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ABSTRACT Nonlinearity is ubiquitous in practical industrial production, so this paper investigates the
problems of modeling, H∞ control and stabilization for a class of nonlinear networked cascade control
systems (NCCSs) under an event-triggered scheme, which makes the system have more practical application
value. Firstly, aiming at a kind of typical nonlinear system in industrial production, a newmathematicalmodel
is established by adding networked cascade control system and event-triggered scheme. The collaborative
design method of primary and secondary controller parameters and event-triggered parameters is completed
utilizing linear matrix inequality (LMI). Secondly, based on ensuring its stability, combined with H∞
control, the system’s disturbance is suppressed, making the system more universal. Finally, the feasibility
and effectiveness of the proposed method in the nonlinear networked cascade control system has verified by
a marine boiler liquid level cascade control system.

INDEX TERMS Networked cascade control systems, nonlinearity, event-triggered scheme, stability.

I. INTRODUCTION
Due to the sustained development and maturity of networked
control systems (NCSs) [1] in recent decades, it has received
widespread attention from scholars. It uses the network signal
to realize the control. Modularization, real-time control, and
the low cost of the system are its advantages. Therefore,
networked control systems have been applied widely in actual
industrial production. However, many papers ignore some
nonlinear terms when modeling based on the actual system,
such as: [1], [2]. The linear system constructed in this way
cannot be applied to most practical systems, and has a nar-
row application field. Therefore, when designing the control
system, it will be more practical to add the possible nonlinear
system in production.

Nonlinear factors are inevitable in industrial process con-
trol. Therefore, the research on nonlinear networked Control
systems has important practical significance. Many out-
standing scholars have made many achievements in theory.
On the one hand, the system model and stability are stud-
ied for the delay of network control. For example, in [2],
the network delay is defined as nonlinear to establish the
model. In contrast, in [3], the network delay is described
by the probability density function. In addition, some schol-
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ars have studied the generalized systems [4]. On the other
hand, in order to deal with different control objects, different
control methods are added, such as PID control [5], [6],
sliding mode control [7], [8], adaptive control [9], [10],
robust control [11], [12] and predictive control [13]. Accord-
ing to the other maintenance, or performance requirements,
observers [14] and filters [15] are designed. However, the
above papers are all aimed at the single closed-loop nonlinear
networked control system. However, the cascade structure is
rarely mentioned, so the cascade structure is added to the
nonlinear system in this paper.

Cascade control System (CCS) [16] is a kind of control
structure with unique advantages. When the primary loop
has a strong disturbance, the secondary loop can quickly
suppress the disturbance. With the primary loop, the system
can achieve the desired output. Networked cascade control
systems [17] combines most of the advantages of CCSs and
NCSs, which can eliminate the interference in the system
in time and quickly, and at the same time, improve the
efficiency of the system. However, the single closed-loop
structure of the networked control system is easier to study,
and the addition of the cascade structure further complicates
the model. That makes theoretical research very difficult.
However, the addition of the cascade structure makes the
model more complicated, making theoretical research very
difficult.
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Regarding the nonlinear term in the system, scholars have
studied a lot. Among them, the Lurie system is a widely exist-
ing nonlinear system. In Lurie system, the nonlinear system
is divided into two parts, one part is a linear time-invariant
system, and the other part is a nonlinear system that satisfies
the sector constraint, and its sector boundary can be selected
freely. In actual industrial production, the controlled index
changes nonlinearly due to the actual influence of various
factors. As long as the appropriate fan-shaped boundary is
selected, the Lurie system can be used for simulation. Since
1944, Lurie has proposed the system. Its research has been
in progress. For example, in [18], the state of the chaotic
Lurie system is estimated, and a new communication channel
is established and verified by Chua’s circuit. In [19], the
absolute stability of Lurie nonlinear systems with both sector
and slope constraints is studied. The paper [20] combines
Lurie system with networked control system, and gives the
stability condition. Furthermore, the paper [21] adds robust
control, and its stability is verified by simulation. However,
most scholars focus on the stability of the Lurie system
structure itself. Few people combine it with the networked
cascade control system.

On the other hand, over-saturated signals are more likely to
cause packet loss and disorder, which can lead to instability
of the control system. In order to reduce the transmission
frequency of the signal in the network, the event-triggered
control method [22]–[24] is proposed. When the signal is
filtered by the event-triggered controller, the signal that
is meaningful to the system control will be sent, which
reduces the transmission pressure of the network. How-
ever, under the conditions of some trigger controls, when
the time interval for detecting the system state is minimal,
it is easy to happen the unreasonable situation of trigger-
ing an infinite number of times in a limited time, that is,
the Zeno phenomenon [25], [26]. To this end, many schol-
ars have proposed a discrete state event-triggered condition
for defining sampling time [27], [28], thereby avoiding this
phenomenon. In addition, some scholars have proposed dif-
ferent event-triggered scheme to deal with some special sit-
uations [29]–[32]. In order to allow the control system to
operate stably, and avoid failures caused by network pres-
sure, the event-triggered scheme is also added. The selected
event-triggered conditions in this paper can avoid the Zeno
phenomenon.

In the process of industrial production, there will be control
links for specific indicators. Let this index stabilize at the
expected value, and the control system should have the advan-
tages of anti-disturbance, optimized resource utilization, and
easy maintenance as much as possible. For unavoidable non-
linear factors, idealized considerations sometimes cannot be
applied to actual production. This paper is based on a class
of nonlinear NCCSs, add an event-triggered scheme and
H∞ control, completing the collaborative design of the pri-
mary state feedback controller and secondary one, and obtain
event-triggered parameters. The main contributions of this
paper are summarized as follows:

1) To the best of our knowledge, few scholars combine
nonlinear term and event-triggered scheme with networked
cascade control systems simultaneously. This paper is the first
time to combine Lurie nonlinear cascade control system and
event-triggered scheme with networked control.

2) A new model which takes nonlinear terms and event-
triggered control is constructed. This model can describe
the actual industrial production process more closely and
practically. And the system has all the advantages of
event-triggered control and cascade structure.

3) In the presence or absence of disturbances, the co-design
methods of the primary and secondary controller parameters
and event-triggered parameters are obtained simultaneously.
It can be applied to industrial process control systems with
the same structure.

4) The event-triggered scheme and H∞ control of the sys-
tem is considered. The obtained results can be further applied
to the industrial production of this kind of nonlinear NCCSs
model.

The rest of this paper mainly describes the following con-
tents: In section II, the model of nonlinear NCCS is estab-
lished. In section III, the sufficient conditions of the system
without disturbance are obtained, and the co-design method
of controller parameters and event-triggered parameters is
given. In section IV, based on the previous section, we com-
plete theH∞ control with disturbance. In section V, a simula-
tion example of marine level boiler with nonlinear condition
is selected to verify the effectiveness of the proposed method.
Section VI is the conclusion.

II. MODELING OF NONLINEAR NCCS
A control system configuration diagram is shown in Figure 1.
The event-triggered scheme is introduced into nonlinear
NCCSs. In the networked cascade system, the response speed
of the inner loop is fast and the communication channel
is short, so the network delay can be ignored. Therefore,
we construct a model in which the network is in the outer
loop. The secondary plant in the outer loop is regarded as
nonlinear. An event generator is added between the primary
sensor and the primary controller to decide whether to trans-
mit the new sampling signal to the primary controller.

FIGURE 1. Configuration diagram of event-triggered controller of
nonlinear network cascade control system.

P1 and P2 are two plants. C1 and C2 are the primary
controller and secondary controller. S1 is the primary sensor
and S2 is the secondary one. A is actuator. It can be seen from
the figure that the output of P2 is the input of P1, the output
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of C1 is the set value of C2, and the states of P1 and P2 are
respectively transmitted to C1 and C2 through S1 and S2.

First, consider the primary controlled object, as follows

P1 :

{
ẋ1(t) = A1x1(t)+ B1y2(t)
y1(t) = C1x1(t)+ C31(t).

(1)

x1(t) is the state vector of the primary plant, y1(t) is its output,
1(t) is a finite disturbance that satisfies the L2[0,∞). A1, B1,
C1 and C3 are known matrices.

Considering the following secondary plant, which is non-
linearity and can be described as

P2 :

{
ẋ2(t) = f (x1(t), x2(t))+ B41(t)
y2(t) = C2x2(t)+ C41(t).

(2)

x2(t) is the state vector of the secondary plant, and y2(t) is
its output, f (x1(t), x2(t)) satisfies Lurie system and can be
expressed as a linear system part and a nonlinear part, so the
secondary plant can be described as

P2 :

{
ẋ2(t) = A2x2(t)+ B2u2(t)+ B3w(t)+ B41(t)
y2(t) = C2x2(t)+ C41(t).

(3)

In this formula, u2(t) is the output of the secondary con-
troller, A2, B2, B3, B4, C2 and C4 are constant matrices with
appropriate dimensions, and the nonlinear term w(t) can be
expressed as−φ(t, y1(t)). φ(t, y1(t)) is piecewise continuous
on t and satisfies local Lipschitz condition on y1(t), and
φ(t, 0) = 0, then the following conditions are satisfied for
t ≥ 0 and y1(t)

[φ(t, y1(t))− N1y1(t)]T [φ(t, y1(t))− N2y1(t)] ≤ 0 (4)

where N2 − N1 > 0, that is, the nonlinear function satisfies
the sector area [N1,N2], and N = N2 − N1, a special
constraint condition of the sector of the nonlinear function
can be obtained as

φT (t, y1(t)) [Ny1(t)− φ(t, y1(t))] ≤ 0. (5)

Considering that in practical application, the network gen-
erally exists in the primary loop. It is assumed that there is
no time delay in the secondary loop, and the time delay only
exists in the primary loop. The delay is time-varying and may
be larger than one sampling period.

In this paper, primary controller u1(t) and secondary con-
troller u2(t) are state feedback controllers. Considering the
network transmission delay of the primary loop, it can be
expressed as

u1(t) = K1x1(tkh)
u2(t) = u1(t)+ K2x2(t)
t ∈ [tkh+ τk , tk+1h+ τk+1]

(6)

where τk is the time-varying delay and bounded in the net-
work communication.

Define a function τ (t) which is

t − τ (t) ∈ [tkh, tk+1h)

where t ∈ [tkh+ τk , tk+1h+ τk+1), then according to the
above formula, we can choose τ (t) as

0 ≤ τk ≤ τ (t) ≤ τM (7)

where τM denotes the upper delay bounds. It means for any
t ∈ [tkh+ τk , tk+1h+ τk+1), there exists the corresponding
τ (t) ∈ [0, τM ] to make t − τ (t) ∈ [tkh, tk+1h) hold.
Combine the event-triggered scheme with cascade net-

worked cascade control system, which will select the signal
according to the following conditions and send it to the
controller.

[x1(ikh)− x1(tkh)]T � [x1(ikh)− x1(tkh)]

≤ σxT1 (ikh)�x
T
1 (ikh) (8)

where � > 0, σ ∈ [0, 1), x1(ikh) is the current sampling
signal at the moment of ikh, where ikh = tkh + jh, j =
1, 2, · · · , and x1(tkh) is the last signal sent at the time of
triggering tkh.
Remark 1: Only when the transmitted signal x1(ikh) sat-

isfies inequality (8), the data will be sent to the controller.
Therefore, this can reduce the times of signal transmission
in the network. And the trigger condition (8) can effectively
avoid unlimited triggers in a short time, which means the
Zeno phenomenon can be avoided.
Remark 2: It is assumed that the system is completely

observable, and there is no data packet loss andmis-sequence.
Define ek (t) as the difference between the current sampled

signal and the last successfully sent signal, that is, ek (t) =
x1(ikh) − x1(tkh). Therefore, the event-triggered scheme in
this paper can be obtained

eTk (t)�ek (t) ≤ σx
T
1 (t − τ (t))�x1(t − τ (t)) (9)

where � > 0, σ ∈ [0, 1).
When the event-triggered scheme controller is applied to

the primary loop of the cascade control system connected
through the network, the closed-loop system corresponding
to system (1) and (2) can be expressed

ẋ1(t) = A1x1(t)+ B1C2x2(t)+ B1C41(t)
ẋ2(t) = (A2 + B2K2)x2(t)+ B2K1x1(t − τ (t))

+B2K1ek (t)+ B3w(t)+ B41(t)
y1(t) = C1x1(t)+ C31(t)
y2(t) = C2x2(t)+ C41(t)
u1(t) = K1x1(t − τ (t))+ K1ek (t)
u2(t) = u1(t)+ K2x2(t).

(10)

In order to design the corresponding controller, the follow-
ing lemma is needed.
Lemma 1 ([33]): For constant matrix X3 and symmetric

matrix X1,X2 with appropriate dimensions, then the inequal-

ity
[
X1 XT3
X3 X2

]
< 0, if one of the following two conditions is

true

1)X2 < 0, X1 − X3X
−1
2 XT3 < 0,

2)X1 < 0, X2 − XT3 X
−1
1 X3 < 0.
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III. DESIGN OF NONLINEAR NCCS EVENT-TRIGGED
CONTROLLER WITHOUT DISTURBANCE
This paper analyzes the stability of the networked cascade
control system and designs the corresponding primary con-
troller and secondary one based on event-triggered control.
It is assumed that there is no disturbance, and we will give
the sufficient condition of stability for nonlinear NCCS (10)
in this section.
Theorem 1: For the known parameters σ and τM , and

the corresponding parameter K1, K2 of the primary and
secondary controller, if there exists matrices Y ,W with
proper dimension and symmetric positive definite matrices
Z ,P,Q,R, �, such that inequality (11) holds

ϕ11 ϕ12 ϕ13 ϕ14 ϕ15 ϕ16 ϕ17
∗ ϕ22 ϕ23 0 0 ϕ26 ϕ27
∗ ∗ ϕ33 ϕ34 0 0 0
∗ ∗ ∗ ϕ44 0 0 0
∗ ∗ ∗ ∗ ϕ55 0 0
∗ ∗ ∗ ∗ ∗ ϕ66 0
∗ ∗ ∗ ∗ ∗ ∗ ϕ77


< 0 (11)

where

ϕ11 = PA2 + AT2 P+ PB2K2 + KT
2 B

T
2 P,

ϕ12 = CT
2 B

T
1 Z + Y , ϕ22 = ZA1 + AT1 Z + Q,

ϕ13 = PB2K1 − Y , ϕ23 = W T ,

ϕ33 = −Q−W T
−W + σ�T

+ σ�, ϕ14 = −τMY ,

ϕ34 = −τMW , ϕ44=−τMR, ϕ15=PB2K1,

ϕ55 = −�−�
T ,

ϕ16 = PB3, ϕ26 = −CT
1 N

T , ϕ66 = −2I ,

ϕ17 = τ (t)CT
2 B

T
1 R, ϕ27 = τMAT1 R, ϕ77 = −τMR.

Proof: The Lyapunov function V (t) is defined as fol-
lows, where P,Z ,R,Q are symmetric and positive definite
matrices.

V (t) = V1(t)+ V2(t)+ V3(t)+ V4(t) (12)

where

V1(t) = xT1 (t)Zx1(t),V2(t) =
∫ t

t−τ (t)
xT1 (s)Qx1(s)ds,

V3(t) =
∫ 0

−τ (t)

∫ t

t+s
ẋT1 (v)Rẋ1(v)dvds, V4(t)=xT2 (t)Px2(t).

Taking the derivative of V (t), we can obtain:

V̇ (t) = V̇1(t)+ V̇2(t)+ V̇3(t)+ V̇4(t) (13)

where

V̇1(t)

= 2xT1 (t)Z (A1x1(t)+ B1C2x2(t))

=
1
τ (t)

∫ t

t−τ (t)
[2xT1 (t)ZA1x1(t)+ 2xT2 (t)C

T
2 B

T
1 Zx1(t)]dv,

V̇2(t)

= xT1 (t)Qx1(t)− x
T
1 (t − τ (t))Qx1(t − τ (t))

=
1
τ (t)

∫ t

t−τ (t)
[xT1 (t)Qx1(t)−x

T
1 (t−τ (t))Qx1(t−τ (t))]dv,

V̇3(t)

= τ (t)ẋT1 (t)Rẋ1(t)−
∫ t

t−τ (t)
ẋT1 (v)Rẋ1(v)dv

= τ (t)ẋT1 (t)R[A1x1(t)+ B1C2x2(t)]−
∫ t

t−τ (t)
ẋT1 (v)Rẋ1(v)dv

=
1
τ (t)

∫ t

t−τ (t)
[τ (t)xT1 (t)A

T
1 RA1x1(t)

+ 2τ (t)xT2 (t)C
T
2 B

T
1 RA1x1(t)

+ τ (t)xT2 (t)C
T
2 B

T
1 RB1C2x2(t)− τ (t)ẋT1 (v)Rẋ1(v)]dv,

V̇4(t)

= 2xT2 (t)P[(A2 + B2K2)x2(t)+ B2K1x1(t − τ (t))

+B2K1ek (t)+ B3w(t)]

= 2xT2 (t)(PA2 + PB2K2)x2(t)+ 2xT2 (t)PB2K1x1(t)

−2xT2 (t)PB2K1

∫ t

t−τ (t)
ẋ1(v)dv

+ 2xT2 (t)PB2K1ek (t)+ 2xT2 (t)PB3w(t)

= 2xT2 (t)(PA2 + PB2K2)x2(t)+ 2xT2 (t)PB2K1x1(t)

+2xT2 (t)(Y − PB2K1)
∫ t

t−τ (t)
ẋ1(v)dv

+2xT1 (t − τ (t))W
∫ t

t−τ (t)
ẋ1(v)dv− [2xT2 (t)Y

×

∫ t

t−τ (t)
ẋ1(v)dv

+2xT1 (t − τ (t))W
∫ t

t−τ (t)
ẋ1(v)dv]

+ 2xT2 (t)PB2K1ek (t)+ 2xT2 (t)PB3w(t)

= 2xT2 (t)(PA2 + PB2K2)x2(t)+ 2xT2 (t)Yx1(t)

+2xT2 (t)(PB2K1 − Y )x1(t − τ (t))

+ 2xT1 (t)W
T x1(t − τ (t))

−2xT1 (t − τ (t))Wx1(t − τ (t))− [2xT2 (t)Y
∫ t

t−τ (t)
ẋ1(v)dv

+2xT1 (t − τ (t))W
∫ t

t−τ (t)
ẋ1(v)dv]

+ 2xT2 (t)PB2K1ek (t)+ 2xT2 (t)PB3w(t)

=
1
τ (t)

∫ t

t−τ (t)
[2xT2 (t)(PA2 + PB2K2)x2(t)+ 2xT2 (t)Yx1(t)

+2xT2 (t)(PB2K1 − Y )xT1 (t − τ (t))

+2xT1 (t)W
T x1(t − τ (t))− 2xT1 (t − τ (t))Wx1(t − τ (t))

−2τ (t)xT2 (t)Y ẋ1(v)− 2τ (t)xT1 (t − τ (t))Wẋ1(v)

+ 2xT2 (t)PB2K1ek (t)+ 2xT2 (t)PB3w(t)]dv.

From the formulas (6), we can define

l1(t) = σxT1 (t − τ (t))�x1(t − τ (t))− e
T
k (t)�ek (t) ≥ 0.

(14)
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From the formulas (5), we can define

l2(t) = −xT1 (t)C
T
1 N

Tw(t)− wT (t)Iw(t) ≥ 0. (15)

Using (13), (14), (15), we can obtain

V̇ (t) ≤ V̇1(t)+ V̇2(t)+ V̇3(t)+ V̇4(t)+ 2l1(t)+ 2l2(t).

(16)

Define a matrix

ζ T (t, v)= [ xT2 (t) xT1 (t) xT1 (t − τ (t)) ẋT1 (v) eTk (t) wT (t) ].

Separate this matrix in formula (16), and define 9 as a
symmetric matrix, then we can obtain

V̇ (t) =
1
τ (t)

∫ t

t−τ
[ξT (t, v)9ξ (t, v)]dv,

9 =


ϕ11 ϕ12 ϕ13 −τ (t)Y PB2K1 PB3
∗ ϕ22 W T 0 0 −CT

1 N
T

∗ ∗ ϕ33 −τ (t)W 0 0
∗ ∗ ∗ −τ (t)R 0 0
∗ ∗ ∗ ∗ −�−�T 0
∗ ∗ ∗ ∗ ∗ −2I


(17)

where

ϕ11 = τ (t)CT
2 B

T
1 RB1C2 + PA2 + AT2 P+ PB2K2 + KT

2 B
T
2 P,

ϕ12 = CT
2 B

T
1 Z + τ (t)C

T
2 B

T
1 RA1 + Y ,

ϕ22 = ZA1 + AT1 Z + Q+ τ (t)A
T
1 RA1, ϕ13 = PB2K1 − Y ,

ϕ33 = −Q−W T
+W + σ�T

+ σ�.

According to Lemma 1, 9 < 0 in Equation (17) is
equivalent to the following inequality (18).

ϕ11 ϕ12 ϕ13 ϕ14 ϕ15 ϕ16 ϕ17
∗ ϕ22 ϕ23 0 0 ϕ26 ϕ27
∗ ∗ ϕ33 ϕ34 0 0 0
∗ ∗ ∗ ϕ44 0 0 0
∗ ∗ ∗ ∗ ϕ55 0 0
∗ ∗ ∗ ∗ ∗ ϕ66 0
∗ ∗ ∗ ∗ ∗ ∗ ϕ77


<0 (18)

where

ϕ11 = PA2 + AT2 P+ PB2K2 + KT
2 B

T
2 P,

ϕ12 = CT
2 B

T
1 Z + Y , ϕ22 = ZA1 + AT1 Z + Q,

ϕ13 = PB2K1 − Y , ϕ23 = W T ,

ϕ33 = −Q−W T
−W + σ�T

+ σ�, ϕ14 = −τMY ,

ϕ34 = −τMW , ϕ44 = −τMR, ϕ15 = PB2K1,

ϕ55 = −�−�
T , ϕ16=PB3, ϕ26=−CT

1 N
T , ϕ66=−2I ,

ϕ17 = τ (t)CT
2 B

T
1 R, ϕ27 = τMAT1 R, ϕ77 = −τMR.

Thus, if the inequality (18) holds, then the system (10)
is asymptotically stable in a given sector interval, and the
theorem is proved.

According to Theorem 1, we give the design method of
primary controller and secondary one of the system (10).

Theorem 2: For the given parameters σ and τM > 0,
if there are matrices of appropriate dimensions, W ,Y and
symmetric positive definite matrices P,Z ,R,Q, �, such that
the following inequality (19) holds, then the system (10) is
asymptotically stable, and the expected gain matrix of the
primary controller can be obtained:

K1 = X̃1Z̃−1,

and the gain matrix of the secondary controller is

K2 = X̃2P̃−1.

ϕ̃11 ϕ̃12 ϕ̃13 ϕ̃14 ϕ̃15 ϕ̃16 ϕ̃17
∗ ϕ̃22 ϕ̃23 0 0 ϕ̃26 ϕ̃27
∗ ∗ ϕ̃33 ϕ̃34 0 0 0
∗ ∗ ∗ ϕ̃44 0 0 0
∗ ∗ ∗ ∗ ϕ̃55 0 0
∗ ∗ ∗ ∗ ∗ ϕ̃66 0
∗ ∗ ∗ ∗ ∗ ∗ ϕ̃77


< 0

(19)

where

ϕ̃11 = A2P̃+ P̃AT2 + B2X̃2 + X̃
T
2 B

T
2 , ϕ̃12 = P̃CT

2 B
T
1 + Ỹ1,

ϕ̃22 = A1Z̃ + Z̃AT1 + Q̃, ϕ̃13 = B2X̃1 − Ỹ1, ϕ̃23 = W̃1,

ϕ̃33 = −Q̃− W̃1 − W̃ T
1 + σ�̃+ σ�̃

T , ϕ̃14 = −τM Ỹ2,

ϕ̃34 = −τM W̃2, ϕ̃44=−τM R̃, ϕ̃15=B2X̃1,

ϕ̃55 = −�̃− �̃
T ,

ϕ̃16 = B3, ϕ̃26 = −Z̃CT
1 N

T , ϕ̃66 = −2I ,

ϕ̃17 = τM P̃CT
2 B

T
1 , ϕ̃27 = τM Z̃AT1 , ϕ̃77 = −τM R̃.

Proof: Define a matrix 5 = diag{P−1,Z−1,Z−1,R−1,
Z−1, I ,R−1}. According to Theorem 1, pre- and post-
multiplying (11) by 5, so we can obtain

ϕ̃11 ϕ̃12 ϕ̃13 ϕ̃14 ϕ̃15 ϕ̃16 ϕ̃17
∗ ϕ̃22 ϕ̃23 0 0 ϕ̃26 ϕ̃27
∗ ∗ ϕ̃33 ϕ̃34 0 0 0
∗ ∗ ∗ ϕ̃44 0 0 0
∗ ∗ ∗ ∗ ϕ̃55 0 0
∗ ∗ ∗ ∗ ∗ ϕ̃66 0
∗ ∗ ∗ ∗ ∗ ∗ ϕ̃77


< 0,

(20)

where

ϕ̃11 = A2P−1 + AT2 P
−1
+ B2K2P−1 + P−1K2BT2 ,

ϕ̃12 = P−1CT
2 B

T
1 + P

−1YZ−1,

ϕ̃22 = A1Z−1 + Z−1AT1 + Z
−1QZ−1,

ϕ̃13 = B2K1Z−1 − P−1Y1Z−1, ϕ̃23 = Z−1W1Z−1,

ϕ̃33 = −Z−1QZ−1 − Z−1W1Z−1 − Z−TW T
1 Z
−T

+σZ−1�Z−1 + σZ−T�Z−T ,

ϕ̃14 = −τMP−1YR−1, ϕ̃34 = −τMZ−1WR−1,

ϕ̃44 = −τMR−1,

ϕ̃15 = B2K1Z−1, ϕ̃55 = −Z−1�Z−1 − Z−1�TZ−1,

ϕ̃16 = B3,
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ϕ̃26 = −Z−1CT
1 N

T , ϕ̃66 = −2I , ϕ̃17 = τMP−1CT
2 B

T
1 ,

ϕ̃27 = τMZ−1AT1 , ϕ̃77 = −τMR−1.

Define P̃ = P−1, R̃ = R−1, Z̃ = Z−1,
Q̃ = Z−1QZ−1, X̃1 = K1Z−1, X̃2 = K2P−1, �̃ =

Z−1�Z−1, Ỹ1 = P−1YZ−1, Ỹ2 = P−1YR−1, W̃1 =

Z−1WZ−1, W̃2 = Z−1W TR−1.
If there are matrices P,Z ,R,Q, �,W ,Y with appropriate

dimensions, so that the inequality (19) holds, then the system
(10) is asymptotically stable, and the expected gain matrices
of the primary controller and secondary controller are K1 =

X̃1Z̃−1 and K2 = X̃2P̃−1, respectively. This completes the
proof.
Remark 3: Scholars have completed the work of only con-

sidering event-triggered control or only considering nonlinear
systems, but these two problems are considered in networked
cascade control system in this paper. The above part considers
the stability of the system without disturbance. But zero
disturbance is a special case of disturbance. Therefore, when
the disturbance is not constant zero, the specific influence of
the disturbance on the system should be considered.

IV. DESIGN OF NONLINEAR NCCS EVENT-TRIGGED
CONTROLLER WITH DISTURBANCE
In the previous section, we studied the sufficient condition
of stability for nonlinear NCCS (10) without disturbance.
We presented sufficient conditions for system stability and
the controller design method through Theorem 1 and Theo-
rem 2. This section will study the stability problem and H∞
control of NCCS (10) with disturbances.

Under the zero-initial condition, if the constant γ > 0,
the output of the primary controller y1(t) and the disturbance
1(t) satisfy the H∞ norm bounded constraint ‖y1(t)‖2 ≤
γ ||1(t)||2, and1(t) boundary satisfies the L2 norm bounded,
that is, 1(t) ∈ L2[0,∞). It ensures that the system (10) is
stable under the H∞ performance index γ .
Using calculation methods such as Theorem 1 and The-

orem 2, we can obtain sufficient conditions and controller
design methods for system stability in the presence of distur-
bances. The corresponding theorem proposed is as follows.
Theorem 3: For the known parameters σ, τM and γ >

0, and the corresponding parameter K1,K2, of the primary
and secondary controller, if there exists matrices Y ,W with
proper dimension and symmetric positive definite matrices
Z ,P,Q,R, �, such that inequality (21) holds



ϕ11 ϕ12 ϕ13 ϕ14 ϕ15 ϕ16 ϕ17 ϕ18 0
∗ ϕ22 ϕ23 0 0 ϕ26 ϕ27 ϕ28 ϕ29
∗ ∗ ϕ33 ϕ34 0 0 0 0 0
∗ ∗ ∗ ϕ44 0 0 0 0 0
∗ ∗ ∗ ∗ ϕ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ ϕ66 ϕ67 0 0
∗ ∗ ∗ ∗ ∗ ∗ ϕ77 ϕ78 ϕ79
∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ99


< 0, (21)

where

ϕ11 = PA2 + AT2 P+ PB2K2 + KT
2 B

T
2 P,

ϕ12 = CT
2 B

T
1 Z + Y , ϕ22 = ZA1 + AT1 Z + Q,

ϕ13 = PB2K1 − Y ,

ϕ23 = W T , ϕ33 = −Q−W T
−W + σ�T

+ σ�,

ϕ14 = −τMY , ϕ34 = −τMW , ϕ44 = −τMR,

ϕ15 = PB2K1,

ϕ55 = −�−�
T , ϕ16 = PB3, ϕ26 = −CT

1 N
T ,

ϕ66 = −2I ,

ϕ17 = PB4, ϕ27 = ZB1C4, ϕ76 = −NC3, ϕ77 = −γ
2I ,

ϕ18 = τMCT
2 B

T
1 R, ϕ28 = τMAT1 R, ϕ78 = τMC

T
4 B

T
1 R,

ϕ88 = −τMR, ϕ29 = CT
1 , ϕ79 = CT

3 , ϕ99 = −I .

Proof: Due to the addition of disturbance, the equal-
ity (14) can be rewritten as

l2(t) = −xT1 (t)C
T
1 N

Tw(t)

−wT (t)NC31(t)− wT (t)Iw(t) ≥ 0. (22)

Select the same Lyapunov function as in Theorem 1 and
derive it, where P,Z ,R,Q are symmetric matrices and are
positive definite matrices.

V̇ (t) ≤ V̇1(t)+ V̇2(t)+ V̇3(t)+ V̇4(t)+ 2l1(t)+ 2l2(t).

(23)

For the system (10) with disturbance, define a function

J =
∫
∞

0

[
yT1 (t)y1(t)− γ

21T (t)1(t)
]
dt

Assuming yT1 (t)y1(t) − γ
21T (t)1(t) + V̇ (t) = ξTk ϒξk ,

then for all nonzero matrices ξk , if γ > 0, then we can obtain
J ≤ ξTk ϒξk . Define 9̃ as a symmetric matrix, according to
formula (22), it can be rewritten in the following form

J =
∫
∞

0

[
yT1 (t)y1(t)− γ

21T (t)1(t)+ V̇ (t)
]
dt

−

∫
∞

0
V̇ (t)dt

=

∫
∞

0
ξT (t, v)9̃ξ (t, v)dt − V (∞)+ V (0). (24)

The inequality 9̃ < 0, and can be described as

9̃=



ϕ11 ϕ12 ϕ13 ϕ14 ϕ15 ϕ16 ϕ17
∗ ϕ22 ϕ23 0 0 ϕ26 ϕ27
∗ ∗ ϕ33 ϕ34 0 0 0
∗ ∗ ∗ ϕ44 0 0 0
∗ ∗ ∗ ∗ ϕ55 0 0
∗ ∗ ∗ ∗ ∗ ϕ66 ϕ67
∗ ∗ ∗ ∗ ∗ ∗ ϕ77


<0,

(25)

where

ϕ11 = τ (t)CT
2 B

T
1 RB1C2 + PA2 + AT2 P+ PB2K2 + KT

2 B
T
2 P
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ϕ12 = CT
2 B

T
1 Z + τ (t)C

T
2 B

T
1 RA1 + Y ,

ϕ22 = ZA1 + AT1 Z + Q+ τ (t)A
T
1 RA1 + C

T
1 C1,

ϕ13 = PB2K1 − Y ,

ϕ23 = W T , ϕ33 = −Q−W T
+W + σ�T

+ σ�,

ϕ14 = −τMY , ϕ34 = −τMW , ϕ44 = −τMR,

ϕ15 = PB2K1,

ϕ55 = −�−�
T , ϕ16 = PB3, ϕ26 = −CT

1 N
T , ϕ66 = −2I ,

ϕ17 = τ (t)CT
2 B

T
1 RB1C4 + PB4,

ϕ27 = ZB1C4 + τ (t)AT1 B
T
1 RC4 + CT

1 C3, ϕ67 = −NC3,

ϕ77 = τ (t)CT
4 B

T
1 RB1C4 + CT

3 C3 − γ
2I .

According to Lemma 1, the inequality 9̃ < 0 can be
transformed into the following inequality

ϕ11 ϕ12 ϕ13 ϕ14 ϕ15 ϕ16 ϕ17 ϕ18 0

∗ ϕ22 ϕ23 0 0 ϕ26 ϕ27 ϕ28 ϕ29

∗ ∗ ϕ33 ϕ34 0 0 0 0 0

∗ ∗ ∗ ϕ44 0 0 0 0 0

∗ ∗ ∗ ∗ ϕ55 0 0 0 0

∗ ∗ ∗ ∗ ∗ ϕ66 ϕ67 0 0

∗ ∗ ∗ ∗ ∗ ∗ ϕ77 ϕ78 ϕ79

∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ88 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ99


< 0, (26)

where

ϕ11 = PA2 + AT2 P+ PB2K2 + KT
2 B

T
2 P,

ϕ12 = CT
2 B

T
1 Z + Y , ϕ22 = ZA1 + AT1 Z + Q,

ϕ13 = PB2K1 − Y ,

ϕ23 = W T , ϕ33 = −Q−W T
−W + σ�T

+ σ�,

ϕ14 = −τMY , ϕ34 = −τMW , ϕ44 = −τMR, ϕ15 = PB2K1,

ϕ55 = −�−�
T , ϕ16 = PB3, ϕ26 = −CT

1 N
T ,

ϕ66 = −2I ,

ϕ17 = PB4, ϕ27 = ZB1C4, ϕ67 = −NC3, ϕ77 = −γ
2I ,

ϕ18 = τMCT
2 B

T
1 R, ϕ28 = τMAT1 R, ϕ78 = τMC

T
4 B

T
1 R,

ϕ88 = −τMR, ϕ29 = CT
1 , ϕ79 = CT

3 , ϕ99 = −I .

Since 9̃ < 0 and V (0) = 0 under zero initial condi-
tion, and limt→∞ V (t) ≥ 0, J < 0 is verified by LMI.
This means that the system (9) has an H∞ performance
index γ . As a result, if the inequality (25) is true, then
the system (9) is asymptotically stable in the known sector
interval.

According to Theorem 3, we give the design method of the
primary controller and secondary one of the system (9) with
disturbance.

Theorem 4: For the given parameters σ, τM > 0 and γ > 0,
if there are matrices of appropriate dimensions, W ,Y and
symmetric positive definite matrices P,Z ,R,Q, �, such that
the following inequality (26) holds, then the system (10) is
asymptotically stable, and the expected gain matrix of the
primary controller can be obtained

K1 = X̃1Z̃−1,

and the gain matrix of the secondary controller is

K2 = X̃2P̃−1.

ϕ̃11 ϕ̃12 ϕ̃13 ϕ̃14 ϕ̃15 ϕ̃16 ϕ̃17 ϕ̃18 0
∗ ϕ̃22 ϕ̃23 0 0 ϕ̃26 ϕ̃27 ϕ̃28 ϕ̃29
∗ ∗ ϕ̃33 ϕ̃34 0 0 0 0 0
∗ ∗ ∗ ϕ̃44 0 0 0 0 0
∗ ∗ ∗ ∗ ϕ̃55 0 0 0 0
∗ ∗ ∗ ∗ ∗ ϕ̃66 ϕ̃67 0 0
∗ ∗ ∗ ∗ ∗ ∗ ϕ̃77 ϕ̃78 ϕ̃79
∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̃88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̃99


< 0,

(27)

where

ϕ̃11 = A2P̃+ P̃AT2 + B2X̃2 + X̃
T
2 B

T
2 ,

ϕ̃12 = P̃CT
2 B

T
1 + Ỹ1, ϕ̃22 = A1Z̃ + Z̃AT1 + Q̃,

ϕ̃13 = B2X̃1 − Ỹ1,

ϕ̃23 = W̃1, ϕ̃33 = −Q̃− W̃1 − W̃ T
1 + σ�̃+ σ�̃

T ,

ϕ̃14 = −τM Ỹ2, ϕ̃34 = −τM W̃2, ϕ̃44 = −τM R̃,

ϕ̃15 = B2X̃1, ϕ̃55 = −�̃− �̃
T , ϕ̃16 = B3,

ϕ̃26 = −Z̃CT
1 N

T , ϕ̃66 = −2I ,

ϕ̃17 = B4, ϕ̃27 = B1C4, ϕ̃67 = −NC3, ϕ̃77 = −γ
2I ,

ϕ̃18 = τM P̃CT
2 B

T
1 , ϕ̃28 = τM Z̃A

T
1 , ϕ̃78 = τMC

T
4 B

T
1 ,

ϕ̃88 = −τM R̃, ϕ̃29 = CT
1 , ϕ̃79 = CT

3 , ϕ̃99 = −I .

Proof: Define a matrix 5̃ = diag{P−1,Z−1,Z−1,R−1,
Z−1, I , I ,R−1, I }. According to Theorem 1, pre- and post-
multiplying (25) by 5̃, and define: P̃ = P−1, R̃ = R−1,
Z̃ = Z−1, Q̃ = Z−1QZ−1, X̃1 = K1Z−1, X̃2 = K2P−1,
�̃ = Z−1�Z−1, Ỹ1 = P−1YZ−1, Ỹ2 = P−1YR−1, W̃1 =

Z−1WZ−1, W̃2 = Z−1W TR−1. Then, if there are matrices
P,Z ,R,Q, �,W ,Y with appropriate dimensions, so that the
inequality (26) holds, then the system (10) is asymptotically
stable, and the expected gain matrices of the primary con-
troller and secondary one are K1 = X̃1Z̃−1 and K2 = X̃2P̃−1,
respectively. This completes the proof.
Remark 4: The consideration of nonlinear terms will make

the system more universal. The addition of event-triggered
scheme will significantly reduce the burden of the network.
The cascade structure of the system can quickly restrain the
disturbance in the loop. Finally, adding H∞ control to make
the system more suitable for practical production. Next, the
effectiveness of the above design method will be verified by
a simulation example of a marine boiler liquid level cascade
control system.
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V. SIMULATION EXAMPLE
Nonlinear systems are ubiquitous in industrial production
with cascade structure, which is of practical significance.
And nowadays, many cascade systems are connected through
the network. In this paper, we choose a marine boiler liquid
level cascade control system model, use the linear matrix
inequality method to design the primary and secondary con-
trollers, and verify the feasibility of the design method.

FIGURE 2. Marine boiler liquid level cascade control system.

As shown in fig. 2, C1 and C2 are primary and secondary
controllers, and S1 and S2 are corresponding sensors. The
primary loop adjusts the steam valve’s water supply pressure
difference control loop according to the pressure difference
before and after the water supply valve. According to the
water level deviation, the secondary loop adjusts the water
level regulation loop of the water supply valve. The given
value of the water level is input. In order to facilitate the
calculation, the given value is set to 0. The steam regulating
valve is used as the primary plant P1, and the water pump unit
is the secondary plant P2.
In this paper, the nonlinear function is selected as: w(t) =

y1(t) + sin(y1(t)). Assume that τM = 0.25s, σ = 0.2, The
initial conditions of the system are

x1(0) =
[
1 −1

]T
, x2(0) =

[
1 −1

]T
.

The known matrices parameters in the model can be
described as follows

A1 =
[
−0.3667 −0.3

1 0

]
, A2 =

[
−1 2
1 0

]
,

B1 =
[
1
0

]
, B2 =

[
1
0

]
, B3 =

[
−0.5
−0.2

]
,

B4 =
[
0.02
0.05

]
,

C1 =
[
0 0.11

]
, C2 =

[
0 0.1

]
, C3 = −0.3,C4 = 0.2.

A. FOR NONLINEAR NCCS WITHOUT DISTURBANCE
When there is no disturbance, the matrices B4, C3 and C4
are all zero matrices. According to Theorem 2, the feasible

solution is obtained by using MATLAB/LMI toolbox

P̃=
[
145.8903 −4.1333
−4.1333 −0.1545

]
, Z̃=

[
0.8926 −0.6837
−0.6837 2.2769

]
,

�̃ =

[
0.2508 −0.2579
−0.2579 0.7091

]
,

X̃1 =
[
0.4183 −0.2769

]
,

X̃2 =
[
−384.8342 12.0015

]
.

The gain matrix of the primary controller and secondary
one can be obtained according to the K1 = X̃1Z and K2 =

X̃2P

K1 =
[
0.4183 −0.2769

]
,

K2 =
[
−2.7527 −4.0456

]
.

In addition, the event-triggered parameter can be obtained
as follows

� =

[
0.3384 0.0729
0.0729 0.1500

]
.

The sampling period is h = 0.2s. According to Theorem 2,
the trigger matrix � is obtained. Out of 200 sampled signals,
only 54 sampled signals are sent to the primary controller.
In addition, the average signal sending interval after adding
event-triggered can be calculated to be 0.7370s. It can be seen
that the addition of event-triggered controller can filter the
signals and save the network resources. Figure 3 show the
state response of the system’s primary and secondary loop,
and Figure 4 shows the signal transmission interval.

FIGURE 3. The state response of system without disturbance.

It can be seen that the system reaches a stable state at 40s.
It indicates that the primary loop reaches the steady-state at
40s, and the secondary loop reaches the steady-state at 25s.
Therefore, it can be proved that the design method proposed
in this paper is feasible.

The above-described controller design methods in such
cascade control systems can be obtained the feasible solutions
directly, thereby avoiding the traditional methods of experi-
mentation. For example, literature [34], in order to find the
optimal gain of the controller, it is tested repeatedly in a range.
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FIGURE 4. The release instants and interval without disturbance.

If using the design method in this paper, the result can be
obtained directly, and the controller gain can be accurate to
4 decimal places.

B. FOR NONLINEAR NCCS WITH DISTURBANCE
The disturbance of the systemmainly comes from the external
disturbance caused by the sudden change of the controlled
value and the change of the working environment during the
operation of the system.

Irregular changes in the controlled value of the system
itself can be included in the nonlinear term. Sowe assumed an
external disturbance to impact the system to verify the stabil-
ity and the constraints of H∞ control on system disturbance
is proved.

1(t) =

{
sin(t), 3 < t ≤ 10
0, otherwise.

Setting τM = 0.25s, σ = 0.2, γ = 3. According to
Theorem 4, the following matrix can be obtained

P̃ =
[
19.5422 −8.9235
−8.9235 9.0744

]
,

Z̃ =
[

1.2459 −0.9594
−0.9594 3.6266

]
,

�̃ =

[
0.2504 −0.2574
−0.2574 0.7292

]
,

X̃1 =
[
−0.6709 −0.5821

]
,

X̃2 =
[
−22.9306 −13.3143

]
.

The gain matrix of the primary controller and secondary
one can be obtained according to the K1 = X̃1Z and
K2 = X̃2P as follows

K1 =
[
−0.8315 −0.3805

]
,

K2 =
[
−3.3457 −4.7573

]
.

In addition, the event-triggered parameter can be obtained
as follows

� =

[
0.1679 0.0265
0.0265 0.0577

]
.

The sampling period is h = 0.2s. According to Theo-
rem 2, the trigger matrix � is obtained. Out of 200 sampled
signals, only 40 sampled signals are sent to the primary
controller. In addition, the average signal sending interval
after adding event-triggered scheme can be calculated to be
0.9950s. Figure 5 show the state response of the system, and
Figure 6 shows the signal transmission interval.

FIGURE 5. The state response of system with disturbance.

FIGURE 6. The release instants and interval with disturbance.

The nonlinear system model with disturbance is more
suitable for practical industrial production. If it is a simple
nonlinear system, the system will be fragile when applied
to practice. For example, the [35] does not consider the
influence of disturbance, so it has certain limitations.
Remark 5:We can see that the system can obtain sufficient

conditions for stability after considering nonlinearity. More-
over, the simultaneous addition of event-triggeredmechanism
and H∞ control can make the system resist disturbance to a
certain extent while saving network resources.

VI. CONCLUSION
Considering the needs of practical industrial production,
based on a class of nonlinear systems and event-triggered
scheme, the primary and secondary controllers of NCCSs
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have designed in this paper. The method is applied to a
liquid level of marine boiler control system, which is con-
nected through the network. This is the first time that
the event-triggered scheme is added to the Lurie nonlinear
networked cascade control system, and the event-triggered
scheme can avoid Zeno phenomenon based on reducing the
burden of network bandwidth. A new model of the net-
worked cascade control system is established, and the collab-
orative design method of primary controller and secondary
one parameters and event-triggered parameters is completed
through Lyapunov theorem and linear matrix inequality. Then
add H∞ control to effectively suppress the extra disturbance
in the nonlinear system. Finally, an example of a marine
boiler liquid level cascade control system is used to verify the
stability of the system and the optimization of the utilization
rate of network resources. Explains the feasibility of this
method.
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