mean square error is the average of the squared error [28].
The smaller the MSE value is, the better the performance of
the model.

MSE =
1
N

N∑
i=1

(yi − ŷ)2 (8)

4) ROOT MEAN SQUARE ERROR (RMSE)
RMSE is the square root of the mean square error [29]. The
equation is shown below.

RMSE =
√
MSE =

√√√√ 1
N

1∑
i=1

(yi − ŷ)2 (9)

5) MEAN ABSOLUTE ERROR (MAE)
MAE is the average of all the absolute errors between the pre-
dicted values and actual values [30]. The smaller the absolute
error is, the lower is theMAE, and lower values indicate better
model performance.

MAE =
1
N

n∑
i=1

|yi − ŷ| (10)

D. HYPERPARAMETERS
The parameters of the model that must be set before run-
ning the model, in contrast to parameters that are learned
during the training process, are referred to as hyperparame-
ters [31]. To optimize the performance criteria, these param-
eters should be carefully tuned, as using excessively large
or small values may result in poor model performance [32].
Hyperparameter tuning is, therefore, the process of finding
good values of parameters for a specific dataset [31]. Some-
times, default values of the hyperparameters are defined by
the packages being used; for example, in Python, if a value
for a certain hyperparameter is not provided by the user for
a particular ML algorithm, the default value is applied for
training. The following hyperparameters are used.

1) ALPHA
The Scikit library in Python provides GridSearchCV to find
the optimum value of alpha. In this study, alpha is a hyper-
parameter used for LASSO and ENR, and the chosen alpha
values for LASSO and ENR are 0.05 and 0.06, respectively.

2) KERNEL
SVR uses linear and nonlinear kernels to map low-
dimensional data to high-dimensional data. This study uses a
linear kernel that supports listing feature importance, which is
not possible when using other kernels, as data are transformed
to another space via the kernel method.

3) N_ESTIMATORS
n_estimators represent the number of trees to be built for
making average predictions. Higher values make the model
stronger and more stable, but the code becomes slower.
Therefore, the highest value that a processor could handle can
be chosen for best results. e_estimators is the hyperparameter
used in RF and GB, with a value of 1,500.

4) MAX_DEPTH
In DT, the dataset is partitioned into different subsets.
Partitioning starts with a binary split and continues until no
further splitting is possible. Themax_depth refers to the depth
of each tree in the forest, where deeper trees are expected
to capture more information about the data. In the study,
max_depth was set to 3, as higher values resulted in poor
model accuracy.

III. METHODOLOGY
This study focuses on sap flow prediction in tomato plants
using multiple predictors, such as climate variables (room
temperature, humidity, CO2) and irrigation variables (given
water, drainage water, given water pH), which are daily data.
Three main steps were used to construct the forecasting sys-
tem, as shown in Fig. 1. The initial dataset was processed
into Table 4. Standard scaling in Python was used to obtain
a dataset close to a normal distribution, which benefits the
performance of many ML algorithms, such as LR and SVR.
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FIGURE 1. Workflow.

The output dataset after application of standard scaling is
shown in Table 5.

The forecasting was performed using seven ML tech-
niques. The potential important features were pre-selected
based on the variance inflation factor (VIF), which accel-
erated the modeling process, and the correlations between
predictors and sap flow are shown in Fig. 2.

Then, the dataset was split into training and test sets based
on a parameter between 0 and 1, expressed as a percentage.
The dataset was split to prevent look-ahead bias, overfitting
and underfitting. Common split percentages include 80%,
67% and 50% [33]. The value of 80% indicates that 80% of
the data are included in the training set, while 20% of the
data are included in the test set. These values were adopted in
this study. Commonly, there is no optimal split percentage. A
chosen split percentage needs to meet the project’s objectives
with respect to the following consideration [33]:
• Computational cost in training the model.
• Computational cost in evaluating the model.

• Training set representativeness.
• Test set representativeness.

The ML models LR, LASSO, ENR, SVR, RF, GB and
DT were implemented, and the performance was evaluated
in terms of R2, adjusted R2, MSE, RMSE and MAE.

IV. RESULTS AND DISCUSSION
A. RESEARCH METHODOLOGY
Sap flow directly represents the water requirements of a
plant and provides an opportunity to understand the plant’s
hydraulic function and plant growth in a given environ-
ment [34]. The movement of sap illustrates the connection
between a plant and its surroundings [34], and sap flow
sensors are applied broadly in the forestry sector for water
management and research purposes [35]. However, such sen-
sors are rarely used for herbaceous plants. In this research,
the tomato, an herbaceous plant, was chosen as the research
object to contribute to the sap flow database. The relation-
ships between sap flow and climate factors were analyzed,
and a predictivemodel of sap flowwas constructed and tested.
This model can be used to enhance greenhouse automa-
tion management, to improve water use efficiency and to
reduce waste during production. In previous studies, sap flow
was generally studied in reference to solar radiation, vapor
pressure deficit, relative humidity, and air temperature [36].
By contrast, this study includes more measured variables as
compared with vapor pressure deficit, which is calculated
based on measured data, and more potential variables, such
as plant temperature and CO2, are included. Moreover, since
most of the sensors are developed for woody plants [37], this
research may contribute to sap flow sensor innovation.

B. SAP FLOW FORECASTING
Models for predicting tomato plant sap flow were devel-
oped and tested in this study. The performance evaluation
results are presented in Table 6. According to the results,
RF shows the highest correlation between the predicted val-
ues and actual values. RF is followed by LR, ENR, SVR
and LASSO, which have similar R2 values of approximately
0.790. GB shows the worst correlation, with an R2 value
of 0.663.

Figs. 3, 4, 5, 6, 7, 8, and 9 show the predicted val-
ues and actual values of sap flow for the different models.
Figs. 10, 11, 12, 13, 14, 15, and 16 show the performances of
differentML algorithms for sap flow prediction. According to
the results, the sap flow data change frequently. Most of the
forecasted values are accurate at the lowest peak; however,
predictions of the highest peak are unstable. SVR shows good
predictive ability for the highest peak of sap flow; however,
the predicted values are not highly correlated with the actual
values and the mean square error is relatively high, which
reduces the reliability of SVR.

LR, LASSO and ENR show similar patterns with respect
to the trend of sap flow data. LR shows the highest cor-
relation between the predicted data and actual data (0.792)
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TABLE 4. Unnormalized dataset view.

TABLE 5. Normalized dataset view.

FIGURE 2. Correlation heatmap.

and is closely followed by ENR (0.788). In terms of the
MSE and MAE, LR achieves the lowest values; therefore,
LR performed the best in the linear regression technique
group.

RF performed best in this study; it achieved the best sap
flow prediction with the highest correlation and lowest error
for peaks. In previous research, RF was described as a simple
and diverse supervised learning algorithm, as it can be easily
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FIGURE 3. Prediction value and actual value of sap flow by linear
regression.

FIGURE 4. The prediction value and actual value of sap flow by Lasso
regression.

FIGURE 5. The prediction value and actual value of sap flow by elastic net
regression.

used for both classification and regression. Niklas illustrated
that RF is likely to achieve better performance than other
approaches because of its high tree diversity [38]. When
splitting a node, the best feature among a random subset
of features, rather than the most important feature overall,
is selected [38]. Additional advantages are reported by Julia:
RF works well with high-dimensional data and unstable
data [39]. RF achieves a lower variance than DT, as the vari-
ance of each DT is averaged in RF [39]. Moreover, RF does

FIGURE 6. The prediction value and actual value of sap flow by support
vector regressor.

FIGURE 7. The prediction value and actual value of sap flow by random
forest.

FIGURE 8. The prediction value and actual value of sap flow by gradient
boosting.

not suffer from excessive overfitting [40] and includes a rapid
training process [39]. GB and DT show lower correlation and
higher error than other algorithms. Therefore, GB and DT did
not perform well with respect to sap flow prediction in this
study.

C. FEATURE IMPORTANCE
To further improve the sap flow prediction performance, the
feature importance in LR, ENR, SVR, RF, GB and DT was
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FIGURE 9. The prediction value and actual value of sap flow by decision
tree.

FIGURE 10. The model performance of linear regression.

FIGURE 11. The model performance of Lasso regression.

analyzed. LASSO was excluded from this process, as the
features are automatically selected in LASSO.

The feature importance results are presented in Table 7 as
the feature importance score (FI score). Four features con-
tributed to the prediction by LR: given water/m2, given water
EC, room temperature and humidity. Features such as CO2,
plant temperature, given water pH and drained water have
negative values and should be removed from the LR sap flow
prediction model. The prediction of sap flow by ENR is based
on given water/m2, room temperature, humidity, given water
EC and plant temperature; thus, removing CO2, given water

FIGURE 12. The model performance of elastic net regressor.

FIGURE 13. The model performance of support vector regressor.

FIGURE 14. The model performance of random forest.

pH and drained water might improve the performance. The
most important features for SVR sap flowprediction are given
water/m2, room temperature, given water EC and humidity.
By contrast, RF and GB rely on all 7 features: given water/m2

has the highest FI score, followed by room temperature. The
remaining features have similar FI scores (greater than 0 and
less than 0.1). The most important features for DT are water
amount, room temperature, plant temperature and humidity.

Given water/m2, room temperature, given water EC and
plant temperature contribute the most to the sap flow predic-
tions of the different models. Given water/m2 has previously
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FIGURE 15. The model performance of gradient boosting.

FIGURE 16. The model performance of decision tree.

TABLE 6. Performance evaluation.

been identified as an important feature in the prediction
of plant sap flow [41]. The relationship between room
temperature and sap flow is also consistent with previous
research [42]. Given water EC has previously been found to
negatively influence sap flow [43]. Moreover, plant temper-
ature, an indicator of sap flow in this research, has not been
reported in previous research. Plant temperature represents
stomatal conductance, which is linked to transpiration and

TABLE 7. Correlation between features and predicted value by different
algorithms.

TABLE 8. Hyperparameters of each ML technique.

plant growth [44]. Furthermore, transpiration is the main
driver of sap flow; therefore, theoretically, plant temperature
and sap flow may be related. Given water EC indicates the
degree of difficulty for plants to absorb water [45]. CO2 is
strongly related to plant photosynthesis and does not show
strong correlation with sap flow in this research. However,
Remy et al. showed that CO2 concentration exerts a signif-
icant negative influence on sap flow [46]. The relationship
might be very minimal, which would require an accurate
measurement methodology to support it. Given water pH
contributes to nutrient uptake, which exhibits no relationship
with sap flow.As shown in Table 6, RF offers the best sap flow
prediction performance.Moreover, on the basis of Table 7, the
predictors CO2, given water pH and drained water amount
should be removed to improve the prediction performance
of RF.
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V. CONCLUSION
The use of sap flow information can improve water man-
agement. Such information allows farmers to easily adapt
irrigation strategies, which may help to minimize the waste of
resources. In this study, an ML-based prediction system was
used to predict sap flow, and the results show that RF per-
formed best. Moreover, the literature has previously shown
that RF has high tree diversity, low bias, moderate variance,
and minimal problems with overfitting, which contributes to
good predictions. LR and ENR also show good performance.
Givenwater/m2, room temperature, givenwater EC, humidity
and plant temperature were identified as the most important
features for sap flow predictions. Among these features, given
water/m2 was the most important variable for RF, and plant
temperature was newly identified as an indicator for plant
sap flow. A reliable prediction model (with higher R2 value)
for sap flow may contribute to better decision making dur-
ing the irrigation process. This study will be enhanced in
the future, and the dataset will be updated with additional
records, including growth parameters such as stem growth,
head thickness, and stem thickness.
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