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ABSTRACT Convolutional neural networks (CNNs) have dominated image recognition and object detection
models in the last few years. They can achieve the highest accuracies with several applications such
as automotive and biomedical applications. CNNs are usually implemented by using Graphical Process-
ing Units (GPUs) or generic processors. Although the GPUs are capable of performing the complex
computations needed by the CNNs, their power consumption is huge compared to generic processors.
Moreover, current generic processors are unable to cope up with the growing CNNs demand for computation
performance. Therefore, hardware accelerators are the best choice to provide the required computation
performance needed by the CNNs as well as affordable power consumption. Several techniques are
adopted in hardware accelerators such as pruning and quantization. In this paper, a low-power dedicated
CNN hardware accelerator is proposed based on GoogLeNet CNN as a case study. Weights pruning and
quantization are applied to reduce the memory size by 57.6x. Consequently, only FPGA on-chip memory
is used for weights and activations storage without using offline DRAMs (Dynamic Random Access
Memories). In addition, the proposed hardware accelerator utilizes zero DSP (Digital Signal Processing)
units as all multiplications are replaced by shifting operations. The accelerator is developed based on a time-
sharing/pipelined architecture, which processes the CNN model layer by layer. The architecture proposes
a new data fetching mechanism that increases data reuse. Moreover, the proposed accelerator units are
implemented in native RTL (Register Transfer Logic). The accelerator classifies 25.1 frames per second (fps)
with 3.92W only, which is more power-efficient than other GoogLeNet implementations on FPGA in the
literature. In addition, the proposed accelerator achieves an average classification efficiency of 91%, which
is significantly higher than comparable architectures. Furthermore, this accelerator surpasses the popular
CPUs such as Intel Core-i7 and GPUs such as GTX 1080Ti in terms of the number of frames processed per
Watt.

INDEX TERMS Convolutional neural networks (CNNs), field programmable gate arrays (FPGAs),
GoogleNet, hardware accelerators, object classification, parallel computing.

I. INTRODUCTION
Deep learning has been employed in a lot of domains during
the last decade, such as image classification [1], [2], object
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recognition [3], [5], object detection [6], [7], audio recogni-
tion [8], and self-driving cars [9], [10]. CNNs are used widely
as they achieve challenging accuracies, and their models are
easily applied to new applications.

CNNs are one of the common deep learning algo-
rithms mainly used for image and video classification and
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detection [11]. CNNs require large amounts of memory
storage as there are millions of parameters in every CNN
model. Moreover, CNNs are computationally intensive as
they require billions of operations per image. The high com-
putational complexity combined with inherent parallelism
in these models makes them an excellent target for custom
accelerators.

Although the CNNs have dominated the image classifica-
tion and detection algorithms, there are two main challenges
regarding their implementations [12]. The first challenge is
the cost of computation, as their architecture consists of many
convolutional layers, which are multiplication-hungry layers.
The second challenge is the memory bandwidths, in which the
memory fetching speeds are much lower than the processing
speeds. These two challenges have raised the need to develop
custom architectures to accelerate the CNN computations
while keeping the power consumption at affordable rates for
limited energy embedded applications. However, the varia-
tions of network architectures and data fetching patterns make
it difficult to adopt one architecture for all CNNs. As a result,
custom designs are the dominant approach for these networks
to get the best performance across all performance metrics.

During the rising of deep learning (DL) and machine
learning (ML) algorithms, two main categories of processors
are used. The first platform is the Central Processing Units
(CPUs), which are not efficient for DL and ML algorithms
as these algorithms require high parallelism and a lot of DSP
units to finish their processing rapidly. The second platform
is the Graphical Procession Units (GPUs), which are capable
of processing millions of pixels within a part of the second.
Correspondingly, the GPUs are the most suitable platforms
due to their high parallelism. Consequently, they have been
used widely for both training and inference [13]. When it
comes to hardware accelerators, FPGAs get a critical mis-
sion to provide high-performance — low power processing
units [14], [15]. FPGAs stand for field-programmable gate
arrays (FPGAs) that provide low power consumption, high
parallelism, optimized hardware, and real-time computation
capabilities. Moreover, FPGAs have the advantages of short
time-to-market, reconfigurability, and reusable IP (Intellec-
tual Property) options. There is another choice for designers,
which is ASIC chips. ASIC is application-specific integrated
circuits that provide the lowest power consumption and high-
est clock speeds, but it has a long time to market and high
initial fabrication costs. These properties make it suitable for
mass production, such as NVidia accelerators and Google
Tensor Processing Units (TPUs) or data centers, such as
Google cloud or Amazon Web Services (AWS).

As artificial intelligence (Al) is emerging increasingly in a
lot of applications, the demand for hardware accelerators is
increased. Recently, a lot of research is done to develop high-
performance hardware accelerators for data centers, smart-
phones, and Internet of Things (IoT) devices. Accelerator
specifications are set based on the target application, power
consumption budget, and acceleration rate. Al accelerators
need more specialized architectures and should be optimized
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for the target algorithm, in contrast to common architec-
tures, such as RISC (Reduced Instruction Set Computing) and
CISC (Complex Instruction Set Computing) architectures.
This approach is becoming more common in industrial and
research applications, especially inference processors [16].

For many years, it is well-known that the depth of the net-
work should be increased to get higher accuracies, especially
the number of convolution layers. This has been a common
direction till year 2014 when Szegedy proposed a new CNN
network called GoogLeNet with the concept of inception
module [17]. In this network, the depth and width of the
network have been increased, but the computational budget
has been kept constant by using the network-in-network con-
cept. This concept uses additional 1 x 1 convolution layers
to remove the network bottlenecks and to help in dimen-
sion reduction as shown in Fig. 1. GoogLeNet overcomes
AlexNet [1] and VGG [2] networks by getting the highest
accuracy with fewer weights. As AlexNet uses 60 Million
weights to get 84.7% top-5 accuracy, and VGG-16 uses 138
Million weights to get 92.7% top-5 accuracy, GoogLeNet
uses only 6.9 Million weights to get 93.4% top-5 accuracy.
Despite all these advantages, GoogLeNet architecture is more
complex than other CNN networks due to activations’ data
dependency and complex connections between inception lay-
ers. This makes it usually challenging for hardware accelera-
tors designers except for few designs.

Filter
concatenation

1x1 convolutions

1x1 convelutions [] L) t
1x1 1x1 3x3 max pooling

~— X el

Previous layer

FIGURE 1. Inception module with dimension reduction [17].

The main features of the proposed accelerator in this work
are highlighted as follows:

i. The accelerator achieves 25.1 fps for GoogleNet
classification with 3.92W only, which is more
power-efficient than previous FPGA implementations
for Googl.eNet CNN.

ii. It achieves an order of magnitude performance
improvement over Intel Core-i7 and NVidia GTX
1080Ti.

iii. Weights pruning and quantization are used to cut
down the memory usage by 57.6x. As a result, only
FPGA Block RAMs BRAMEs) are used for weights
and activations storage without using offline DRAMs.

iv. It uses zero DSP units by converting all multiplica-
tions into shifting operations.
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v. This accelerator is developed based on time-
sharing/pipelined architecture that processes the CNN
model layer by layer.

vi. It proposes a new data flow mechanism that leads to
high data reuse and low power consumption.

vii. The processor uses simple eight distributed control
units that can be reconfigured in the future to process
other CNN models.

viii. The proposed accelerator uses only 224 simple paral-
lel elements (PEs).
ix. The design achieves top-5 classification accuracy of
91%, which is significantly higher than comparable
architectures.

This paper is organized as follows, Section II presents
the related work. Section III presents the applied memory
compression model using both weights pruning and quantiza-
tion. Section IV explores the design options for the proposed
architecture. Section V investigates the proposed architec-
ture. Section VI shows the design discussions and experimen-
tal results. Finally, Section VII concludes the work.

Il. RELATED WORK

Hardware accelerators design has become one of challenging
topics in the research area. There are different implemen-
tations which are discussed briefly in this section. Firstly,
Snowflake accelerator [18] which is able to achieve an aver-
age computational efficiency of 91%, and is implemented on
a Xilinx Zynq XC7Z045. Snowflake is capable of achiev-
ing 128 Giga operations per second (GOPS/s) while con-
suming 9.48W of power. This work considers the number
of frames without fully connected layers. Correspondingly,
adding the fully connected layers overhead degrades its
throughput and increases its power consumption. Moreover,
it has high power consumption due to the usage of 1GB of
DDR3 memory in addition to two ARM cores running at 800
MHz and one Kintex-7 FPGA. The entire system is clocked
at 250MHz.

Another hardware accelerator that is designed by Zhao is
synthesized by using the TSMC 65nm CMOS technology
and achieves a peak of 280.8GOPS/s [19]. Its core area
is 4.35mm? running at 650MHz with a power dissipation
of 859mW. The input image/feature data and filter weight
parameters are transferred from the external off-chip memory
to the separated on-chip data buffer and parameter buffer.
In addition, this work considers the number of frames with-
out the implementation of the fully connected layers similar
to [18], and correspondingly adding this overhead degrades
its throughput and increases its power consumption.

DianNao accelerator is designed using CMOS 65nm tech-
nology with an area of 3.02mm? [20]. It performs 452GOP/s
of fixed-point operations in parallel with 0.485W (excluding
main memory accesses). This accelerator is 117.9 x faster and
21.1x more energy-efficient than a 128-bit Single Instruc-
tion Multiple Data (SIMD) core. However, the reported
throughput is the peak theoretical throughput only for some
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convolution layers without DRAM access time, which means
that adding the DRAM access time overhead degrades the
speed and increases the power consumption.

Eyeriss v2 is one of the popular hardware accelerators [21].
It is a fabricated chip with CMOS 65nm technology, which
processes the convolution layers at 35fps for AlexNet at
278mW with 0.003mW for each DRAM access/multiply and
accumulation (MAC). Furthermore, it performs 0.7fps for
VGG-16 at 236mW. A network-on-chip (NoC) architecture
is used for both multicast and point-to-point single-cycle data
delivery to support the RS dataflow.

There are two popular high-level design flows of hard-
ware accelerator implementation. The first flow is high-level
synthesis (HLS), and the second one is Open Comput-
ing Language (OpenCL). They provide fast and easy hard-
ware implementation, but they have a lack of optimization
and energy efficiency. These high-level flows have been
developed to build programs and execute them across het-
erogeneous platforms, such as CPUs, GPUs, and FPGAs
[22]-[24]. HLS is an automated process to compile digital
hardware circuits by synthesizing them. It enables building
and verifying the hardware by giving better control over the
architecture [25]-[27].

Moreover, many previous studies focus on accelerating
the convolution layers of CNN only. For example, in [28]
and [29], the hardware accelerator processes several convo-
lution layers only rather than the full CNN while neglecting
other CNN layers, such as fully connected layers. Conse-
quently, those accelerators are not suitable to be deployed in
low-power embedded applications.

lIl. MEMORY COMPRESSION

Increasing the size of the models has become a common
trend in the development of CNN models. These models
have a huge number of weights that require large memories.
Moreover, 32-bit DRAM memory access requires 640pJ,
as stated by [30], which leads to a fast battery drain of the
embedded devices. Model compression techniques such as
weights pruning and weights quantization are deployed in
these CNNs models to reduce the memory size. Weights
pruning is a process that removes unnecessary connections,
which reduces the number of model weights. Removing these
connections degrades the model accuracy as the model con-
nections are mutually dependent. Correspondingly, retraining
the remaining connections is a mandatory step to recover the
accuracy loss [30].

Weights are usually represented with 32-bit precision,
which allocates a large size of memory. Representing these
weights in a smaller precision can compress the model sig-
nificantly. This is the weights quantization operation that
leads to smaller bit-representation [31]. After quantizing the
model, many values of the weights are repeated frequently.
Algorithms such as Huffman coding [32] are utilized to rep-
resent the most frequent values in smaller bits and the least
frequent values in larger bits. Combining weights pruning,
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weights quantization, and Huffman coding achieves larger
compression ratios.

Applying memory compression on neural networks is an
open area of research. Many techniques are proposed to deal
with different models and get higher compression ratios.
In [30], a pruning pipeline is proposed that firstly retrains
the model from scratch, then performs the weights pruning
iteratively, and retrains to compensate the accuracy loss due
to the reduction of weights count. However, this model takes a
large retraining time due to its iterative process. Moreover, the
channels of the network can be pruned dynamically as stated
in [33]. Finally, compression pipelines are proposed in [34],
which consists of pruning, quantization, and Huffman coding
to achieve a larger compression ratio.

A. MEMORY COMPRESSION MODEL

GoogLeNet model is compressed with a combined frame-
work of weights pruning and quantization. The proposed
framework consists of two stages which are selected carefully
after exploring all related memory compression methods.
Firstly, the framework applies the weights pruning based
on dynamic network surgery work [35]. Secondly, weights
quantization is applied based on incremental network quan-
tization (INQ) framework [36]. The proposed framework is
built without applying Huffman coding to avoid overhead
latency of Huffman decoding while fetching the weights on
the FPGA hardware. Fig. 2 shows a summarized flow chart
for the used hyper-framework. Every framework for both
weights pruning and weights quantization is discussed briefly
in the following subsections.

(Weights Pruning)
Dynamic Network Surgery

(Weights Quantization)
Incremental Network Quantization

( (Pruned + Quantized) Model

FIGURE 2. The proposed memory compression model.

B. WEIGHTS PRUNING

Weight pruning is performed using a dynamic network
surgery method [35]. The pruning is performed on both,
convolution layers and fully connected layers. Unlike the
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previous methods of alternating pruning and retraining,
the dynamic network surgery method performs connections
pruning and splicing for the network iteratively and imple-
ments the whole process dynamically. Firstly, activation
masks are initialized for all weights to activate all of them.
The masks are set during the process to one or zero to
activate or deactivate them, respectively. During the forward
propagation, the masks are element-wise multiplied by the
weights, and the resulting outputs are used in the network.
During splicing, the values of the masks change according to
weights mean, and standard deviation. As a result, they might
be reactivated for some weights to recover the connections
that are found to be important during retraining. This results
in making accuracy degradation insignificant.

C. WEIGHTS QUANTIZATION

After applying weights pruning model, weights quantization
is used to shrink the precision from 32-bit to 4-bit. After ana-
lyzing multiple quantization frameworks, Incremental Net-
work quantization (INQ) framework is used [36]. INQ is
a group-wise quantization that is performed by partitioning
the weights into two groups iteratively. Weights partitioning
uses a pruning-inspired measure to split the two groups in
each layer based on their values. The first group is quantized
to the target precision, and the second group is retrained to
compensate for the accuracy loss. Consequently, weights are
iteratively quantized to 4-bit with a value of zero or a number
with a power of 2’s.

D. MEMORY COMPRESSION RESULTS

In this section, network training and memory compression
results are presented, and some experiments on GooglLeNet
CNN are demonstrated. GoogleNet is built based on
Szegedy’s work [17]. The network structure is built as the
reference paper, which is trained for 100 epochs on Ima-
geNet Dataset. Furthermore, the optimization is done with
stochastic gradient descent using a learning rate of 0.01,
a momentum of 0.9, and a weight decay of 10~*. Every
30 epochs, the learning rate is divided by 10. The network
classifies images with 71.39% top-1 accuracy and 93.5%
top-5 accuracy. In addition, the reference model has ~6.9M
weights with 32-bit precision.

Secondly, pruning is carried out with dynamic network
surgery, which is performed on the convolutional layers, then
fully connected layer as the full model pruning increases the
accuracy loss. The model is pruned to have less than IM
parameters only to fit in Virtex-7 FPGA without using off-
chip DRAMs. Consequently, the pruning is made aggres-
sively toreach a 7.2 x compression ratio with a top-5 accuracy
loss of 1.4% and top-1 accuracy loss of 2.7% as listed in
Table 1.

Finally, incremental network quantization is applied to the
pruned model to reduce the precision of the weights to 4-bit
instead of 32-bit. The removed connections are suppressed
to zeros, and the quantization is performed iteratively on the
remaining weights. At first, the accumulated partitions of
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TABLE 1. Accuracy losses and compression ratios for different
compression models.

Error rate (%) Compression

Model Top-1 Top-3 Top-5 ratio
Reference model 0 0 0 1x

Pruned model 27 1.7 1.4 7.2x
Hyper model 4.8 35 2.6 57.6x

quantized weights at iterative steps are set as reference work
as [0.2, 0.4, 0.6, 0.8, 1], but there is a sudden drop in the clas-
sification accuracy with 10% in top-1 accuracy. The sudden
drop occurred because the model has many sparse weights.
Therefore, the last steps starting from 80% quantization are
increased to quantize the remaining weights. Consequently,
the model is quantized using percentages of [0.2, 0.4, 0.6, 0.8,
0.85, 0.9, 0.95, 1], which yields a loss of 4.8% for top-1 error
rate and 2.6% for top-5 error rate as listed in Table 1.

Quantizing from 32-bit to 4-bit leads to a compression ratio
of 8x independently. Correspondingly, the hyper model of
the weights pruning followed by quantization compresses the
model with 57.6 x successfully, as shown in the compression
chart in Fig. 3. Furthermore, Fig. 4 shows the weights size
reduction for each GoogLeNet layer for the plain model,
pruned model, and quantized model with colors blue, gray,
and orange respectively. It is observed from the chart how the
pruning firstly reduces the number of parameters as shown
with gray columns. Secondly, quantization makes a reduction
with 8x for every layer which is shown with the orange
columns. Moreover, the fully connected layer is the most
compressed layer as it has many weights that tend to zero.
On the other hand, 3 x 3 convolution layer come at the second
most compressed layer as it has many filters per layer.

60 57.6X
50
0
30
20

10 7.2X

. o ]

Reference Model M Pruned Model Hyper Model (Pruning+Quantization)

FIGURE 3. Compression ratios after pruning and quantization.

IV. DESIGN EXPLORATION

A lot of hardware accelerators propose high throughput on
feed-forward CNN networks in the literature such as LeNet,
AlexNet, and VGG [16], [37]. These hardware accelerators
fail to process the inception network well, and the obtained
speed is degraded because of the structure of the inception
module. The inception module increases the depth of the
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layers horizontally and vertically while keeping computa-
tional cost by adding 1 x 1 convolution layers. Although this
improves the accuracy, it increases system complexity.

The proposed processor is designed to fit GoogleNet
inception CNN. GoogLeNet CNN achieves higher inference
accuracy while keeping the weights count of ~6.9 Million
only, which is a great improvement compared to previous
CNN networks. Moreover, the number of weights is cut down
significantly after performing weights pruning and quantiza-
tion as investigated in the previous section to be able to load
them on FPGA BRAMs without using offline DRAMs.

TABLE 2. Popular CNNS in literature.

Top-5 Number of weights
CNN Year accuracy (%) (Millions)
AlexNet 2012 83.6 60 M
VGG-16 2014 92.7 138 M
GoogLeNet 2014 93.4 6.9M
Inception V3 2015 96.5 23.6 M
ResNet-50 2016 96.4 25.6 M

In Table 2, a summarized comparison is made between
popular CNN networks. VGG-16 has a Top-5 accuracy with
92.7%, but it requires 138 Million weights per frame. This
requires a huge memory size, which in turn will increase the
computation load and memory access. On the other hand,
Inception V3 and ResNet-50 get higher accuracy with 96.5%
and 96.4%, respectively. They get an approximate accuracy
improvement of 3% with 3.5x memory storage. Accord-
ingly, it is clear that GoogleNet achieves the best accu-
racy while keeping the number of weights in an acceptable
count.

GoogLeNet has 57 convolution layers and only one fully
connected (FC) layer. The computation workload is centered
in convolution layers with 2.58G MACs. Furthermore, the
fully connected layer uses a huge number of weights per layer
with 1.024M weights. Moreover, it has fourteen Maxpooling
layers to reduce the input feature map size. The network has
one average pooling layer to reduce the input feature map
size before the fully connected layer. Finally, Softmax layer
is used to get the classification results in probabilistic values.
Table 3 shows the detailed architecture and design parameters
of GoogLeNet.

CNN processing is computation-intensive for both con-
volution layers and fully connected layer. Correspondingly,
parallelism is required to reach a short inference time. There
are different ways of parallelism in CNNs, such as batch
parallelism, inter-layer parallelism, inter-feature map paral-
lelism, inter-convolution parallelism, and intra-convolution
parallelism, as stated by [14]. Every hardware accelerator
adopts one or more of these parallelism types to get the
target throughput. In the proposed accelerator, 24 kernels
of 3 x 3 layers, nine kernels of 5 x 5 Convolution layers,
or four kernels of 7 x 7 Convolution are processed in parallel
as shown in Fig. 5 and stated in Table 4. The following
parallelizing techniques are adopted:
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FIGURE 4. Weights compression results for GooglLeNet layers.
A. INTER-LAYER PARALLELISM acceleration factor X. This type of parallelism depends on the
In inter-layer parallelism, the hardware accelerator has a feed- output feature map and kernel sizes.

forward hierarchical structure that processes a succession
of data-dependent layers. They are executed in a pipelined
fashion by executing a layer while preparing the next layer to
be processed. In this way, the hardware accelerator utilized
area is decreased significantly, which makes it easy to fit it in
FPGAs or develop a small chip.

C. INTRA-CONVOLUTION PARALLELISM

The last adopted parallelism is the intra-convolution paral-
lelism, in which the processing of 2D convolution layers is
implemented in a pipelined/parallel fashion.

There is always a trade-off between the acceleration factor
and the accelerator size during selecting the suitable number
of PEs. Firstly, an analysis of GoogLeNet CNN layers is made
B. INTRA-FEATURE MAP PARALLELISM to determine the suitable number of PEs. GoogLeNet has four
In intra-feature map parallelism, a group of the output feature different convolution kernel sizes, which are 1 x 1, 3 x 3,
map pixels of a single output feature map plane is processed 5 x 5Sand,7 x 7 kernels. The convolution opcode is repre-
in parallel, which reduces the required processing time by sented by two bits to select the convolution type in different
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TABLE 3. GooglLeNet analysis.

GoogLeNet CNN Count
Convolution layers 57
Convolution layers in depth 21
Convolution workload (MACs) 2.58G
Convolution parameters 5.9M
Activation layer ReLU
Maxpooling layers 14
Average pooling layers 1
FC layers 1

FC workload (MACs) 1.024M
FC parameters 1.024M
Total workload (MACs) 2.58G
Total parameters ~6.9M
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FIGURE 5. Different kernel sizes on PEs.

TABLE 4. Required #pe per kernel.

Kernel size #PEs/kernel Convolution opcode
7x7 Convolution 49 00
3x3 Convolution 9 01
5x5 Convolution 25 10
1x1 Convolution 1 11

blocks by the control unit as listed in Table 4. In addition,
the number of PEs is chosen to be 224 PEs that processes
224 kernels of 1 x 1 Convolution kernels.

The capacity of memory in FPGAs is not large enough
to save all weights and feature maps (FMs) of all CNN lay-
ers. Consequently, loop tiling is used to fetch the upcoming
parts of feature maps in addition to kernel weights while
processing the current layer. Feature maps and kernels of
convolution layers are batched so that kernel weights are
loaded only once, and FM tile is loaded once per batch.
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This factorization is employed to increase the data reuse and
computational throughput. Fig. 6 shows an example of input
feature map (IFMAP) tile to PEs fetching for 5 x 5 convolu-
tion. Convolution layer pseudo-code for one layer is shown
in Fig. 7, which consists of nested for-loops. The first two
for-loop iterate over the output feature map. The U for-loop
iterates over the output channels. Also, the for-loops of V and
iterates over input channels. Finally, the last two for-loops
iterate over kernel rows and columns.

BEEBEEE

[ |
i |
i i |

Parallel FIFOs

HEBRE
alsfallsfafafals]s
alsfa]s]=
HEBEERAE

Feature MAP PE Cores

FIGURE 6. Reading IFMAP tile from main buffer to PEs - 5 x 5
convolution example.

for (n=0; n<N; n++) { Houtput FM rows
for (m=0; m<M; m++) { Houtput FM columns
for (u=0; u<U; u++) { Houtput channels
for (v=0; v<V; v++) { /input channels
for (i=0; i<K; 1i++) { /kernel rows
for (j =0; j<K; j++) { /kernel columns

Fout[u][n][m+=Fin[v][S*n+i][S*m+j]*K[u][v][i][]]

PR
Fout[u][n][m]+=bias[u]
i

FIGURE 7. Convolution layer pseudo-code.

Some loops are selected to be unrolled to speed up the
processing and parallelize the processing of certain iterations
on the hardware. The number of parallelized iterations is
called the unroll factor. Selecting suitable unroll factors might
lead to huge hardware utilization. For the proposed processor,
the for-loops of rows and columns are completely unrolled.
Moreover, the for-loops of feature map rows and columns are
tiled with a size of feature map row. The tile is reused by
shifting the rows up by the stride value and other rows are
reused again. Finally, the output channel is parallelized by
processing multiple kernels and writing out multiple output
pixels in parallel.

V. ARCHITECTURE

The architecture is built as a time-sharing processor that
performs the computations for CNN layers. Therefore, the
processing flow is made depending on the accelerator’s con-
trol units and CNN structure. The design of each unit is
discussed in this section by showing its specs and imple-
mentation. Finally, several general modifications are adopted
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FIGURE 8. Top-level diagram of the proposed architecture.

to improve the proposed accelerator and make full use of
observed enhancements after memory compression results.
The proposed state-of-art hardware accelerator consists of
256 memory banks, 224 parallel elements, weights memory,
accumulator unit, maxpooling unit, average pooling unit,
fully connected unit, softmax unit, buffers, and nine dis-
tributed control units. Each unit is carefully designed and
implemented in native RTL (Register Transfer Logic) to get
the best performance and lowest power consumption. The
top-level diagram of the proposed architecture is shown in
Fig. 8. The design of these units is discussed in this section
by showing the specs and improvements for each block.

A. MEMORY ORGANIZATION

Memory organization is one of the main challenges during
accelerator design. As discussed earlier, the memory bottle-
neck requires careful handling and planning. The final mem-
ory organization is set after analyzing several options to select
the best implementation. Firstly, the limited number of access
ports of the intermediate memory is overcome by dividing the
memory into 256 banks to read/write in parallel. Secondly,
adding multiple buffers resolves the stalls. In the proposed
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accelerator, separate memories for weights and temporary
data are used.

The proposed architecture consists of multiple hierarchy
levels of storage as follows:

o It consists of 256 memory banks to save the partial sum-
mations during computations. They are implemented in
FPGA BRAM:s.

o Weights memory saves all weights of the CNN model.
It utilizes 3Mb on FPGA BRAMs.

o Weights Masks memory saves all weight masks. If the
weight is a non-zero value, its value is fetched from the
weights memory.

« Weights buffer fetches the weights from weights mem-
ory and prepare them for parallel fetching.

« IFMAPs buffer loads the FMs from the memory banks
and prepares them for FIFOs (First In First Out) blocks.

« Seven parallel FIFOs are used to load complete seven
rows from the input buffer. They save it while convolut-
ing them with filter kernels.

o The internal register in each PE saves the loaded weight
till the PE finishes.

This mechanism results in high data reuse because it
enables global fetching for all loaded kernels with the same
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loaded feature map part on FIFOs. In addition, it empties
the input buffer to load more IFMAPs. This mechanism is
designed by considering the latency of buffer loading to illu-
minate any stalls during convolution. The next row of [IFMAP
is loaded while convoluting the loaded rows on FIFOs except
for 7 x 7 convolution as it has a stride with two, which shifts
out two rows every shifting up.

Weights memory saves the weights with 12-bit word
length. After quantizing all weights, the weight’s word length
has become 4-bit, which makes the memory store 3x more
weights than before. The weights buffer prepares the weights
for parallel shifting to the processing unit based on current
convolution layer sizes. The weights fetching scenario goes
as follows, the weight control unit (WCU) checks the next
bit mask. If the bit is zero, it writes a zero in the weights
buffer. If it is equal to 1, the WCU reads the weight value
from the weights memory and writes it into the weights
buffer. The design is verified against any stalls, so the next
weights become ready while the processing unit is running
the currently loaded weights.

B. PROCESSING UNIT

The processing unit (PU) consists of 224 parallel elements
(PEs), summation unit, and PU control unit. The PE con-
sists of one multiplier in addition to two multiplexers as
shown in Fig. 9. The first multiplexer is for input weight
that selects between the stored weight or a new one. The
second multiplexer selects the desired input activation based
on convolution kernel sizes, suchas 1 x 1,3 x 3,5 x 5, and
7 x 7 Convolutions or FC inputs. The multiplier is built with
a simple shift right block as all input weights are quantized
to multiple of 2’s number. The summation unit is built of
hierarchal adders to reduce the number of adders for different
convolution sizes. This is resolved by using 24 adders with
nine inputs only instead of many adders with different input
sizes.

ConvMode

Input2_1
Input2_2
Input2_3

Inputz_4 MUL l—1» Output

XN

Inputl

Reg

3 ] L]
WrEn  Clk EnPE

FIGURE 9. Parallel Element structure.

C. CONTROL UNITS

The proposed hardware accelerator runs based on eight
distributed-hierarchal control units (CUs) in addition to the
main CU to simplify the overall design. Every CU is con-
trolled by the main CU. Moreover, every CU controls all
its related signals. Each CU is designed with a finite state
machine that runs based on the stored control words. This
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makes it easier to adapt and run other CNNs by changing the
control words only. The CUs are as follows:

e Main CU

o Processing unit CU

« Partial sum accumulation CU
« IFMAP fetching CU

o Fully connected CU

e Maxpooling CU

o Averagepooling CU

o Softmax CU

D. FULLY CONNECTED UNIT

As discussed before, fully connected (FC) layers are memory-
centric. They usually contain millions of weights, and each
weight is used only once. As each weight in FC layers is
used in one inference process only, it leaves no chance for
data reuse. The limited bandwidth significantly degrades the
performance as reading those weights takes a long time, so it
requires a careful design for this unit.

Firstly, a fast analysis for FC layer is presented.
(1a) and (1b) represent a pseudo-code for the FC layer. The
output of average pooling is 1024 activations, which is the N
value. It is stored in an intermediate buffer as input activations
for FC, then it is fetched to the PU. The network is trained on
the ImageNet dataset with 1000 classes, so the M is equal to
1000.

M—-1N—-1

outy = Z Z WomXAn + B (1a)
m=0 n=0

form=0; m<M;m++){

forn=0; n<N;j+ +){

outy+ = WyuxAy}
out,+ = By} (1b)

E. MEMORY MANAGEMENT

Fully connected processing requires 256 weights every cycle
in the proposed design, which is not valid if they are fetched
from weights memory directly. After performing memory
compression, as discussed in section II, a lot of weights are
suppressed to zero after weights pruning, especially in the
fully connected layer. An analysis is made on fully connected
weights to discover their weights values. It is found that the
number of non-zero weights per 256-tile does not exceed
32 weights. This makes it easy to decompress 256 weights
per cycle while knowing that there are 32 non-zero weights
by maximum. The decompression unit is implemented and
integrated with weights unit to use it while FC processing
without any memory stalls.

Moreover, the input activations are fetched tile by tile
with 256 tile size and used for 1000 cycles before fetch-
ing the next tile. The technique leads to high data reuse
for activations instead of reading and writing them every
cycle.
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F. COMPUTATION MANAGEMENT

The PEs are used for FC multiplications with extra 32 shifting
blocks to make full use of the processing unit. The accel-
eration of FC is made for the inner loop by processing a
tile of 256 weights each cycle. Therefore, the inner loop is
processed in 4 cycles instead of 1024 cycles. Consequently,
the fully connected layer is accelerated by 256 x more than a
single MAC unit. The tilling diagram is shown in Fig. 10. The
diagram illustrates the process of the adopted fully connected
computations. The flow is as follows:

— New 256 weights are fetched to PU every cycle.

An input activation tile is updated every 1000 cycles.

The multiplications is performed and forwarded to the

parallel adder every cycle. Finally, the output is saved to

the output register file.

— After the first inner loop of pseudo-code in (1b) is com-
pleted, the output of every summation is added to its cor-
responding value in the output register file, and so on till
finishing all tiles.

FC Weights
1> 1000

Tile-4 Tiles Partiond A

Tile-3 | Tiles Partion3

Tile-2 Tiles partion2.

Tile-1

“—256—> €—256—> € —256—> €¢—256—>
“—256—> €¢—256—> €¢—256—> €«—256—>

FC Output

FIGURE 10. Fully connected layer tiling diagram.

G. MAXPOOLING UNIT

Maxpooling is used between convolution layers to reduce the
spatial size of feature maps. There are 14 Maxpooling layers
in GoogLeNet. Maxpooling unit works on four feature maps
in parallel. As a result, the unit uses four maxpooling parallel
blocks. Every block consists of an input buffer, output buffer,
and comparators.

H. LOCAL RESPONSE NORMALIZATION UNIT

Local response normalization (LRN) is used to normalize the
distribution of the input activations by normalizing over local
input regions. It depends on the activations of adjacent kernels
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at the same layer [40]. This is made instead of computing
mean and deviation as performed by the batch normaliza-
tion (BN) layer.

LRN does not have any learnable parameters and all com-
putations are made between input activations as shown in (2).
The parameters (o, B, k, n) are set firstly y = 0.0001,
k=1, 8 = 0.75, and n = 5. The parameter n represents the
number of input activations d. y that is squared and summed
to compute the normalized activation. After investigating the
LRN equation, it needs a lot of computations to generate nor-
malized activations. Squaring, division, and powering blocks
in addition to intermediate registers are needed, which takes
up a large area and power to compute it.

al
min(l\;c;yl i+ 2k @
k+a-> ; z(a{r,y))

jj=max(0,i—7%)

i
bx,y =

Instead of building these large blocks, a software experi-
ment is done on the Goog t testing set to get the average differ-
ence before and after the LRN layer. This average difference
is computed across input channels and testing images. The
average values are ranging from 0 to 0.006, which are added
randomly across input channels instead of making all these
computations. The overall accuracy does not decrease as it is
well known that the CNNs themselves add up noise through
different layers. This is proven experimentally by replacing
LRN with a randomizer using patches of testing images,
every patch contains 128 images. The overall accuracy is
ranging from 0.02 to —0.02 or does not change in several
testing patches. This is done by using random values from
the previous software experiment.

I. AVERAGE POOLING UNIT

The average pooling layer is added before the fully connected
layer to reduce the input feature map size to 1 x 1024 instead
of 7 x 7 x 1024. It simply adds up all pixels of every
7 x 7 feature map and divides it by 49. The unit works on
eight feature maps in parallel and stores the output in an
intermediate buffer for the fully connected layer.

J. SOFTMAX UNIT

Softmax unit is used to convert the output of a fully con-
nected layer to probability distributed values [39]. The
unit consists of 10 parallel CORDIC (COrdinate Rota-
tion DIgital Computer) blocks to compute the exponential
function. The unit stores exponential outputs again in the
buffer while computing their summation. After computing
the summation of 1000 exponentials, every exponential is
divided by the summation and stored in the final output
buffer. As shown in (3), N is equal to 1000 as same as
the number of CNN classes. The block diagram is shown
in Fig. 11.

a;

0= 5 3)
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FIGURE 11. Softmax unit structure.

K. PROCESSOR MODIFICATIONS

The DSP resources of the FPGA are firstly used to imple-
ment PEs multipliers, which increase the power consumption
while processing CNN layers. After memory compression
and quantization, the weights are quantized to 4-bit only,
and they become one of a few distinct values. As a result,
the multiplication is made simply by shifting after decoding
these weights based on the decoding table in Table 5. This
modification lets the processor be DSP-free, and the power
consumption of multipliers is saved as the multiplication
has become a simple rewiring instead of large conventional
adders.

TABLE 5. Weights decoding table.

Weight value Decoded Shifting Sign
Code

0.5 0001 >>1 +ve
0.25 0010 >>2 +ve
0.125 0011 >>3 +ve
0.0625 0100 >>4 +ve
0.03125 0101 >>5 +ve
0.015625 0110 >>6 +ve
0.0078125 0111 >>7 +ve
-0.5 1001 >>1 -ve
-0.25 1010 >>2 -ve
-0.125 1011 >>3 -ve
-0.0625 1100 >>4 -ve
-0.03125 1101 >>5 -ve
-0.015625 1110 >>6 -ve
-0.0078125 1111 >>7 -ve

Also, convolution kernels with equal size are processed at
the same time which make some of the parallel cores are
unutilized during layers computations. This is resolved by
enabling the processing of multiple kernel sizes in parallel,
which increases the utilization of the cores. Finally, the time
overhead for writing and reading all padding pixels is skipped
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to save these cycles. Consequently, nearly 240,000 cycles are
saved for writing and thousands of cycles for reading.

VI. DISCUSSION AND RESULTS

In this section, testing of the proposed design is discussed,
and the experiment of selecting the fixed-point precision is
presented. In addition, the theoretical throughput and the
resource utilization of the proposed processor are reported.
After that, a comparison is made between Intel Core-i7 CPU,
NVidia GTX 1080Ti GPU, and the proposed accelerator to
show the power consumption improvement. Finally, a com-
parison between the existing GoogLeNet implementations
and the proposed accelerator is provided.

Design testing is an important step to validate the design
functionality. Firstly, testing and validation for each indepen-
dent unit are done by testing the unit with critical cases to
resolve any issue. The testing for each unit is done inter-
actively to trace every signal and try different inputs. The
integration is performed gradually between the design units.
After integrating all units, a top-level test bench is used to
test and validate the proposed hardware accelerator. Testing
images are converted earlier to binary RGB format and writ-
ten in separate files. The test bench loads the image on the
FPGA, and the processing is enabled by the *“Start CNN”
signal. The softmax unit computes the highest class probabil-
ity. Finally, the class number is mapped to its class name.

The effect of word length is tiny on the accuracy of convo-
lutional neural networks, as stated in the literature [40], [41].
Arithmetic operators with 12-bit fixed-point are used instead
of 32-bit to reduce storage size and power consumption dur-
ing operations. Several experiments are held to select the
suitable arithmetic operator width while keeping the accuracy
loss at least value. The experiments are done on an epoch
of 1024 images from the ImageNet dataset to see the effect
of sweeping the word length. The model is implemented in
software by providing the maximum and minimum values
that are represented by the accelerator, and every output
activation of every layer is suppressed to zero or truncated
to this word length.

The first experiment is done to select the integer part width.
Width of 4-bit is selected for the integer part to represent
the maximum integer activation, which keeps the accuracy
without any loss. The second experiment is done for the frac-
tional part while fixing the integer part at 4-bit. Fig. 12 shows
top-1, top-3, and top-5 error rates when using 16-bit to 9-bit
fixed-points. The number of bits represents the whole word
length. For example, at 14-bit word length, the fractional part
is 10-bit. The usage of 8-bit word length gives the worst
accuracy with a loss of nearly 30%. By increasing the length
gradually, the error rate starts to decrease to zero at 15-16 bits.
It is observed that using 12-bit width with an 8-bit fractional
part gives an error rate of 0.01 while keeping it multiple of
four. The word length reduction experiment is done on the
inference phase only to use it by the accelerator, so while
training, all values are represented by full precision. On the
other hand, theoretical throughput is calculated to compare it
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FIGURE 12. Error rate versus fixed point precision.

with the measured throughput. It is computed as follows:

#convolution cycles/frame

L kernel size .
= Z x OFMAP Size x #lFMaps

“

where the OFMAP stands for output feature map and IFMAP
stands for input feature map. (4) calculates the needed number
of cycles for all 57 GoogLeNet convolution layers. Also, this
count is added to the needed cycles for maxpooling, average
pooling, fully connected, and softmax layers processing. The
theoretical throughput is 30.3fps at a frequency of 200MHz.

The proposed hardware accelerator is implemented in
native RTL (Verilog) on Virtex-7 FPGA. The resources of
Virtex-7 FPGA are suitable for the proposed implementation
due to two reasons. Firstly, the on-chip BRAMs of Virtex-7
are 52,920Kb, which are used for weights and intermediate
layers storage. Secondly, the number of LUTs is suitable to
synthesize the design with 433,200 LUTSs. Table 6 shows the
system utilization on the FPGA. Thanks to memory compres-
sion, the accelerator is built without using DSP units, and the
memory is synthesized using on-chip BRAMs only. By using
Vivado power analyzer, the proposed hardware accelerator
classifies 6.4 frames per Watt as shown in Table 7.

I=1 #parallel kernels

TABLE 6. The proposed accelerator’s utilization on VC709.

Resource DSP BRAM LUT FF
Used 0 1134 407290 85927
Available 3600 1470 433200 866400
Utilization 0% 77% 94% 10%

The proposed accelerator runs at a maximum frequency
of 200MHz. As shown in Table 7, a comparison is made
between Intel Core-i7 CPU, NVidia GTX 1080Ti GPU,
and the proposed accelerator in terms of the operating
frequency, process technology, power consumption, perfor-
mance (fps), and power efficiency (fps/W). The results show
that the proposed accelerator provides the best performance
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TABLE 7. Comparison with other platforms.

Intell NVidia . This work
Core-i7 GTX 1080Ti

Frequency 3.1GHz 1.5GHz 200MHz
Technology 22nm 16nm 28nm
Power (W) 15 106 3.92
Performance (fps/s) 1.916 85.83 25.1
Performance” (fps/s) 0.124 11.45 25.1
Power Efficiency (fps/W) 0.128 0.81 6.4

(" Normalized performance to 200 MHz frequency

in terms of the number of frames per Watt. The power
efficiency is 6.4 frames/Watt for the proposed accelerator,
0.81 frames/Watt for NVidia GPU, and 0.128 frames/Watt
for Intel Core-i7. It is worth mentioning that the used FPGA
is fabricated with 28nm technology, which dissipates more
power than 14nm and 22nm technology nodes. It has 49.5x
power consumption improvement over Intel core-i7 and 7.8 x
over NVidia GTX 1080Ti.

The developers have started to use embedded Al acceler-
ators for deploying their deep learning applications. NVidia
Jetson Nano and Intel Movidius NCS are from these popular
accelerators. Table 8 shows the comparison between the pro-
posed hardware accelerator, NVidia Jetson Nano, and Intel
Movidius. Firstly, Jetson Nano is used to run GooglLeNet
using two frameworks: Caffe and TensorRT at a frequency of
920MHz [44]. Caffe framework is widely used in deep learn-
ing development, while TensorRT framework is developed by
NVidia to accelerate the inference process. Secondly, Intel
Movidius NCS (Neural Compute Stick) runs GooglLeNet
using

TABLE 8. Comparison with popular embedded Al accelerators.

NVidia NVidia Intel
Jetson Jetson Movidius ~ This work
Nano [42] Nano [42]  NCS [43]

Framework Caffe TensorRT Caffe -
Frequency 920MHz 920MHz 933MHz 200MHz
Power (W) 5 5 - 3.92
Performance
(fps/s) 19 60 13.66 25.1
Performance!"
(fpss) 4.13 13.1 2.93 25.1
Power Efficiency
(fps/W) 3.8 12 - 6.4

(" Normalized performance to 200 MHz frequency

Caffe framework at a frequency of 933MHz [45]. All
inference experiments are done with batch size 1. The table
shows that the proposed hardware accelerator overcomes
Jetson Nano and Intel Movidius while running with Caffe
framework, but Jetson has a better performance using Ten-
sorRT framework. The power consumption is SW for Jet-
son and 3.92W for the proposed design. Unfortunately, Intel
Movidius power consumption for GoogleNet is not men-
tioned in the experiment. The power efficiency is the best for
Jetson Nano using TensorRT framework with 12 frames/Watt,
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TABLE 9. Comparison with other googLeNet hardware implementations.

Zhao [19] Gokhale [18] Lu [46] CoNNA_C3 [47] This work
Platform ASIC - TSMC Zynq XC7Z045 Zynq ZCU102 Zynq ZCU102 Virtex-7 VC709
Max Frequency (MHz) 650 250 200 100 200
Precision 16-bit fixed 16-bit fixed 16-bit fixed 16-bit fixed 12-bit fixed
Process Technology 65nm 28nm 16nm 16nm 28nm
Power (W) 0.859 9.48 23.6 - 3.92
Peak Performance (GOP/s) 242.4 116.5 257.4 17.325 129.2
Power Efficiency (GOP/W) 282 12.3 10.9 - 32.7
Power Efficiency (fps/W) - 2.87 - - 6.4
Performance (fps)" 23.6 27.2 - 4.95 25.1
Utilization efficiency 83% 91% - - 89%

() Normalized performance to 200 MHz frequency

but the proposed implementation is better while using Caffe
framework with 6.4 frames/Watt.

Another comparison is made between the proposed accel-
erator and GoogLeNet hardware accelerators in the literature,
as shown in Table 9. The first implementation is Zhao’s
hardware accelerator, which is an ASIC chip built with 65nm
technology. The second implementation is Gokhale’s FPGA
implementation on Zynq XC7Z045. The last two implemen-
tations are Lu’s implementation and CoNNA_C3 on Zynq
ZCU102. The comparison is made between the implemen-
tations in terms of the operating frequency, fixed-point preci-
sion, process technology, power consumption, performance,
and power efficiency, as shown in Table 9. The results show
that the proposed accelerator provides the best performance
in terms of the number of frames per Watt. In addition, it over-
comes Gokhale’s implementation in terms of peak perfor-
mance and power consumption. Gokhale’s implementation
computes the number of frames per second for convolution
layers only, so it processes 27.2fps compared to 25.1fps for
the proposed implementation. In addition, Zhao’s implemen-
tation overcomes the proposed accelerator in terms of GOP/s
as it works on 650MHz. Also, it is an ASIC implementation,
so the power consumption is expected to be lower than the
FPGA implementations. While the other implementations use
a plain GoogleNet CNN model, the proposed implemen-
tation uses a compressed CNN model. This is one of the
design advantages which improves the power consumption
as discussed earlier.

The data access patterns variations in CNNs make it
difficult for custom architectures to get higher utilization
efficiency while processing all CNN layers. Consequently,
utilization efficiency is stated as the ratio of the actual number
of operations processed to the theoretical maximum number
of the processed operations. This is translated to the ratio
of actual fps to the utilization efficiency is 83% for Zhao’s
accelerator, 91% for Gokhale’s accelerator, and 89% for this
proposed work. Also, Zhao’s and Gokhale’s implementations
compute the number of frames per second for convolution
layer acceleration only, which is degraded when FC and
average pooling layers are added.
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VII. CONCLUSION

In this paper, a power-efficient convolutional neural net-
works accelerator based on GoogleNet CNN was pro-
posed. Weights pruning and quantization were applied, which
reduced the memory size by 57.6x with a top-5 error rate of
2.6%. As aresult, only FPGA BRAMs were used for weights
and activations storage without using offline DRAMs. The
compression model was explained in detail, and the reduc-
tion for every GoogleNet layer was presented. In addition,
this accelerator didn’t use any DSP units as it replaced all
multiplications by shifting operations. The accelerator was
built based on a time-sharing/pipelined architecture that could
process the CNN model layer by layer using 224 PEs. The
architecture proposed a new data fetching mechanism that
increased data reuse. All accelerator units were implemented
in native RTL (Verilog). Moreover, several approximations
and improvements were adopted to improve the design with
a little accuracy loss. A word length of 12-bit was used
after performing several experiments to select a suitable
word length. The processor classified 25.1fps for GoogLeNet
inference using 3.92W which was more power-efficient than
the previous FPGA implementations for GoogLeNet CNN.
It provided 49.5x power consumption improvement over
Intel Core-i7 and 7.8x over NVidia GTX 1080Ti. Further-
more, the proposed hardware accelerator was compared with
Jetson Nano and Intel Movidius. On the other hand, the
processor achieved a top-5 classification accuracy of 91%,
which was significantly higher than comparable architec-
tures. Regarding future work, the control units in the pro-
posed hardware accelerator can be reconfigured to process
other CNN models such as ResNet or SqueezeNet. Also, the
memory compression framework can be applied on the CNN
software model to reduce the memory size and power con-
sumption. In addition, the ASIC implementation can be made
to get better performance in terms of power consumption,
processing speed, and utilized area.
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