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ABSTRACT The next-day load forecasting is complex due to the load pattern variations driven by external
factors, such as weather and time. This study proposes a hybrid model that incorporates the Classification
and Regression Tree (CART) with pruning conditions and a Deep Belief Network (DBN) to improve
forecasting accuracy. The CART can recognize the load patterns by classifying similar groups with low
variance, thus reducing the complexity of the forecasting model. The actual 48-period load data from the
Electricity Generating Authority of Thailand (EGAT) is used. The proposed model is compared with six
widely used standalone forecasting benchmark models and provides better at the minimum 0.46% mean
absolute percentage error. Moreover, the forecasting performance of DBN and the other four benchmark
models are improved by using our hybrid approach.

INDEX TERMS Classification and regression tree (CART), daily load forecasting, deep belief network
(DBN), forecasting accuracy, pruned-CART.

I. INTRODUCTION
Load forecasting plays a vital role in the planning and opera-
tion of electric generators as it requires meeting the generat-
ing units between supply and demand. It can be divided into
short-term, medium-term, and long-term forecasting dura-
tion [1]. Forecasting electrical load for annual data is con-
sidered as long-term, and monthly forecasting is considered
as medium-term. Daily load forecasting is called short-term
load forecasting, ranges from hours to weeks. The accuracy of
the forecastingmodel can reduce the operating cost as it could
reduce the standby generators for spinning reverse. However,
the reliability of the predicted results depends on the features
of the input and the model fitting.

Daily load patterns depend upon myriad aspects that
change incessantly due to weather effects, seasonal effects,
calendar effects, and so on. Weather effects typically include
temperature, sunshine, cloudy, and humidity, while seasonal
effects comprise spring, summer, fall, and winter. Among
these effects, the temperature variable plays a significant
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impact in examining electric load demand from the con-
sumers [1]. Calendar effects vary from day to day, month
to month, and on holidays. Thus, understanding the non-
linear relationship between load patterns and influential vari-
ables can enhance electric load forecasting performance. This
paper proposes the classification and regression tree (CART)
with pruning predefined conditions to classify the pattern of
electrical data. The proposed classification depends on the
calendar, such as day of the week, the month of the year,
holidays, and bridge holidays.

A. RELATED WORKS
Pattern classification was introduced in the late 20th century
and later applied in power system load forecasting [2]–[4].
Load pattern clustering for electricity customers was con-
ducted using the defined harmonic-based features grouped
by fixing the minimum modified Euclidean distance. The
primary purpose of their system is to store electric customers’
big data into manufacturer databases in a classified manner.
The scholars developed a clustering algorithm to store refined
data according to the time-frequency domain. This technique
reduced the data by selecting and storing essential features
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in the database following the specific cluster. It used the
harmonic order in terms of the time zone for clustering the
electric customer’s data [5]. In addition, Zhong and Tam
proposed characteristic attributes in the frequency domain
(CAFD), which helps to create a classification tree for load
profiles. This CAFD classification method was experimented
with different complex parameter values to finetune the num-
ber of final leaf nodes of the tree. The illustrated work is
the hierarchal classification of load profiles according to the
frequency domain [6].

Ferreira et al. evidenced that recognizing load patterns
could improve the reliability of the electric power sector
and support decision-making levels in management. In their
research, the whole sample using specific features was
clustered at the first iteration. Next, the similarity between
medians of each group and the median at the first iteration
are verified to cluster some patterns for further iterations [7].
Kotriwala et al. combined load patterns and power-zone
attributes for clustering power-zones and used the k−means
algorithm for classifying the load patterns. They used logis-
tic regression (LR) and support vector machine (SVM) for
classification and linear regression model for forecasting the
power load. They revealed that load classification could opti-
mize the system efficiency of power generation planning [8].
Yin et al. proposed the deep forest regression, wherein ran-
dom forest with Gini index parameter was applied both for
classification and regression to improve the forecasting accu-
racy of the power system. Besides, the random forest (RF)
algorithm randomly chooses the sample data and features
randomly, which causes sample duplication and a lack of
essential features [9].

Classification is one of the significant components of data
mining techniques. The prime task is to analyze a set of
provided data and generate some essential rules, which can
be used to classify future data. There exist many applicable
classification models, which include the k-means algorithm,
SVM, naive Bayesian classifier, artificial neural network
(ANN), and decision tree (DT) [10]. These models are gen-
erally helpful for both classification and regression prob-
lems. The k-mean algorithm was used for clustering hourly
load data to improve the functional linear forecasting model.
It optimized the number of clusters, denoted as G, by comput-
ing the regression model’s determination coefficient and the
G-dimensional function. Their approach used a fixed number
of groups for classification and used the functional regression
technique for forecasting. The method is complex and only
works with a parametric system such as parametric regression
models [11].

Moreover, load patterns were clustered using a thresh-
old value of different average loads (30MW and 60MW)
concerning day types between train and test data. Then the
average load is predicted by using the SVMmodel. However,
they used manual classification in terms of day type [12].
Zhang et al. combined twomodels where the CARTwas used
with Gini index parameter to build tree analysis, and the SVM
model was used for forecasting one-week test data. They have

performed short-term load forecasting (STLF) on smart meter
data using big data analytics technologies. However, there
was an overfitting problem during the training process of the
machine learning (ML) algorithm [13]. Besides, Moon et al.
proposed a hybrid model for STLF by combining RF and
multilayer perceptron (MLP). The RF model selects a subset
of variables from the whole original set. To form the optimal
tree, this model adjusts the total number of trees to be gener-
ated (nTree) as a minimum split and the decision tree-related
parameters (mTry) as a split criterion, respectively. Never-
theless, they have tried various ML models with different
configurations, but their error accuracies are still high [14].

Many types of research on classifiers or clusters for elec-
tricity load forecasting have been investigated since the last
decade. Among popular classification models, DT is an
up-and-coming model. Many tree-based algorithms such as
Iterative Dichotomiser 3 (ID3), C4.5 algorithm, RF, and
CART are used to create the DT [15]. Srivastava et al.
conducted STLF using the DT algorithms, for instance, RF,
Bagging, and M5P tree algorithms. The results are com-
pared for each algorithm. In their research, the bagging
model trained a DT from each bootstrap training data sam-
ple and selected the final bagged model with a minimum
mean for prediction. Nonetheless, they applied all models
with default configuration for regression performance [16].
Loh also reviewed some comprehensive classification tree
algorithms for classification and regression algorithms for
prediction, comparing their strengths and weaknesses [17].
Among the above-discussed algorithms, CART is considered
one of the most popular models, which can efficiently deal
with the problems of both classification and regression [4].

Mori and Kosemura proposed optimizing the optimal
CART by the tabu search algorithm at each split node and
pruning it by computing the cross-validation and standard
errors [18]. Similarly, Mori et al. used the simplified fuzzy
inference to find the efficient rules from actual data for
CART and predicted one-step load by MLP. Their CART
model classified the data into two terminal nodes, which can
cause impurity of load profile [19]. Hambali et al. worked
with three decision tree algorithms for forecasting electrical
power load: CART, reduced error pruning tree (REPTree),
and decision stump (DS). CART and REPTree used the Gini
index and regression logic tree in the cited work, while DS
measures the dataset’s entropy according to each attribute.
On the other side, these tree models were applied with the
purpose of regression [20]. Besides, Lei et al. combined the
k−means algorithm for clustering, whereas RF andCART for
regression. Lei et al. implement these algorithms on Apache
Spark machine learning library (MLlib). However, the data
processing ability of the model needs to be more optimized to
improve the forecasting performance [21]. Additionally, Guo
used the CART to classify load patterns and the ‘‘If. . .Then’’
structure to create pattern rules. The author measured the
misclassification risk and complexity to prune the CART.
The simple ANN model has been used for load forecasting,
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and it requires more computation power and time for
training [22].

Many researchers have cited myriad advantages of tree
pruning since the late 1990s. In this regard, Shah and Sastry
proposed Alopex, learning automata (LA), and generative
algorithm (GA) for pruning the tree handling on two clas-
sification problems [23]. Alternatively, pruning the CART
algorithm could help the penalized regressionmodel selection
by proving the risk bounds [24]. Guo and Niu proposed the
CART pruning by calculating the cost-complexity measure,
which chooses the minimal sum of squared residual with the
complexity parameter to get the final pruned tree. Likewise,
the cost complexity function is used for trimming CART
of load pattern recognition that is clustered primarily using
the fuzzy C-means clustering to increase the forecasting
accuracy [25]. The feature selection and reduction can also
be done by using a classification model with a predefined
set of clusters to assign new electrical loads customers [26].
Hanif et al. proposed the optimal constrained pruning of
decision trees, applied the proposed model to a large-scale
transportation analysis and simulation system (TRANSIMS),
and revealed the flexibility and effectiveness of the pro-
posed approach. For these reasons, adding objective functions
and constraints could optimally prune the original decision
tree [27].

Based on the above-cited works, it is evident as the broad
daylight that the forecasting performance can be improved
by using an appropriate classification model. Therefore, the
CART seems to be a promising approach for grouping the
similarity of load profiles, improving the model’s forecast-
ing performance. The data preprocessing stage can be elim-
inated by using the CART algorithm. It can also reduce
data imbalance issues. In addition, pruning the decision tree
could reduce the size and the overfitting problem, which
might slightly increase the training error while decreasing the
testing error. As a result, the pruned tree is more efficient,
accurate, and understandable than the original unpruned tree.

At the start of the 21st century, all neural network-based
models have been successfully deployed in the field of
load forecasting. These models can be divided into tra-
ditional ML and deep learning (DL). The popular ML
forecasting models are regression trees, gradient boosting
model [22], [28], bagged neural network (BNN) [29], ANN,
and SVM [30]–[32]. It has also been noticed that the
above-cited models applying different data performed better
accuracy for STLF. Nevertheless, DL models have become
more popular because of exceptional capabilities such as con-
trolling non-linear relationships, model complexity, and com-
putation time over ML models. Schmidhuber proposed the
deep ANN, the learning of unsupervised and reinforcement,
and evolutionary computation to clarify the use of DL mod-
els [33]. Recurrent neural network (RNN) [34], long short-
term memory (LSTM) [35], convolutional neural network
(CNN) [36], deep neural network (DNN) [37], and deep belief
network (DBN) [38] have been investigated in STLF. The
forecasting performance of these DL models was satisfactory

by comparing them with traditional statistical time series and
ML models based on different case studies.

Furthermore, many researchers performed STLF using
hybrid models that combine two or more models. The hybrid
approach appears to be a viable choice based on the input
structure, selected method, and application. Kouhi applied
a cascaded neural network that consists of an intelligent
two-stage feature selection with the forecasted engine of
three cascaded neural network structures [39]. In the same
way, GA operations in particle swarm optimization (PSO)
and Bayesian optimization (BO) were applied to achieve
better forecasting accuracy for ANN and SVM, respectively.
However, their proposed ML model costs high computation
time [40], [41].

As mentioned above, the hybrid models provide promis-
ing results compared to the standalone models in terms of
accuracy in most studies. However, these approaches still
required manual data preprocessing. In our work, we use
CART to group the similarity of load patterns and the variance
reduction. Therefore, there is no need for data preprocessing
and handling data imbalance issues. Moreover, the CART can
automatically manage the variable selection, missing values,
outliers, variable interaction, and non-linear relationships
against other tree-based models. The additional benefit of
our approach is using pruning conditions that reduce over-
fitting and provide a balanced training set for the forecasting
model. Our forecasting DBN model has several advantages:
the vanishing gradient descent problem, the pertained and
finetuning process, and less computation time than other
NNs. Therefore, it also can learn complex features from the
information. The summary table of classification models on
electricity data is reviewed in the Appendix.

B. CONTRIBUTIONS
Amixture of classification and regression models is proposed
to predict short-term electrical loads for the first time. The
historical electrical load data is classified using the CART
model, which uses mean squared error (MSE) criteria to
group similar load data with low variance. Because of this,
the proposed hybrid model omits the usage of the data pre-
processing module, which is compulsory in conventional
electrical load forecasting models. Predefined conditions are
created to prune the original CART because of including
many irregular load patterns on special days, such as holidays
or the day before or after holidays, separately split by CART.
This issue could impact training the forecasting model. Keep-
ing in view this issue, we pruned the original CART with
predefined algorithms. A different DBN forecasting model
for each terminal node of CART is also built to train and
test input data. The forecasting performance of the DBN
model is better than benchmark models, which use manual
classification (MC) data based on day of the week (DoW) as
the input load data has almost the same variance each other.
Finally, an extensive comparison is carried out between our
proposed hybrid model and other baseline models to prove
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FIGURE 1. The framework of the proposed system.

the validity of our proposed hybrid electrical load forecasting
model.

C. PAPER ORGANIZATION
The structure of the article is organized using the following
sections. Section II describes the system modeling of the
proposed hybrid model. Section III gives the details for the
design of experiments. The outcomes of the experiments with
comparative analysis are also provided in Section III. The
conclusion of this manuscript is provided in Section IV.

II. SYSTEM MODELING
This section mainly describes the whole system of the pro-
posed hybrid model, including a brief description of both
CART and DBN models. Following are three steps of the
proposed framework, including mainly the classification
module, the training forecasting module, and the accuracy
measurement using test data, as exhibited in Figure 1. The
process of CART, pruned-CART and DBN regression models
are further explained in different subsections.
• At first, the classification module arranges the train-
ing and testing datasets of independent and dependent
variables based on case studies. Next, training data
is provided to the classification module to build the

training CART. The original CART is executed with
pure homogenous leaf nodes of target load data by
recognizing independent variables. The original CART
is pruned based on predefined constraints. The process
of pruned-CART continues until all leaf nodes satisfy
the requirements. After creating the final pruned-CART,
a test set, including both independent and dependent
variables, is given into this CART. The test set is then
fallen into the respective terminal node based on its
independent variables.

• The second train forecasting module builds different
DBN regression models regarding each terminal node
generated by the pruned-CART. Afterward, the training
set for each forecasting model is trained along with
adjusted parameters.

• Finally, predictions of each DBN trained model on the
whole test set are performed, and error metrics are cal-
culated on test data to measure the forecasting accuracy.

A. CLASSIFICATION AND REGRESSION TREE (CART)
CART is one of the DT models that build either regression
or a classification model in the form of a tree structure [42].
An example of CART in the framework is shown in Figure 2,
where CART is a pair, T = (N ,E), in which N is a set of
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FIGURE 2. An example of CART with six leaf nodes and five decision
nodes.

nodes and E are the edges. Suppose that there is a sample
CART as shown in Figure 1, where {l1, l2, . . . , l11} are the
nodes and {e1, e2, . . . , e10} are the edges of CART. The leaf
nodes are represented by l1, l2, l3, l4, l5 and l6, whereas an
edge is between two leaf nodes, for example, e1 = (l7, l1) is
an edge going from l7 to l1. CART depends on independent
variables to split a node into two or more sub-nodes by
minimizing the total data variance in sub-nodes.

The minimum calculation of the criteria value of all vari-
ables is determined to choose the best split variable. In our
case, the reduction in variance is fitted for the continuous data
type. Therefore, MSE is minimized to group the similar load
patterns along with the feature selection, which is expressed
mathematically as,

|MSE Dl | = MSE d l1 + . . .+MSE d lj (1)

where Dl be the set of load demand vector in node l,
Dl = d̄ lk1 , d̄

l
k2
, . . . , d̄ lki , d̄

l
ki is the load demand vector of

day ki in node l. Let dk be the vector of load demand d
on day k , d̄k = {dk,1, dk,2, . . . , dk,48} where dkj is the load
demand on the day at k period j, Dayl be the set of the
day in node l, Dayl = {k1, . . . , ki}, AVG Dl be the set
of the average load demand for each period, AVG Dl =
{AVG d l1, . . . ,AVG d l48}, where AVG d li is the average load
demand at period i, MSE Dl = {MSE d l1, . . . ,MSE d l48} be
the set of mean squared error of load demand for each period.
The MSE d lj of demand at period j in node l is given as,

MSE d lj =

∑
k∈Dayl

(AVG d lj − d
l
k,j)

2

|Dl |
(2)

B. PROCESS OF PRUNED-CART
Pruning methods aim to generally solve overfitting prob-
lems and reduce the size of the tree, which might slightly
increase the training error while decreasing the testing error.
Moreover, the pruned tree is more efficient, accurate, and
understandable than the original unpruned tree. Hence, the
pruned-CART is proposed to solve the overfitting for train-
ing the forecasting model. The original CART is recursively
checked on each leaf to see whether it satisfies the predefined
constraints. If the leaf node is not associated with them, it is
pruned or deleted from the tree. A sample-size-constraint

Algorithm 1 Pruned-Cart Algorithm
Let ei = (lj, li) be an edge going from node lj to li, α (ei) = lj be
a parent node, β (ei) = li be a child node.
INPUT: (i) The set of nodes of CART, N =

{l1, . . . , lm, lm+1, . . . , ln}
(ii) The set of edges of CART, E =

{e1, . . . , em, em+1, . . . , en−1}, (i.e., ei = (lj, li))
(iii) The set of leaf nodes of CART, L = {l1, . . . , lm}

(i.e., L ⊂ N )
(iv) The set of samples of nodes, S =

{sl1 , . . . , slm , slm+1 , . . . , sln }
OUTPUT: N, E, and L
1: procedure pruned-CART (N ,E,L, S)
2: for each l ∈ L
3: if sl < minsl
4: for each e ∈ E
5: if β (e) = l then p← β (e) end if
6: end for
7: R← ∅ (i.e., R is a set of removed edges)
8: for each e ∈ E
9: if α (e) = p then R← R \ e end if
10: end for
11: for each r ∈ R
12: E ← E \ {r}
13: L ← L \ {β(r)}
14: N ← N \ {β(r)}
15: end for
16: if |R| > 0 then L ← L ∪ {p} end if
17: end for
18: return N , E , L
19: end procedure

Algorithm 2 Sample Size Constraint Algorithm
INPUT: (i) The set of leaf nodes of CART, L = {l1, . . . , lm}
(i.e., L ⊂ N )

(ii) The set of samples of nodes, S = {sl1 ,
. . . , slm , slm+1 , . . . , sln }
OUTPUT: a Boolean value: flag
1: procedure check-sample (L, S)
2: flag← True
3: for each l ∈ L
4: if sl < sl then flag← False end if
5: end for
6: end procedure

specifies the minimum number of samples for each leaf
in the tree. In this paper, the optimum number of samples
in each leaf should have enough depending on the trained
DBN model. The step-by-step process of pruned-CART is in
algorithms I, II, and III.

Suppose that we have a CART according to Figure 3(a),
where grey boxes and yellow boxes represent leaf nodes
with and without enough samples, correspondingly. Also, let
N = {l1, . . . , l11}, E = {e1, . . . , e10}, (e.g., e1 = (l7, l1) is an
edge going from l7 to l1), L = {l1, . . . , l6} (i.e., L ⊂ N ) RT,
and S =

{
sl1 , . . . , sl11

}
= {3, 4, 15, 4, 3, 15, 7, 19, 18, 26, 44}.

For leaf node l1, according to the third step of Algorithm I,
sl1 = 3 is less than 15, so that l1 is removed from the tree
and l2 is automatically pruned based on the ninth step of the
pruned-CART due to coming from the same parent node l7.
l1 and l2 are removed from both sets L and N . The edges
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FIGURE 3. Example of the pruned-CART algorithm.

Algorithm 3 Recursive Pruned-Cart Algorithm
INPUT: (i) The set of nodes of CART, N =

{l1, . . . , lm, lm+1, . . . , ln}
(ii) The set of edges of CART, E =

{e1, . . . , em, em+1, . . . , en−1}, (i.e., ei = (lj, li))
(iii) The set of leaf nodes of CART, L = {l1, . . . , lm}

(i.e., L ⊂ N )
(iv) The set of samples of nodes, S ={

sl1 , . . . , slm , slm+1 , . . . , sln
}

1: procedure recursive-pruned-CART (N, E, L, S)
2: while l ∈ L
3: N ,E,L ← pruned-CART (N, E, L, S)
4: end while
5: if check-sample (L, S) = True end if
6: break
7: end procedure

e1 and e2 are deleted from set E . Then, node l7 becomes a
leaf node of set L. Similarly, l3 (resp. l5) and l4 (resp. l6) are
pruned because the sample of l4 (resp. l5) has less than 15, and
they have the same parent. Therefore, l8 (resp. l9) become leaf
nodes of set L and the edges e3 (resp. e5) and e4 (resp. e6) are
deleted from set E .

After pruning, the first pruned-CART is obtained,
as demonstrated in Figure 3(b), and it has five nodes and
four edges. The pruned-CART with one-layer depth is recur-
sively pruned by using recursive-pruned-CART, where the
samples of all leaf nodes are checked using a check-sample.
Ultimately, the pruned-CART is executed with three nodes
and two edges, as shown in Figure 3(c). Two leaf nodes of
pruned-CART have enough samples to train the forecasting
model.

C. DEEP BELIEF NETWORK (DBN)
The DBN model was introduced by Hinton [43]. It has
become popular in forecasting areas using real-world data
such as sunspot data, exchange rate data, electricity load
data, and generation data [43]. It is also combined with
other traditional time series models to optimize the fore-
casting performance [44]. The DBN reconstructs the inputs
with consideration to the probability and includes various

FIGURE 4. The structure of DBN Regression with RBMs.

learning modules with less complexity. It mainly consists of
the restricted Boltzmann machine (RBM) using unsupervised
learning to pre-train the network with each pair of layers.
As depicted in Figure 4, the RBM model has a double-layer
neural network containing a visible layer and a hidden layer
with Boolean hidden units.

This model is the pre-trained model with generative energy
that can learn a probability distribution over a range of input
sets. In addition, it has only a single hidden layer of hidden
units as there are no interconnections within the same layer.
Thus, it consists of symmetrical connections to a visible layer
of units. However, it still requires the formation of a bipartite
graph with its neurons. The learning process of layer-wise
configuration and the probability distribution of the hidden
layer [45] is written as,

EE (v, h) = −
∑nv

i=1
aivi −

∑nh

j=1
bjhj

−

∑nv

i=1

∑nh

j=1
hjwj,ivi (3)

P (v, h) =
e−E(v,h)∑

v
∑

h e
−E(v,h) (4)

where,
vi = the binary state of ith neuron in the visible layer,
nv = the number of neurons in the visible layer,
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hj = the binary state of the jth Boolean neuron within the
hidden layer,
nh = the number of neurons in the hidden layer,
wj,i = the weight matrix between the visible layer and the

hidden layer,
ai, bj = bias vectors for the visible and hidden layers.
The activation functions of the visible and hidden layer are

described as,

P(vi = 1|h) = σ (ai +
∑nh

j=1
wj,ihj) (5)

P(hi = 1|v) = σ (bj +
∑nv

j=1
wj,ivi) (6)

where σ refers to the sigmoid activation function [46].
The following steps describe how the DBN regression

model predicts the future daily load.
• After achieving the pruned-CART process, different
DBN models for each terminal node are created for
training.

• Both training and testing datasets are normalized to
rescale the original values of each feature between 0
and 1 by using the MinMax scaler function and then fed
into the training model. The way how to normalize the
data is indicated in Eq. 7, where xi, min(x), max(x), and
new xi represent the original value of the input feature,
the minimum value in input feature, the maximum value
in input feature, and the new rescaled value of xi.

new xi =
xi − min(x)

max (x)− min(x)
(7)

• The same training parameters are applied to train all
DBNmodels of each terminal node of the pruned-CART
in the training process.

• Testing data from Apr 2020 to Mar 2021 are predicted
to be associated with each leaf node’s respective trained
DBN i(1 <= i <= m).

• Error metrics measure the forecasting performance on
the test data.

III. DESIGN OF EXPERIMENTS, RESULTS, AND
DISCUSSIONS
The section highlights the necessary steps involved in the
design of experiments, and later, the discussions of experi-
mental results are also provided.

A. EXPERIMENTAL DATA
Electrical data recording every thirty minutes per day is
provided by the electricity generating authority of Thailand
(EGAT). The net peak load data in megawatt (MW) from
Apr 2018 to Mar 2021 is applied to train the proposed model.
Firstly, due to some outliers for specific periods, the data is
categorized using CART, which will improve the forecasting
accuracy. Figure 5 illustrates load patterns for the first week
in May 2018 to reveal the difference between weekdays and
weekends. Among weekdays, there is one holiday, so-called
International Workers’ Day, on May 1. The load fluctua-
tion on holiday reacts differently from other regular days.

FIGURE 5. Different load patterns between weekdays and weekends in
May 2018.

In general, the reaction of load patterns on Saturday is almost
like weekdays. Nevertheless, the usage of load demand on
Sunday is lower than other days, so the load pattern fluctuates
inversely.

B. DATA SEGMENTATION
The training dataset from Apr 2018 to Mar 2020 and the
testing dataset from Apr 2020 to Mar 2021 are divided for
training and testing. The whole training set is applied to build
the original CART for grouping similar load patterns with
low variance. After that, leaf nodes of this CART that do
not have enough training samples are pruned with predefined
conditions. Then, one test set is started to feed into the model.
For instance, the first leaf node from a tree is grouped only
by Monday in the training set. If the first test set is Monday,
then it is gone into the first leaf node. The following test
set is provided and falls into the associated leaf node. The
whole test set continues sliding, and the same procedure is
conducted until the end of the classification process. It is
called the walk-forward train, and the test routine is shown
in Figure 6.

FIGURE 6. Walk-forward train and test routine of the CART with DBN.

C. DATA ARRANGEMENT
The input selection is one of the crucial factors in network
modeling for forecasting purposes. Furthermore, the input
variables are dominated, varying from day to day, week
to week, or month to month. Consequently, the following
independent and dependent variables are applied to train the
CART and handle the non-linear relationship between input
and output variables. Independent variables are holiday or
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TABLE 1. Data arrangement of leaf node 1 for case I.

non-holiday (Hol), bridging holiday or non-bridging holiday
(B-Hol), day of the week (DoW), and month of the year
(MoY). Binary variables (1 or 0) are used for Hol and B_Hol.
For the DoW variable, one is for Monday, two is for Tuesday,
and so on. Another variable MoY uses 1 for Jan, 2 for Feb, 3
for Mar, and so forth. The dependent variable of CART is the
actual load demand, which is a continuous data type.

For the DBN forecasting model, yesterday’s load demand
(YDt (d−1)) from the same leaf, Hol, B_Hol, DoW, andMoY,
seasonal index (SI) is input variables to predict daily fore-
casted load demand (FDt (d)). SI for each period is calculated
by dividing the actual load demand of each period by the
average daily load demand. This paper conducts two different
cases to train both classification and forecasting models with
different variables. The former case does not include the
MoY variable, whereas the latter one includes MoY and SI.
The same duration of train and test are used for both cases.
The parameters for each DBN model are listed: (i) hidden
layer = 10, (ii) learning rate of RBM = 0.001, (iii) number
of epochs for RBM = 10, (iv) number of iterations for back-
propagation = 100, (v) batch size = 50, and (vi) activation
function = rectified linear unit (ReLU).

Alternatively, DBN’s forecasting inputs are trained for
all benchmark models, followed by the training parame-
ters of each benchmark model. The first LSTM trains with
50 epochs, 256 batch sizes, Adam optimizer, and MSE loss
function. DNN uses the ReLU function with 50 hidden lay-
ers, 100 training cycles, ten epochs, and stochastic gradi-
ent descent (SGD) for backpropagation. In ANN, a sigma
activation function, two hidden layers, 0.01 learning rate,
0.9 momentum, and 100 training cycles are applied. The
next SVM trained model used a dot kernel type and 0.001
convergence epsilon to optimize parameters. The last LR
trained model is trained with M5 prime for feature selection.

1) DATA ARRANGEMENT FOR CASE I
For the classification module, three independent variables:
Hol, B_Hol, and DoW are included to create the CART in

case I. On the other hand, the forecasting model has four
input variables such as Hol, B_Hol, DoW, and (YDt (d−1))
to forecast FD4

t (d), which represents the forecasted load
demand of four inputs. The forecasting equation for the case I
is denoted in Eq. 8, where co is a constant, and c1, . . . , c4 are
coefficients of each input. The sample data arrangement of
leaf node 1 for the case I is indicated in Table 1.

FD4
t (d) = a0 + a1YDt (d − 1)

+ a2(Hol)+ a3(B_Hol)+ a4DoW (8)

2) DATA ARRANGEMENT FOR CASE II
Case II includes four independent variables: Hol, B_Hol,
DoW, and MoY for training CART. Nonetheless, the DBN
model of case II consists of two more additional inputs,
such as MoY and SI, so case II has a total of six inputs for
forecasting. The forecasting equation of case II is indicated
in Eq. 9, where co is constant, c1, . . . , c6 are coefficients of
each input and FD6

t (d), is the forecasted load of six inputs.
The sample data arrangement of leaf node 6 for case II is
represented in Table 2.

FD6
t (d) = c0 + c1YDt (d − 1)+ c2(Hol)+ c3(B_Hol)

+ c4DoW + c5MoY + c6SI (9)

D. EXPERIMENTAL RESULTS
Mean absolute percentage error (MAPE) and MSE are calcu-
lated to measure the forecasting accuracy. These error metrics
reveal howmany units of the forecasted demand deviate from
the actual demand, contributing to Eq. 10 and Eq. 11. For both
cases, the proposed model is compared to DBN with MC.
Furthermore, the generated results of the proposed model are
compared with other standalone benchmark models, such as
LSTM, DNN, ANN, SVM, and LR. In addition, we combine
CART with all standalone benchmarking models to ensure
that the combination of classification gives better perfor-
mance on forecasting models. Five categories are regarded
as weekdays (Tuesday-Friday), weekends,Monday, holidays,
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TABLE 2. Data arrangement of leaf node 6 for case II.

FIGURE 7. CART before and after pruning in case I.

and bridging holidays to make the monthly MAPE and MSE
comparisons for each case. Before discussing MAPE and
MSE comparisons, the differences between CART before
pruning and CART after pruning for both cases are explained.

MAPE =
(

1
48

)∑48

t=1
abs

(
ADt − FDt

ADt

)
× 100% (10)

MSE =
(

1
48

)∑48

t=1
(ADt − FDt )2 (11)

1) CASE I: DIFFERENCE BETWEEN ORIGINAL CART AND
PRUNED-CART
In case I, the original CART is primarily built based
on the DoW independent variable, and holidays are also

detected separately. This CART executes twelve terminal
nodes observed at the last depth layer before pruning, as indi-
cated in Figure 7. In Figure 7, x[0], x[1], and x[2] refer to the
independent input variables such as Hol, B_Hol, and DoW,
respectively. Five nodes with the black boxes are regarded
as the final terminal nodes after pruning CART. The first
leaf node has only loaded a group of Mondays, showing
88 training days without holidays. The group of Tuesdays,
Wednesdays, Thursdays, and Fridays is included in the sec-
ond terminal node with 390 training days. The third and
fifth leaf nodes are grouped with loads of Saturdays without
holidays and Sundays with holidays. However, the load group
for holidays, including Mondays to Saturdays, is generated
at the fourth leaf node. The detail of leaf nodes on each
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FIGURE 8. CART before and after pruning in case II.

TABLE 3. Details of five leaf nodes in case I.

load group, total training days, and categories of independent
variables for the case I is revealed in Table 3. Certainly, CART
works very well for the classification module.

2) CASE II: DIFFERENCE BETWEEN ORIGINAL CART AND
PRUNED-CART
The additional MoY variable is given in the training process
of CART so that the seasonality of data is affected on a tree
in case II. There are twenty-two terminal nodes in the last
depth layer of the original CART. Only six terminal nodes
remain after pruning the tree, as shown in Figure 8. x[0],
x[1], x[2], and x[3] in the tree represent the independent
variables regarded as Hol, B_Hol, DoW, and MoY, respec-
tively. In this case, the tree is mainly classified in terms of
the MoY variable. Leaf 1 is grouped loads from Monday to
Saturday in January, amounting to 52 days. Load demands
from Mondays to Saturdays are categorized in leaf 3, leaf 4,
and leaf 5 in February-June, July-November, and December,
with 238, 250, and 45 training days. The fifth leaf node is split
into loads on holidays in the training set, with 41 days total.
The last terminal node has only Sunday’s loads from January
to December, including holidays in total days of 105. The
detail of the load groups under DoW and MoY, full training
days, and categories of independent variables for case II is
indicated in Table 4.

TABLE 4. Details of six-leaf nodes in case II.

3) MONTHLY MAPE AND MSE COMPARISONS FOR THE
CASE I
For the case I, the monthly MAPE and MSE comparisons
between DBN with CART and DBN with MC on test pre-
dictions from Apr 2020 to Mar 2021, regarding five cate-
gories, are revealed in Table 5 and Table 6 correspondingly.
In general, the proposed model provides better performance
than DBN with MC in all categories, except weekdays.
MAPEs and MSEs of October, December, and January are
high due to long holidays and special days near holidays.
The other months’ errors for weekdays ranged from 2%
to 5% in MAPE and approximately 350GW to 2500GW
in MSE. Both CART and MC perform well for the week-
end category, showing 3.11% and 3.16% of MAPE, and
790.45GW and 810.40GW in MSE. The proposed model
has a slightly lower average MAPE and MSE than DBN
with MC for both Mondays and holidays. Alternatively, the
average error percentage of MC is around twice in MAPE
and MSE more than that of CART in the category of bridging
holidays.
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TABLE 5. Monthly MAPE comparison between DBN with CART and DBN with MC for the case I in percent (%).

TABLE 6. Monthly MSE comparison between DBN with CART and DBN with MC for the case I in gigawatt (GW).

4) MONTHLY MAPE AND MSE COMPARISONS FOR CASE II
For case II, the monthly MAPE and MSE comparisons on
test predictions between CART and MC are indicated con-
cerning five categories, as presented in Table 7 and Table 8,
respectively. In this case, the performance of the proposed
model for weekdays is improved. Moreover, the BH category
indicates that CART is still better than MC, as in case I.
However, MAPEs and MSEs of CART of holidays are much
higher than MC in Apr, Jan, Feb, and Dec. It is indicated that
addingMoY and SI variables in the proposed model provides
worse forecasting performance, whereas it provides better
performance for the forecasting model alone.

5) MONTHLY MAPE AND MSE COMPARISONS BETWEEN
CASE I AND CASE II
The error comparisons using the proposed model between
case I and case II are also enumerated in Table 9 and
Table 10. The experimentation results show that additional
input features cannot improve the forecasting performance
even though it is suitable for the classification model. Total
average error percentage of F4

t (d) outperforms F6
t (d) in

all groups, except weekdays. In the category of weekdays,
MAPE performance of F4

t (d) deteriorates in comparison to
F6
t (d). In case F4

t (d), the error performance is 5.95% in
MAPE and 2916.30GW in MSE, while it is 4.65% in MAPE
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TABLE 7. Monthly MAPE comparison between DBN with CART and DBN with MC for case II in percent (%).

TABLE 8. Monthly MSE comparison between DBN with CART and DBN with MC for case II in gigawatt (GW).

and 1704.27GW in MSE for F6
t (d). Nevertheless, case I

provides the minimum of 1.66%MAPE and 204.93GWMSE
in Feb 2021, in the category ofMonday, while case II executes
the minimum 2.28% MAPE and 463.54GW MSE in Nov
2020 for the H category.

6) MAPE COMPARISON BETWEEN THE PROPOSED MODEL
AND STANDALONE FORECASTING MODELS
Comparative analysis between the proposed and benchmark
standalone forecasting models is also performed, where

MAPE is evaluated using case I. The opted benchmark mod-
els are DBN, LSTM, DNN, ANN, SVM, and LR. Four
input features and MC are used for training all benchmark
models on test predictions from Apr 2020 to Mar 2021.
From the analysis of results (exhibited in Figure 9) obtained
from detailed experiments, it is noteworthy that our proposed
model outperformed all benchmark models and achieved the
lowest average MAPE. The MAPE value is lower than the
4% for weekends, Mondays, and BH. On the other side,
weekdays and H provide high MAPE, showing just under 6%
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TABLE 9. Monthly MAPE comparison between F 4
t

(
d

)
and F 6

t
(
d

)
of the proposed model in percent (%).

TABLE 10. Monthly MSE comparison between F 4
t

(
d

)
and F 6

t
(
d

)
using DBN with CART in gigawatt (GW).

and about 7%, respectively. The DBN model is ranked as the
second model, whose MAPE performance is approximately
3% to 8% for all categories. Afterward, LSTM, DNN and
LR come with MAPE performance varying between 6% and
9%. The worst MAPE performance is depicted by ANN and
SVM models. For all categories, their MAPE performance
varies between 7% and 11%. The errors of the H cate-
gory in all benchmark models are higher than the proposed
model.

Similarly, all forecasting models for case II on test pre-
dictions from Apr 2020 to Mar 2021 are compared in five
categories, as represented in Figure 10. The proposed model
outperforms benchmark models for weekdays, at around 4%
in total average. About 6% of MAPE in CART with DBN
and DBN models is given, while other models are delivered
around 7% on weekends. In the case of Monday groups,
the proposed model has less performance than all baseline
models, except SVM. The CART with DBN is ranked as
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FIGURE 9. MAPE comparison for case I.

FIGURE 10. MAPE comparison for case II.

TABLE 11. Error performance on test prediction of case I.

a second good model in the holiday group, representing
near 12%. ANN and LR give better accuracy than others
for the BH category, although the proposed model pro-
vides a reasonable error, at approximately 4%. It is revealed
that the effect of external input factors has the drawback
for improving accuracies in the groups of holidays and
Mondays.

7) MONTHLY MAPE AND MSE COMPARISONS BETWEEN
CASE I AND CASE II
All standalone benchmark models are combined with the
CART model to measure the improvement of forecasting

TABLE 12. Error performance on test prediction of case II.

performance. Therefore, two error metrics on the whole test-
ing set are computed for all alternative hybrid and standalone
models and compared to each other. Overall, all forecast-
ing models achieve better accuracy using our approach, and
they have approximately 5% MAPE and 2500GW MSE,
as represented in Table 11 and Table 12. Regardless of
errors in the DBN standalone model in case I, the com-
bination of the CART and six forecasting models improve
the performance compared with all standalone forecast-
ing models. Consequently, the usage of the classification
algorithm could improve the performance of short-term
forecasting.

IV. CONCLUSION
In conclusion, this article focuses on the daily load
forecasting for the electric industry. The CART model is
proposed to classify the load data and handle non-linear prob-
lems between input and output variables. Moreover, grouping
similar load patterns can help the improvement in the fore-
casting model’s training process on unseen data. The DBN
forecasting model is applied for predicting the daily load
demand. The historical load data provided by EGAT is used.
Our proposed model has been compared with six standalone
forecasting models by using two error metrics. It outperforms
all benchmark models, giving a minimumMAPE of 0.462%.
Additionally, the CART is combined with all forecasting
models and measured accuracies. Consequently, the combi-
nation of classification and forecasting models ensures the
improvement in the accuracy performance on STLF. Besides,
the CART provides the insight classification of seasonality
effect better than MC.

APPENDIX
See Table 13.

VOLUME 9, 2021 152239



P. P. Phyo, C. Jeenanunta: Daily Load Forecasting Based on Combination of CART and DBN

TABLE 13. Literature review summary of classification on electricity load data Units for Magnetic Properties.

FUTURE WORK
In the future, we will extend our combination approach using
other advanced DL models, such as MLP, LSTM, CNN,
or hybrid methods combining two or more DL models.
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