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ABSTRACT Anomalies could be the threats to the network that have ever/never happened. To protect
networks against malicious access is always challenging even though it has been studied for a long time.
Due to the evolution of network in both new technologies and fast growth of connected devices, network
attacks are getting versatile as well. Comparing to the traditional detection approaches, machine learning
is a novel and flexible method to detect intrusions in the network, it is applicable to any network structure.
In this paper, we introduce the challenges of anomaly detection in the traditional network, as well as in
the next generation network, and review the implementation of machine learning in the anomaly detection
under different network contexts. The procedure of each machine learning category is explained, as well
as the methodologies and advantages are presented. The comparison of using different machine learning
models is also summarised.

INDEX TERMS Machine learning, anomaly detection, network security, software defined network, Internet

of Things, cloud network.

I. INTRODUCTION

Network security has become increasingly critical these days,
from the traditional computer network and cellular network
to the next generation software defined network (SDN) and
Internet of Things (IoT). The rapid growing network brings
efficiency and convenience to our life, as well as the demand
for high quality of service. Even though the network use case
is getting more complex and a network device needs to pro-
cess more data, users hope to get responses more quickly and
show a lower tolerance to the service interruption. Firewalls,
deep packet inspection (DPI) systems and intrusion detection
systems (IDS) are the typical methods for anomaly detection,
however, the cost to deploy these countermeasures and the
complexity of system have to be considered [1], [2]. The
security issue arises along with the evolution of network,
the diversity of network services and applications provides
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hackers more opportunities to compromise the network than
ever before. Especially, the working procedure in the next
generation network, is quite different from the legacy net-
work, current anomaly detection methods need upgrade to
adapt to the change in these networks. For example, SDN
decouples the control plane from the data plane, a centralised
controller is usually responsible for the management of multi-
ple data plane devices, besides a higher work load comparing
to the control plane of a legacy router/switch, this architecture
brings new challenges that the entire network is impacted if
the controller is compromised. And the interaction between
the control and data plane is no longer within the same hard-
ware, it is mostly going through a network so that the admin-
istrator has to consider the security of data transmission, as a
command from the controller towards the forwarding device
could be modified during transfer. Similarly, data storage
in the cloud network is quite different from the past, data
has to pass through the network before being stored in a
remote server. Also, IoT aims to connect everything from
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everywhere, the diversity of IoT applications increases the
number of devices in the network, as well as complicates the
network architecture. Due to the large number of connected
devices and the high-speed broadband, anomaly detection
requires to process big data over a complex network structure
with a prompt reaction. This has become one of the biggest
challenges to protect networks [3]-[5].

Machine learning (ML), as an analytical tool based on
statistics, has been widely discussed and deployed in various
areas. Its capability to make decisions after study and analysis
relieves people from processing a huge amount of data, so that
ML is normally used to investigate complicated scenarios.
Furthermore, its response to abnormal behaviours is usually
much quicker than human beings, which is an advantage
in early detection. For known attacks, ML gains experi-
ence from existing records to understand their characteristics;
while for unknown attacks, ML finds the outlier from the
intrinsic patterns of data. ML can create diverse models with
various algorithms, the way to work with these models also
has a big difference. Based on the available dataset, the
network operator could choose supervised learning to train
a predictor when the size of labelled data is large, or a semi-
supervised learning model when the number of labelled data
is limited. Even if running the same model to detect the same
type of attack, the outcome varies depending on the features
that you prefer ML to consider [6], [7]. As a matter of fact,
the most difficult step using ML is data preparation, from
data collection to annotation, a high quality dataset is vital
to the prediction. Because the output of ML highly relies on
the data from which algorithms learn the skill to distinguish
normal operations from anomalous behaviours. Thus, in this
paper, we introduce ML algorithms, as well as discuss the
implementation of ML models in anomaly detection under
different network contexts.

The contributions of this article are:

« It presents a comprehensive survey on the ML types.

o Detailed review and discussion of ML techniques in

anomaly detection are introduced.

« Various network scenarios employing ML for anomaly

detection are analysed.

o Characteristics and advantages of each ML model in

anomaly detection are summarised.

The rest of this article is organised as follows. Related
works are presented in Section II. Section III introduces four
ML types and their procedures in anomaly detection. Then
Section IV reviews the challenges of anomaly detection under
various network contexts. Detailed survey and comparison of
existing solutions are in the Section V. Finally, Section VI
concludes this article.

Il. RELATED WORK

ML has been applied to security in various types of networks,
from the traditional computer network to the IoT network,
and there have been surveys discussing the existing solutions,
some recent review papers from major journals are listed
below. Buczak et al. [8] focused on the intrusion detection
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system using supervised and unsupervised learning in the
cyber network. Hodo et al. [9] reviewed the ML techniques
in the IDS under computer, cloud and IoT networks, the
feature selection when training a supervised learning model
or classifying traffic in a unsupervised learning model is
also discussed to show its importance in the ML based IDS.
Da Costa et al. [10] surveyed the intrusion detection using
ML applications under the context of IoT. Ucci et al. [11]
and Gibert et al. [14] researched malware detection and
classification in the Windows system with supervised and
unsupervised learning. They talked about the features a mal-
ware is interested in, and how the ML algorithms are used to
classify a malware. Tahsien et al. [12] and Hussain et al. [13]
described the potential threats per IoT layer and introduced
the principle of some ML algorithms, then ML applications
are presented to solve these issues. Nassif ef al. [15] studied
the threats in the cloud network, and the way to secure cloud
network using supervised learning.

Although ML techniques have been deployed in diverse
domains for addressing security issues, most of the surveys
only focused on a specific network type, there is no com-
prehensive study on the anomaly detection using four types
of ML models under different network environment. Hence,
in this paper, we describe how supervised learning, unsu-
pervised learning, semi-supervised learning and reinforce-
ment learning can be used in the anomaly detection, and
the advantages and disadvantages of existing solutions in the
computer network, cellular network, SDN, IoT and cloud
network. Moreover, we also include some detection meth-
ods which are proposed in general without specifying any
network type, these solutions are validated by experimental
dataset. The comparison of our paper and existing survey
papers are summarised in Table 1. And the taxonomy of this
survey is illustrated in Figure 1.

Supervised Learning in the

— Anomaly Detection
Unsupervised Learning in the
Machine Learning _4' Anomaly Detection
Techniques Semi-supervised Learning in the
Anomaly Detection
Challenges in L, Reinforcement Learning in the

Various Networks Anomaly Detection

Taxonomy

—> Traditional Computer Network

> Cellular/ISP/Wireless Network

Machine Learning |~ SDN

Use Cases loT

—> Cloud/Edge/Fog Network

— Experimental Dataset
FIGURE 1. Taxonomy of this survey paper.

Ill. BACKGROUND OF MACHINE LEARNING (ML)
TECHNIQUES

As a subset of Artificial Intelligence (AI), ML is a powerful
tool that can be used for network anomaly detection via
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TABLE 1. Comparison of this paper with other survey papers.

Papers Published In Year ML Techniques Focused Areas
Buczak et al. [8] IEEE COMST 2016 SuperVISeciez;r;(rilillllr;uperwsed Cyber analytics for intrusion detection
Hodo ef al. [9] ArXiv 2017 Supervlsed1 and 'unsuperv1sed Intrusion detection in the cloud, IoT and
earning computer network
Da Costa et al. [10] Elsevier Computer 2019 Super\_flsed, un_superv1se_d and Intrusion detection in the IoT network
Networks semi-supervised learning
Ucci et al. [11] Elsevier Computers 2019 Sup CrYlSGd, un.supervlse.d and Malware analysis in Windows
and Security semi-supervised learning
Elsevier Network and Supervised, unsupervised and
Tahsien ez al. [12] Computer 2020 per ’ P . IoT security
L reinforcement learning
Applications
Supervised, unsupervised,
Hussain et al. [13] IEEE COMST 2020 semi-supervised and reinforcement IoT security
learning
Elsevier Network and . . . e
Gibert et al. [14] Computer 2020 Supervised and .unsuperv1sed Malware detecnop and classification in
S learning Windows
Applications
Nassif et al. [15] IEEE Access 2021 Supervised learning Cloud security
Supervised, unsupervised, Anomaly detection in cellular networks,
This paper - 2021 semi-supervised and reinforcement SDN, IoT networks, cloud networks and
learning traditional computer networks

scientific study of traffic samples, this procedure is quite
different under each ML category. Even running the same ML
model with two identical datasets, the performance may vary
from the way a ML algorithm is used, such as the features
chosen from the dataset or the weight defined for each feature.
More features do not always mean better results, instead it
could lead to overfitting in the model [16]. Thus, it is worth
reviewing and comparing current solutions so as to better

understand and build a model with available ML techniques

(ii)

and data in hand. ML can be classified into four categories
as shown in Figure 2: (i) supervised learning (SL), (ii) unsu-
pervised learning (UL), (iii) semi-supervised learning (SSL),

and (iv) reinforcement learning (RL).

(i) Supervised Learning (SL) learns from existing labelled

datasets, which is called training set, and by comparing
with the known labels the predicted output can be eval-
uated. Past experience is used as a reference to make a
decision, and a high quality training set is always essen-
tial to build a well-performed model, however, a satis-
fying result is not guaranteed by the dataset only, the
training method is another key factor in building a trust-
worthy predictor. In the SL, a classifier model is created
through training first, after that it is able to predict either
discrete or continuous outputs. Before prediction, the
performance, such as accuracy, of a SL model is usually
validated to show its reliability. SL can also be divided
into classification and regression techniques [17].

The classification technique classifies input data into
discrete categories, it calculates the probability of a test
sample to be under each category, and the one with most
votes wins [18]. This probability is the likelihood of a
sample belonging to a class. Typical applications includ-
ing medical imaging and credit scoring. The regression
technique predicts continuous responses, usually quan-
tities, from the input variables, for example, changes in
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(iii)

temperature or fluctuations in power demand [19]. Typ-
ical applications include electricity load forecasting and
algorithmic trading. To evaluate these two techniques,
the classification model can check the percentage of
correct predictions; while the regression model could
calculate the root-mean-square error, because the output
is continuous, a deviation between the prediction and
real value is acceptable.

Unsupervised Learning (UL) finds hidden patterns or
intrinsic structures in data to group them, it has input
data but no expected output variables. Unlike SL, there
is neither labelled sample nor training process, which is
to say it works on its own and its performance can hardly
be evaluated. Although some researchers use existing
labelled data in the UL model to verify its outcome,
this is unable to achieve in the real implementation, and
sometimes experts have to analyse the result manually
to run an external evaluation. UL is mainly used for
clustering and dimensionality reduction. In the cluster
problem, it uses clustering techniques so that one sample
may belong to one cluster only or multiple clusters;
while in the dimensionality reduction, UL identifies
the correlated features in the dataset, so that redundant
information can be removed to reduce the noise. Typ-
ical applications include market research, and object
recognition [20].

Semi-supervised Learning (SSL) combines both
labelled and unlabelled data to build the classifier, which
is suitable for the scenario that has a paucity of labelled
dataset. It employs the training process as mentioned in
the supervised learning to prepare a predictor with lim-
ited labelled data, and this predictor classifies unlabelled
samples, then each pseudo labelled sample is given
a confidence value to tell the administrator whether
this prediction is assured. Those confident samples will
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FIGURE 2. Machine Learning (ML) categories, typical algorithms and use cases.

join the new training set to update the classifier until
all the data have labels. As unlabelled data is actually
tagged randomly in the prediction, assumptions, such
as smoothness and cluster, have to be made prior to the
training of unlabelled instances [21], [22].
Reinforcement Learning (RL) uses states, actions, and
rewards to judge if the machine has made a good deci-
sion. The algorithm used in RL is called an agent, and
the agent is working in the object, called environment.
At first, the environment sends the current state to the
agent, and the agent chooses actions in response to that
state, so that it enters a new state based on the action.
Then, the environment sends this new state and a reward
to the agent. This loop keeps running until the agent
receives a terminal state. Through the rewards given by
the environment, the agent develops an optimal policy to
achieve the maximum long-term rewards [23].

To evaluate the performance of ML models, there are four
main metrics: accuracy, precision, recall and F-measure. The
procedure of running ML in anomaly detection is summarised
as follows.

(iv)

Data Model
Preparation Training

i Tuning Parameters '

FIGURE 3. Supervised learning procedure.

Algorithm

. .
Selection

Evaluation Prediction

A. SL IN THE ANOMALY DETECTION

In general, the process of anomaly detection using SL is
shown in Figure 3, it includes: data preparation, algorithm
selection, model training, evaluation, model improvement
and prediction. Data preparation is the most important and
time-consuming step, from data collection to annotation. The
collected data is not ready to work in the SL, duplicated data
shall be removed, features must be extracted and converted
to the format that can be understood by the SL algorithm.
Besides, a classifier is added to each sample to prepare a
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group of labelled data. This data group is further split into
training set and validation set. Once the SL algorithm is
chosen, a predictor is trained via the training set, and it
is then evaluated through the validation set. Parameters of
a SL algorithm can be adjusted to reach the best outcome
according to the result of evaluation. In the end, the trained
model is able to predict samples in real time [24].

Rather than using all the features in the dataset, select
only the key features for training and prediction is a better
option, because it filters features that are not strong related
to the output, and facilitates an enhanced understanding of
the model [25]. Sometimes the performance of prediction
improves, and sometimes even though the outcome impairs
the degradation of prediction is very limited. Additionally,
this saves system resources and time in training. Techniques
to extract features are described below:

1) Wrapper approach searches for essential features by
evaluating the output using the predictor itself. The
entire feature group is rearranged into several subsets,
and the subset which has the lowest estimated error is
considered as the most related features in the predic-
tion [26]. Genetic algorithm (GA) [27] and recursive
feature elimination [28] can be applied in the anomaly
detection application.

2) Filter approach assesses feature importance via the char-
acteristics of dataset, such as correlation, and the pre-
dictor is ignored in this method [29]. Typical algorithms
include fisher score [30] and correlation based feature
selection [31].

3) Embedded method is a trade off between the previ-
ous two methods, because the computational cost in
wrapper method is high; while the selected features
using filter method may not be optimal. Thus, embed-
ded method picks features in filter mode and validate
the performance in wrapper mode [32], [33]. Lasso is
a typical algorithm that can be employed in anomaly
detection [34].

Apart from the measures above, ensemble is also used to

gain a more stable and reliable model, two typical ensemble
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types are bagging and boosting. Bagging method trains clas-
sifiers independently and votes with equal weight, it reduces
variance in the model [35]; while boosting method trains a
new model based on the previous model, it has low bias in
the model [36].

B. UL IN THE ANOMALY DETECTION

As no training with labelled data is performed in the UL for
anomaly detection, finding outliers in the data is based on the
assumption that abnormal behaviours rarely occur. The pro-
cedure is given in Figure 4, similar to SL, data are collected
and adapted to the form that can be understood by the UL
algorithm, but no label is required. Comparing to SL, UL is
able to process computationally complex cases, because it is
data-driven and can handle unknown scenarios. On the basis
of the feature of anomaly and the principle of UL algorithm,
a specific attack is more likely to be detected by certain UL
models, which is to say that selecting a suitable algorithm is
also necessary for anomaly detection [37]. Moreover, feature
extraction and normalisation are usually performed on the
data before sending to the UL clustering models. Numerical
data are always preferred in the test, such as IP address and
number of bytes, because they are valuable information in a
cluster [38], [39].

Process &
Output

Data Algorithm
Preparation Selection

FIGURE 4. Unsupervised learning procedure.

In the real implementation, the accuracy of an UL cluster-
ing model is hard to evaluate, the outcome might be untrust-
worthy. However, with labelled data, the performance of UL
in the anomaly detection is proved to be satisfying [40].
Especially in front of unknown attacks, UL has its advantages
over SL. Since SL models rely on the training data, unknown
attacks might slip through the net due to the lack of related
records, and UL models could step in to detect the issue.

‘ Select & Add to ‘
‘ Labelled Dataset ‘
After
Fully-trained
Labelled Algorithm ‘ Model ey |
e . Unlabelled| f=={ Prediction
Data Selection Training
| ‘ o Data } —
-t Ein B
Data Unlabelled Unconfident ‘
Preparation Data Decision

FIGURE 5. Semi-supervised learning procedure.

C. SSL IN THE ANOMALY DETECTION

The procedure of using SSL is illustrated in Figure 5, apart
from the data preparation of labelled and unlabelled data, SSL
trains a model with labelled data first. These labelled data
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could be in multiple classes, which means the training set has
samples of all the attack types; or in one class, i.e. normal
samples, which is to say the predictor is trained by normal
traffic only and needs to classify anomalous traffic. As a
trade-off between SL and UL, SSL is more applicable in
the real world, because it is an option to obtain a relatively
reliable prediction with a small number of data. SSL relieves
the lack of labelled data and ensures the model has adequate
training before implementation, however, incorrect classifi-
cation of the unlabelled data could mislead the model to false
prediction [41].

Action

State

Environment Agent

Reward

FIGURE 6. Reinforcement learning procedure.

D. RL IN THE ANOMALY DETECTION

RL is a mistake-driven learning method, which is depicted in
Figure 6, this learning style is quite similar to the learning
of human beings. One of the challenges to leverage RL in
anomaly detection is the definition of RL parameters: state,
action and reward. Although it does not require data labelling,
there are too many features in the network that can become the
state in RL, as well as the reward after each operation. These
parameters determine the performance of RL in identifying
malicious behaviours in the network.

Unlike other ML types, errors can be corrected in the RL,
the machine “realises” its mistake from rewards or long-term
returns, and then it will avoid these actions under the specific
environment. Since RL is learning through the interaction
with network for anomaly detection, a large amount of data
and computing resources are required to achieve an ideal
solution.

The difference of using the four ML types for anomaly
detection in general is summarised in Table 2.

IV. ANOMALY DETECTION CHALLENGES IN VARIOUS
NETWORKS

Before we explain ML for anomaly detection, challenges
under different network contexts, including computer net-
work, cellular network, SDN, IoT and cloud network, are
discussed. Although cyber security has been researched for
years, there are still open issues and challenges in different
types of networks. In the traditional computer network, the
intrusion detection system (IDS) is a typical countermeasure
deployed to protect the network, especially in the large scale
network, it is a mature system against threats. However,
there are still some challenges in the IDS when protecting

152383



IEEE Access

S. Wang et al.: Machine Learning in Network Anomaly Detection: Survey

TABLE 2. Comparison of supervised, unsupervised, semi-supervised and reinforcement learning in anomaly detection.

'Il;/i) I;S Summary Characteristics Advantages Disadvantages
False prediction rate increases with
. N . The definition of attack types can be unfamiliar data. Labelled data is rare and
Predicting after trained Performance can be X . . PP
. . specific via the training set. More the cost of labelling is high in the real
SL by plenty of labelled validated via labelled : P . . A .
dataset test data reliable when prediction is made in a world. Computational cost is high during
’ ’ similar situation to the training set. training, especially with large data size.
Unable to handle complex tasks.
Able to detect .nove.,l threats if their Unable to know the performance due to
features are quite different from the
. . . . the absence of labelled data. It may be a
Categorise unlabelled Decision can be made normal ones. Getting unlabelled data is o
UL . : : costly affair to analyse the output when
data from features given. without labelled data. much easier. Can handle complex : o L
scenarios. Quicker response in 1dent1fy1ng the threat tpeina
classification than SL. complicated scenario.
Initialise supervised Expand training set with
learning with a small high confident Obtain more confidence from labelled Emplovment of incorrect predicted
SSL group of labelled data, unlabelled data. The data than in the UL. Labelling limited unlr; bglle d data could misriea d the
and then classify final model is trained by size of data is acceptable in the real classifier to make wrone decisions
unlabelled data labelled and pseudo world. & '
accordingly. labelled data.
Use trial and error Lr];\?vzt:rlg f;{llfgp; Zf
method to try all the Jude Applicable to complicated real world
. . response to the . L .
RL possible state-action environment. Emphasise problems that require the best results Resource consumption is high, because it
pairs so as to find the the final outéome rather after a series of operations rather than a is going to try all the state-action pairs.
strategy with a best . . single action.
than a single instant
long-term return.
output.

the traditional network. The three key factors in evaluating
an IDS are: accuracy, completeness and performance. The
accuracy and completeness are hard to measure, and most
of the evaluations are done by contrived dataset, which is
hard to be unbiased and comprehensive. The complexity of
IDS also increases in order to cover more attack scenarios.
Furthermore, since new attacks are introduced and existing
attacks are changing their methods, to update the profiles in
the IDS after an unknown attack been detected, or to update
the IDS itself to adapt to the change of attack method is not
an easy task [2], [42].

Unlike legacy computer networks, devices in the
cellular/wireless network are usually wireless connected and
have mobility, a secure access authentication is essential
to alleviate the probability of threats, such as DoS/DDoS
attacks. Moreover, the large number of applications running
in the cell phone provides a big opportunity for malware. Due
to the diversity of services on the cell phone, the network
is getting increasingly complex. Although the network can
mostly work around the issue to maintain the normal connec-
tion, the anomaly detection still requires a high human work-
load. Because the analysis and localisation of the root cause
are time-consuming, even for experienced engineers [43].

Both SDN and IoT networks have not been widely
deployed yet, so that not much experience in these two net-
works. However, from the features and network architecture,
some challenges can still be concluded. For SDN, the cen-
tralised control brings scalability issues, especially against
flooding attacks [44]. The open source platform allows var-
ious detection methods to be implemented in the network,
in the meanwhile, how to avoid the conflict between these
methods is a potential challenge. For IoT, end devices are
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usually lack of security features due to energy efficiency,
so the placement of anomaly detection system needs to be
considered. Moreover, the detection range is also challenging,
as existing solutions only target specific attacks, they need to
be combined over the entire network [45].

IDS is also employed in the cloud network for anomaly
detection, and since a cloud network consists of multiple
components, the IDS needs to be configured in each compo-
nent. Thus, the position of IDS is a challenge, and the work
load of configuration is heavy [46].

In simple terms, the anomaly detection in the network is
usually achieved through condition monitoring, the network
state is defined by comparing the measurement with the
maximum and minimum boundaries. To summarise, the key
challenges in the existing anomaly detection solutions are
the complexity of system and adaptability to the diversity
of attacks. While a ML model is able to solve these issues,
because the model can be updated and improved through
learning, however, the performance still needs evaluation in
each network.

V. ML FOR ANOMALY DETECTION USE CASES
In this section, we describe the ML applications in anomaly
detection under different network domains.

A. TRADITIONAL COMPUTER NETWORK

Although countermeasures against attacks in the cyber net-
work have been researched for many years, both these solu-
tions and hackers are getting sophisticated, and the network
scenario is becoming complex as well. ML involves more
automatic quick responses to the change in the network,
as well as in anomalous behaviours. Hamamoto et al. [47]
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TABLE 3. Anomaly detection in the computer networks using ML.

Papers ML Models Anomaly Methodology Advantages Disadvantages
Denial of
Hamamoto| UL: GA and sejwc.e ('DOS)d Use GA to analyse network High p(ierformanf:e in attack | Recallis gnlg/ 176.5% Wthh
et al. [47] FL and Distribute: behaviour, and FL for prediction etect.lon n an means the va sg negative
’ DoS (DDoS) ’ ’ unsupervised manner. rate is high.
attacks
Cluster data and find the centre of - .
Gu et each cluster, then classify data into True positive rate in False positive rate 1s
SSL: K-Means DDoS attacks S R A unstable, it varies from 0 to
al. [48] a cluster referring to the distance to detection is high.
over 28%.
the cluster centre.
Use the output of a SL model as Good accuracy rate when Validated in the Matlab by
Alauthman RL: NN Botnet attacks the state in the RL model, both the the input data is reduced in three datasets, not
etal. [49] ’ SL and RL model are improving the model, and training implemented in the real
through this interaction. time is reduced. network.
Can automatically adapt to
Smadi et Use the reward from RL model to any change in the network. Require much more
RL: NN Phishing emails determine if current SL model is The SL model is improved d
al. [50] . R features than other works.
the best. through the interaction
with the RL model.
Use the RL model to adjust . - . Recall and precision are
. The optimal configuration .
General parameters in the anomaly . unstable. The difference
Xu et RL: . of an anomaly detection
. network detection models, and find the . between the best and worst
al. [51] Q-learning . . . model is found through the
anomalies optimal model who has the highest outputs could be around
RL model.
reward. 20%.
. The accuracy is low and
Various attacks Run multiple agents under the . false positive rate is high
Sethi et RL: Deep v same network to determine the High accuracy in the ) ) .
such as DoS . when tested using
al. [52] Q-network network states, and reward the RL detection.
attacks model from its prediction NSL-KDD and
P ' UNSW-NBIS datasets.
RL: Deep Take flows, bandwidth and user Flexible and automatic Validated in the simulator
Jin et Deterministic Insider threats reputation into consideration to security traffic by a dataset, not
al. [53] Policy train a RL model to optimise traffic management with fast implemented in the real
Gradient scheduling policy. response. network.

group network flows by time intervals, and extract key fea-
tures, such as bits per second and source IP addresses. For
numeric data, they can be used in the model directly; while for
nominal values, entropy is calculated to represent the distri-
bution of a specific value within the time interval. GA learns
the behavioral pattern of traffic and predicts the network
behavior. Based on the output from GA, fuzzy logic (FL)
evaluates whether the traffic flow is abnormal in a time inter-
val. Normally, labelled data and unlabelled data are processed
separately in SSL, Gu et al. [48] cluster normal and abnormal
data by the small amount of tagged samples using K-Means
algorithm, the density of each data point within a specific
radius is computed to find the cluster centre. With unlabelled
data, the centre of each cluster is updated until convergence.
To detect anomaly in the network, the distance between the
data feature and each cluster centre is calculated, and the data
is classified into the cluster with the shortest distance.
Sometimes the state or environment of RL model could
be difficult to describe, so that the definition with the
aid of other ML algorithms becomes a feasible solution.
Alauthman et al. [49] use the output of NN to be the host
state in a RL model for botnet detection, this state contains
two sub-states which are the probability of being malicious
and legitimate. The highest expected reward is then extracted
depends on which probability is higher. A better NN policy
will replace the old one, as well as the new behaviours that
get a higher rewards will join the training set. Hence, the RL

VOLUME 9, 2021

agent is improving to create a superior detector. Also, the
RL model is used to enhance the detection performance in
other models. Smadi et al. [50] train a NN model to outline
the email filter system, and a RL model is employed during
the training of NN model. For each training, neurons in the
current NN model are updated, and a reward is given based on
the output. A NN model with a higher reward always replaces
the old model until the preset round of training is hit or the
termination condition is met. Xu et al. [51] employ RL to
adjust anomaly detection modules, which contain a variety
of detection algorithms, to find the optimal strategy. Before
adjustment, the implementation of a strategy is set as the tar-
get state, and the parameter adjustment is defined as an action
in the RL model. Actions are taken iteratively until the state
of anomaly detection module hits the target, or the predefined
number of iteration is reached. With multiple attempts using
various anomaly detection strategies, the one with largest
accumulative rewards is the optimal strategy. To determine
the reward in RL, Sethi et al. [52] adopt IDS to grade the out-
put from RL agents. Multiple agents are deployed in routers
under the same context of network, and each agent has several
classifiers to predict the RL state. The state vector, which
consists of the output from classifiers along with feature
vector, is fed to the deep Q-network to obtain a Q-value.
The action function makes decision on whether it is an attack
or not through the comparison of Q-value and threshold.
A positive or negative reward is received if the classification
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is the same as the actual result, which is given by
the IDS.

Besides detecting abnormal behaviours, ML can also be
used in the network management to avoid potential threats.
Jin and Wang [53] employ RL to find the best scheduling
policy to manage intranet traffic with the consideration of
security. Each user has a reputation value to indicate how
trustworthy his traffic is. The state in the RL is represented by
the available bandwidth of links and the flows that are waiting
to be scheduled. Actions are given per flow in the proposed
model, and each action is comprised of the bandwidth alloca-
tion to this flow. The performance of scheduler is rewarded by
the utilisation of links, length of queue, latency and the user
trust level. This RL model considers security, performance
and user requirement in the network when defending threats
from inside. The ML applications in the traditional computer
networks are summarised in Table 3.

B. CELLULAR/INTERNET SERVICE PROVIDER
NETWORK/WIRELESS NETWORK

Comparing to the computer network, cellular/wireless net-
works are more wireless connection oriented. Because of the
transmission medium, devices and links are more vulnerable
to the attacks than using wired connection. And for cellular
network, latency shall be much lower than in the computer
networks because of voice services, while ML is able to
provide a low detection delay approach. Malicious mobile
applications usually generate benign traffic which far out-
weighs anomalous traffic, so that imbalanced data becomes
a problem in the data analytic, because there is not enough
information that can clearly indicate the abnormal behaviour.
However, ML can overcome this challenge, Chen et al. [54]
identify malicious behaviours in the cellular network so as
to detect malicious applications. Based on the destination IP
address and domain name in the packet, most SL algorithms
have an excellent accuracy in judging malwares in the cell
phone. Otoum et al. [55] deploy a RL model in the wire-
less sensor network to detect anomalies. The cluster head is
elected based on the factors, such as the connectivity of anode
and signal strength. Then the cluster head collects sensed
data and redirects them to the RL model for analysis. The
RL model makes decision on whether a sensor is behaving
abnormally and the reward is given accordingly.

As supervised learning relies on labelled training set, on the
one hand, its response to the anomalies might be slow due
to the lack of abnormal samples. Hence, Dromard et al. [56]
involve grid incremental clustering algorithms in the UL to
rapidly detect any abnormal state in the network, so that real-
time detection is achievable. The entire dataset is partitioned
into cells, and each cell contains a subset of the original
dataset. Then, dense cells who have a common face are
grouped to form a cluster, which reduces the complexity
comparing to handle the whole dataset. When new data come
into the network, the update only happens in the previous
feature space partition so that the computation is finished fast.
On the other hand, annotating a large scale dataset is a big
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challenge in SL, so Al Mamun and Valimaki [57] propose an
automatic labelling algorithm for applying anomaly detection
in the cellular network. This algorithm considers two factors
to classify a sample: range of KPI value and time series
profile. A threshold is defined for KPI value to determine
whether it is normal, while for time series profile the mean
value and standard deviation are considered. Only when both
of these two factors are abnormal, the sample is categorised
as anomaly.

Without labelled data, UL is also a good option.
Dey et al. [58] filter man-in-the-middle (MitM) attacks
through profiles and features of incoming traffic. The oper-
ating system and coarse location of a client are utilised
to determine whether the request is suspicious. And then
an unsupervised clustering algorithm based on inter-packet
delay further inspects the traffic. Hoang et al. [59] propose
a simple method to detect eavesdropping attacks based on
one-class labelled data, which only known as normal, using
UL. An area that contains normal data is defined by one-class
SVM (OCSVM) first. Then, unlabelled data are divided into
two groups via K-Means model. For those data that sit within
the predefined area, they are labelled as normal, or abnormal
otherwise if outside the area.

Although UL can work solo to analyse problems, combin-
ing it with other ML techniques could result in a superior
output [62]. Qu et al. [60] combine Mean Shift Clustering
Algorithm (MSCA) and SVM to detect unknown attacks in
the wireless sensor network, MSCA distinguishes attacks
through abnormal features, and SVM is employed to max-
imise the margin between normal and attack features, so that
the error in classification is minimised.

Ensemble method is another approach to improve predic-
tive performance, a training set is divided into several small
subsets, and one or multiple SL algorithms generate several
classifiers via training by these subsets. The final prediction
is given by combining the outputs from classifiers, i.e. the one
with most votes wins [63], [64]. Vanerio and Casas [61] use a
supervised learning model, called Super Learner, to enhance
anomaly detection with ensemble learning approach. Super
Learner is able to find the best combination of a group of basic
prediction algorithms. Through the evaluation over a semi-
synthetic dataset [65] which records traffic in the cellular
network, results are better than using a single prediction
model. Existing solutions are summarised in Table 4.

C. SDN

The programmability of SDN simplifies the implementa-
tion of ML than in other networks. ML security applica-
tions can be developed and deployed in the SDN directly
without any licence or compatibility concern. Furthermore,
data collection via SDN controllers is much easier than in
the traditional network due to the centralised management.
Sebbar et al. [66] deploy a SL model in the southbound inter-
face (SBI) to detect MitM attack, it aims to disconnect a node
if it is anomalous. The state of a network node, time to live and
response time are the references to suspicious requests, the
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TABLE 4. Anomaly detection in the cellular/wireless networks using ML.

Papers ML Models Anomaly Methodology Advantages Disadvantages
Chen et SL: SVM, NB Capture mobile traffic to train a SL Perform well with highly Performapce 18 unstabl-e
Malware . . - when the imbalance ratio
al. [54] and DT model for malware detection. imbalanced training data. .
of dataset is under 1000.
Otoum et RL: Various attacks, Use a RL model to apz_llyse sensed High accuracy and The datasets used in the
. such as DoS data and detect malicious sensor - P
al. [55] Q-learning . detection rate. validation are too old.
attacks behaviour.
UL: density Various attacks, Split feature space of dataset, and Detection delay is low, and True negative and false
Dromard . . R .
et al. [56] grid-based such as DDoS run an UL model on each subspace high precision in the negative rates are not
) clustering attacks to detect anomalies. detection. mentioned.
Automatically annotate mobile
Al et SL: KNN Wide range of traffic, and train a ML model from Save time for labelling Recall and precision are
al. [57] ’ anomalies these labelled data to detect data. not mentioned.
anomalies.
Use an UL model to cluster No rule upda'te is requlreq. As accuracy, recall and
Dey et . . - The complexity of model is precision are not
UL: K-Means MitM suspicious request based on .
al. [58] . low, and can be mentioned, the
inter-packet delay. . .
customised. performance is unclear.
Hoang ef UL: OCSVM. ] Detect e}ttacks using gnsuperwsed an—class labelled data Accuracy is under 80% in
Eavesdropping clustering models with only one provide reference to data
al. [59] K-Means . some cases.
class of data tagged. clustering.
Use an UL model to distinguish Misclassification is
Qu et SL: SVM; UL: Unknown abnormal features, and a SL model minimised via the The dataset used in the
al. [60] MSCA attacks to maximise the margin between combination of SL and UL validation is too old.
the normal and abnormal patterns. models.
. Use ensemble method to obtain
. SL: Random Various attacks, . o . . . . .
Vanerio multiple predictions, and the final Predictive performance is True positive rate is low in
Forest (RF), such as DDoS R .
etal. [61] decision is made through these improved. some cases.
and etc. attacks outputs

data that collected via SBI are labelled normal or abnormal
according to these conditions. Then labelled data are sent to
the RF algorithm to train a classifier, which allows or drops
new connection requests. Khamaiseh et al. [67] explore time-
window of traffic in early detection using SL in SDN, as a
small time-window means a short duration before SL making
the decision, it could be a double-edged sword leading to an
early detection or a worse accuracy, because the SL predictor
may not have decent information to make the correct predic-
tion. The centralised control of SDN allows the controller to
periodically collect statistics from switches, so that the SL
model can obtain up-to-date information to judge if a request
is malicious. The predictor is trained offline with existing
datasets, and then any new request is sent to the predictor for
inspection. Based on the output, flow entries to forward or
drop packets are inserted to the forwarding devices [68], [69].

Since SDN decouples the control and data plane from
legacy networks, the link between these two planes are no
longer sitting in the same hardware. Thus, attacks against
control plane, data plane and the link between them must
be considered separately. Santos et al. [70] compare the per-
formance of SL models in DDoS attack detection in SDN,
the target of DDoS attack includes three categories: con-
troller, flow table and the bandwidth between the switch and
controller. It is found from the test that the most important
features for correct prediction are the IP source port, and the
number of packets and bytes in flows.

Sometimes the outcome of ML model is not accurate
enough, adding an extra step, such as entropy measurement,
to double check the data could be an approach to improve
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the performance in anomaly detection. Dehkordi et al. [71]
propose to collect statistics of network every period of time
and calculate the entropy to see if it is normal, if the entropy
value is under a predefined threshold, then a SL classifier is
involved to determine whether it is an attack. Song et al. [72]
introduce three subsystems running over the controller to
predict threats in the SDN, these subsystems are used for data
processing, classifier creation and decision making. As the
training is based on past experience, data processing filters
key information and discard irrelevant data so as to provide
useful clues to the RF classifier. Based on the prediction from
RF classifier, normal requests are processed and abnormal
data are blocked. Furthermore, when the decision is ambigu-
ous, the model will use the entropy to measure the ambiguity
to make the final decision.

According to the user requirement, RL can be applied
to trigger specific operations against intrusions. Now that
the mitigation of DDoS attacks is to drop malicious traffic,
Simpson et al. [73] introduce a probability value in the agent
to instruct the switch to drop relevant packets. Two agent
modes, instant and guarded, are proposed and validated in
the single and multi-agent scenarios. In the instant mode,
an agent directly chooses the probability of drop to partially
discard current traffic flows, and it allows at least 10% flows
to pass through. This mode has no interest in the future
state. Then in the guarded mode, traffic could be completely
blocked, and the future state may cause the update of state-
action values. Through the evaluation, the instant agent mode
performs well in the multi-agent scenario, in which several
agents are working separately to protect the traffic towards
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TABLE 5. Anomaly detection in the SDN using ML.

Advantages

Disadvantages

Detection of malicious
node is accelerated, and
time complexity is
reduced.

The test is running in a
controlled environment.

Unknown type of
saturation attacks can be
detected.

The detection performance
is related to the test
environment setup.

Easy to collect real time
data and deploy ML
models.

The datasets used in the
validation are too old.

Find the most essential
features in DDoS detection
in SDN.

Recall and precision are
not mentioned.

Accuracy is improved by
this two-step inspection.

The resource consumption
of the tenfold classification
method is not mentioned.

Reduces uncertainty when
make decisions with a
small feature set.

The dataset used in the
validation is too old.

The action of RL model is
taken per flow, and the
mitigation method allows
some legitimate traffic to
pass through during
attacks.

Detailed performance is
not mentioned.

Advanced route
management without
human intervention.

The amount of states will
exponentially increase
when more switches join
the network.

Papers ML Models Anomaly Methodology
Sebbar et Use a SL model to classify
al. [66] SL: RF MitM connection request through SBI in
’ SDN.
Khamaiseh | SL: SVM, NB, Saturation ATram a SL model through the
time-window of traffic to detect
etal. [67] KNN attacks R
saturation attacks.
Alshamrani Misbehaviour
et al. [68] SL: SVM. NB attacks, new Train a SL model offline, and
Akb.acs e; D”f and 17(NN’ flow attacks collect traffic statistics via the
al. [69] and DoS/DDoS controller for classification.
: attacks
SL: SVM, DT,
Santos et RF’S: uit:ple DDoS attacks Verify the performance of SL
al. [70] Perce}[]) tron ” models in detecting DDoS attacks.
(MLP)
SL: BayesNet .
. ? Use entropy to find suspicious data,
Bi}k([);% E ;Fé ]i?g:zl DDoS attacks and train a SL model to further
Regression check.
Train a SL model offline to predict
Song et SL: RF DoS data, and calculate the entropy
al. [72] ’ attacks,and etrc. value to make final decisions if
ambiguous.

L ) . Train a RL model to drop packets
Stlrr;p[s%l] Gr%:;;.e:[esm;; rsa DDoS attacks through the analysis on the
erat. ) source-destination pair.
Sampaio RL: Flooding Use a RL model to achieve load
et al. [74] Q-learning attacks balancing on each link in the SDN.

RL: Double
Deep ‘ Cyber attacks Use a‘ RL mod_el to protect r?c?twor.k
Q-networks L nodes from being compromised via
Han et aiming at :
al. [75] and compromise the nodg and !m_k state. Employ
: Asynchronous network nodes adversarial training to protect the
Advantage o RL model.
Actor-critic

Autonomous defence in
SDN, and the attack
against the RL model itself
is mitigated.

It is based on the
assumption that the
attacker has compromised
all the nodes in the
transmission path.

the same server; while the guarded mode has a better output
under single-agent scenario, in which an agent controls all the
flows going to the server. Sampaio et al. [74] deploy RL in the
SDN to achieve load balancing. They use the SDN controller
to monitor the load on each link, any link with over 80% load
is regarded as a high status and will trigger the agent in RL to
modify the route. After the route update, a positive reward
is given if there is no link with high status, otherwise the
reroute action has a negative reward. This model can also be
adopted to redirect malicious traffic. Han et al. [75] divide a
network into nodes and links, and each node or link only has
two states. A node is either normal or compromised, while
a link is either turned on or off. The combination of node
and link state reflects the current network state. Depends on
the state, an action could be switch on/off nodes or links,
or even doing nothing. Since the objective is to protect critical
servers, the reward is characterised by the availability of
server, the cost of mitigation and the number of reachable
network resources. Assuming the attacker is aware of the RL
agent and able to falsify the reward, the adversarial training
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is found capable of alleviating the impact during RL training.
The ML applications in the SDN are summarised in Table 5.

D. loT

Along with the large number of connected devices in IoT,
the process of big data and unknown attacks becomes a main
problem in the security domain. Since more portable devices
join the network with very limited security features than ever
before, hackers have more opportunities to commit flooding
attacks, because the behaviour of a user is more arbitrary in
the IoT context, and compromising an IoT device is much
easier than hacking a firewall-equipped computer. ML, espe-
cially UL, shows its capability to detect unknown attacks
with low computational resources. Both feature selection and
dimensionality reduction aim to reduce the number of fea-
tures, the difference is that original features are not changed
in the feature selection. Nomm and Bahsi [76] explore botnet
attack detection with a small number of features using UL
models. Rather than running a common model for all the IoT
devices, a separate model which works for each device is
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TABLE 6. Anomaly detection in the loT network using ML.

Papers ML Models Anomaly Methodology Advantages Disadvantages

Reduced feature set
NOmm et UL.: iForest Botnet attacks Use UL models with less than 10 gsgiumiZ;Zzz r\?/ShOiTerCtise Detection rate is low in

al. [76] and OCSVM selected features to detect attacks. g Pt o some cases.

detection rate is still
reasonable.
Liu et . chket. ‘Use an UL model to cluster nodes Higher accuracy than Accuracy drops when the
UL: K-Means modification into three groups, and only remove .
al. [77] . L clusters. number of hops increases.
attacks highly suspicious node.

. UL: Dynamic False data The interaction in the subsystems Efficient computation and -
Karimipure S L s I . i o Recall and precision are
et al. [78] Bayesian injection is changed by attacks, as well as can detect unobservable ot mentioned

’ Networks attacks the pattern in the UL model. attacks. ’
Use an UL model to create . .
Ahmed et UL.: iForest vaert thd multiple forests, and the C omputational c_omp_lexny Accuracy is low in some
integrity . is low and detection time is
al. [79] and PCA measurement with shortest average cases.
assaults . short.
path length is attack.
Al et UL: AE: SL: ' Extra}ct and r'n‘er_ge key features in a Predlctlon accuracy is Accuracy is low in some
1. [80] Lincar SYM DDoS attacks weighted fashion, then use a SL improved after feature cases
a model to detect DDoS attacks. learning. o
More effective against new
Bhatia et . Train an UL model with normal and unknown attacks Only TCP traffic is
al. [81] UL: AE DDoS attacks traffic, and use it to detect attacks. comparing to some SL considered in the model.
models.
Anthi et . 12 kinds of Three-tier inspection using SL Can predict the type of Ac_curacy drops when
al. [82] SL: DT attacks, such as models to classify the attacks attack validated by the unseen
’ DoS and MitM ' ' dataset.
SSL: ELM, Pseudo label unknown data by

Rathore et semi- DoS attacks, checking it twice, and classify it Better labelling approach, Accuracy is lower than

al. [83] supervised and etc. when both outputs have a high and fast real time detection. 90%.

fuzzy C-means confidence.
. . Train three classifiers with labelled Higher detection rate and Ips1der e_mack 15 not
Li et SSL: Flooding e . considered in the proposed
o data, and classify unlabelled data lower error rate comparing . .
al. [84] Tri-training attacks, and etc. A . collaborative intrusion
by majority voting. to some SL models. d .
etection system.
Use the shortest Euclidean distance
Ravi et SSL: NN and Data deluge from the unknown data to the Higher accuracy than some The dataset used in the
al. [85] K-Means attacks known clusters to annotate SL models. validation is too old.
unlabelled data.
High-rate and Use a RL model to adjust detection How the detection rate
Gu et RL: low-rate IoT 4 Well adaption to IoT . .
. ) threshold so as to improve the . obtained from tests is not
al. [86] Q-learning attacks, such as environment.
N performance. elaborated.
ARP spoofing

proposed. Several main features are first selected by feature
selection methods, such as entropy and variance, then these
data are sent to the UL models for clustering, and it obtains an
acceptable accuracy. To achieve a higher detection accuracy,
Liu et al. [77] propose to cluster data into three groups rather
than two based on the suspicious level, and only the highly
dubious group is malicious. A node collects periodic probe
messages from a trusted source node via multiple paths, and
the contribution of each node to a path is calculated. These
contribution metrics are used as features in the clustering.
While Karimipure ef al. [78] use a similar concept to partition
the smart grid network into sub-systems, in which data are
processed in parallel. And the behaviour in each sub-system
is learnt to be the reference for anomaly detection.

Since the UL is capable of clustering data into groups
without any training, it is also applied with other algorithms to
detect anomalies in the IoT network. Ahmed et al. [79] utilise
iForest algorithm to determine if a measurement sample in the
smart grid network is compromised. To categorise samples,
principal component analysis (PCA) is invoked to transform
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the data size to a smaller dimension first. Then, the iForest
sets up a binary search tree to isolate each sample. As the
UL model splits all the samples to groups, the samples who
are easy to isolate are more likely to be abnormal. Because
the amount of compromised sample is usually small, and its
feature is different from normal samples.

The hybrid of UL and SL could also improve the efficiency
of detection. Ali et al. [80] train auto-encoders (AE) via UL
to extract the features from the unlabelled dataset. Next, these
features are merged according to their weights. Finally, the
combined features are computed in a supervised manner to
create a detection model. It is worth noting that the training
of AE here is different from the training in the SL, because
AE does not use labelled data, its objective is to minimise
the reconstruction error. The reconstruction error is defined as
the difference between the original data and the reconstructed
data, and this error devises a threshold that is used to classify
the data. Bhatia er al. [81] also demonstrate AE based classi-
fier, which is trained by only normal traffic, to detect DDoS
attacks.
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Despite the fact that a predictor is able to distinguish attack
data from normal data, as well as to classify the attack type
through training, employing a SL model for a specific job
is also applicable. Anthi et al. [82] propose a three layer ML
model, layer 1 for profiling and learning the normal behaviour
of each device, layer 2 for anomaly detection and layer 3 for
attack classification. Each layer has a SL. model to make
predictions, which means a specific type of attack is identified
after being inspected three times.

Due to the significance of annotating untagged data in
the SSL, Rathore and Park [83] propose a two-tier verifica-
tion approach to classify unlabelled data. They use extreme
learning machine (ELM) algorithm to train the model with
classified data, and send both labelled and unlabelled data
to semi-supervised fuzzy C-means to filter high confident
unlabelled data. After that these unclassified data with high
confidence are examined again using the model trained by
ELM, only those still have a high confidence will then be
allowed to join the labelled data group. This process recurs
till all the data are classified. In order to gain high confidence
when tagging unlabelled data, vote is also a quite popular
solution. Li et al. [84] adopt disagreement-based principle
in the tri-training [87] method to classify unlabelled data.
When two learners agree on the classifier of a sample, but the
third learner disagrees, then the third learner is taught by the
previous two learners on this sample. Ravi and Shalinie [85]
split labelled dataset into normal and various attack classes,
samples from each class are picked in a stochastic way. The
Euclidean distance of unlabelled data against these samples
are calculated to find the minimum value, which classifies the
unknown sample. This classification repeats multiple times,
and a sample is labelled only after more than half of the
decisions pointing to the same cluster.

Apart from detect anomalies directly, RL can also be
applied to improve the existing solutions. Gu et al. [86]
involve RL to adjust attack detection threshold in an entropy-
based framework, it successfully improves the detection rate
and decreases the false alarm rate. [oT related anomaly detec-
tion methods using ML are summarised in Table 6.

E. CLOUD/FOG/EDGE NETWORK

Filters and rules are popular anomaly detection measures
in the legacy network, however, they haven’t shown decent
results in security investigation in the cloud/fog/edge net-
works. ML or the combination of ML and rules has produced
satisfactory results when deployed as IDS in the cloud [88].
Kim et al. [89] design a hybrid ML model in the cloud envi-
ronment to detect and classify network threats. Key features
are first selected via RF algorithm, then unlabelled data are
clustered by these key features using UL models, and these
clusters are unnamed so far. In order to know what attack
a cluster represents, a threat label is added to each sample
for naming clusters later. The threat label is defined by the
value of some features in the labelled data, and the cluster
name is given by the distribution of threat labels in each
cluster. Thus, UL and SL models are employed for anomaly
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detection and classification, respectively. Aljamal et al. [90]
and Baek er al. [91] also employ UL models for clustering
and SL models for training and detection. The new clusters
are labelled based on the assumption that normal data are in
the large and dense clusters while anomalies belong to small
or sparse clusters. Thus, a threshold function is defined to
judge whether a cluster is small or large, as well as its density.
After that data in the small and sparse clusters are labelled
as abnormal, and other data are tagged as normal. SL. models
are then trained by these labelled data and employed to detect
anomalies in the network.

Salman et al. [92] categorise attack types by a step-wise
model, it is an improvement from the traditional single-type
model. A single-type model is trained by a specific type of
attack with normal traffic, so that network traffic has to go
through all the single-type models for attack categorisation.
While the step-wise model divide normal and anomalous
traffic first, and then SL models recognise attack types using
anomaly data only. The step-wise model puts several attack
types in the same group, and once the group is determined,
the specific attack type is further detected. Chkirbene et al.
[93], [94] split a time period into several slots and use a
SL model to predict the network state within each time slot.
The most frequent decision within the time period is chose
to be the prediction. Moreover, a weight value is involved
in the prediction phase to improve the accuracy, it is the
bias in the prediction of each category. The final decision is
made from the number of predictions under the same category
multiply by its weight value. In other words, a prediction that
has a high weighted category is more likely to influence the
result. Priyadarshini et al. [95] use SDN controllers in the fog
network to block DDoS attacks before they enter the cloud
network. A classifier model is trained in advance and running
over the SDN controller to determine the state of network
traffic, and flow entries are generated by the controller and
inserted to the switches in the network to forward legitimate
packets and drop malicious packets. Apart from traffic anal-
ysis, SL can also be deployed to classify cloud users via their
credentials, and access control is applied to the cloud network
according to the user [96].

To obtain the finest ML model with a specific training
set whilst averting overfitting, more than one model can be
trained and compared to find the best one [97]. Xu et al. [98]
first randomly choose samples from labelled dataset to create
several subsets, and use bagging method to train multiple
models from these subsets. Then another dataset which con-
sists of unreliable anomalous and unlabelled data is employed
to train another model. Also, various sampling ratio is verified
to get the optimal ratio through evaluation metrics. Finally, all
the models are assessed through the entire dataset, including
both labelled and unlabelled data. Finally, the one with lowest
learning error or balanced accuracy is the best fitted model.

SSL is also applied in the cloud and fog network due
to the lack of labelled data. Xu efal. [99] introduce fog
enabled infrastructure and fog assisted Al engine to deploy
SSL models in the fog network. The infrastructure creates
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TABLE 7. Anomaly detection in the Cloud/Fog/Edge networks using ML.

Papers ML Models Anomaly Methodology Advantages Disadvantages
SL: RF: UL: Feature selection with a SL model
. VR Various and use an UL model to cluster Validated by datasets rather
Kim et K-Means and Only needs a small amount . .
network unlabelled data. Define a cluster than implemented in the
al. [89] DB- L of labelled data.
SCAN [101] attacks. by the dlst.rlbutlon of threat labels real network.
in the cluster.
Aljamal et SL: SVM, NB, Various attacks Use an UL model for clustering
al. [90], RF and ’ | and define a threshold to name the Automatic data tagging by .
. such as DoS . Accuracy is under 90%.
Baek et Adaboosting; attacks clusters. Use a SL model for clustering.
al. [91] UL: K-Means ) traffic classification.
SL: linear Various attacks, Filter malicious traffic from Several attacks, including
Salman et . o i Accuracy of attack
al. [92] regression and such as DoS normal traffic, and thep classify classification is improved DoS attacks, can_not be
’ RF attacks attack types from malicious traffic. ’ clearly categorised.
Chkirbene Various attacks, Use a SL modell to predict Several attacks, including
. network state per time slot, and Accuracy of attack
et al. [93], SL: DT such as DoS . A DoS attacks, cannot be
classify data based on the votes classification is improved. .
[94] attacks . . . clearly categorised.
during multiple time slots.
A feasible method when
Priyadarshini SL: KNN, Use a SL model in the SDN taking response tl.me and .
DDoS attacks resource utilisation of Accuracy is under 90%.
etal. [95] SVM and NB controller to protect fog networks. .
fog/cloud network into
consideration.
Xu et SL: Bagged Various attacks, Train multiple SL models and find High accuracy in the The performance vqhdated
such as DoS . . by UNSW-NB15 is not
al. [98] Tree the best performed model. detection.
attacks good enough.
Various attacks Divide original dataset to several
Xu et . ) . ’ subsets and use a SSL model to High accuracy in the Recall is under 90% for all
SSL: OCSVM such as DoS - . . .
al. [99] attacks find the optimal sampling ratio of detection. the attacks.
) attack samples.
The ability to recognise
Gao et SSL: NN and Various attacks, Combine both SL and UL models, new traffic pattern is
1. [100] i3C A such as DoS and use labelled data to correct the enhanced, and the Accuracy is under 85%.
a attacks prediction of unlabelled data. detection accuracy is
increased.

multiple virtual machines, and each machine hosts a par-
titioned subset from the original dataset. These partitioned
subsets are then uploaded to the Al engine to train detection
models. SSL model is applied to the same subset to find the
optimal learning model based on the accuracy of detection.
Gao et al. [100] employ ensemble method to train a NN
classifier with labelled data, and then this classifier predicts
all the unlabelled data. The prediction is processed through
fuzziness evaluation to extract valuable information, after that
these pseudo-tagged data enter an ensemble system to double
check the classification before being accepted as training set.
The implementation of ML in the cloud/fog/edge network are
summarised in Table 7.

F. EXPERIMENTAL DATASET

Apart from the aforementioned networks, some ideas have
been proposed in general, not targeting a specific network
type, and these methods have been evaluated through public
datasets. Hosseini and Azizi [102] detect DDoS attacks
by inspecting packets twice in the network. Classifiers are
trained offline by existing datasets, in the meanwhile, essen-
tial features are extracted for the detection phase. To complete
the transmission to the server, a packet is examined on both
the client side and network side. On the client side, the state of
packet is predicted by its essential features and a divergence
test. As long as the packet is not considered as an attack, it is
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sent to the network proxy for further inspection, otherwise it
is dropped. In the network proxy, an attack profile database
contains all the known attack patterns, any packet matches a
profile is discarded. Even if the attack is new to the database,
it can still be detected via the trained classifiers, and its
characteristic is recorded in the database for future detection.
Gu et al. [103] propose a two-layer hierarchical ensemble
model to detect anomalies. They first split the original dataset
into heterogeneous training sets by fuzzy C-means clustering
algorithm. Then several base classifiers are trained by these
subsets. Their outputs are aggregated in a nonlinear manner,
and are fed to an upper layer classifier to train a final model.
The decision whether the traffic is an intrusion is made by the
final model.

When labelled data is unavailable, AE can be used to cap-
ture the non-linear correlations in the data feature, and to find
the latent representation which is insensitive to the variance
of data to determine if anomaly happens. Nicolau et al. [104]
introduce new regularisers to the AEs to push normal data
to a small area whose centre is the origin. So that abnormal
data are easy to be figured out, as they locate far away from
the origin. Choi et al. [105] prepare three training sets which
have different ratios of abnormal data to normal data, and
use each of them to train four AE models. Each AE model
produces key features of the training set, and these key fea-
tures are employed to reconstruct the original dataset. If the
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TABLE 8. Anomaly detection using ML with experimental datasets.

Papers ML Models Datasets Anomaly Methodology Advantages Disadvantages
Hosseini SL: NB, Inspect packets twice to Can distinguish new True negative and
et KNN, DT, RF NSL-KDD DDoS attacks d%terrgine the state attack% s false negative rates
al. [102] and MLP ’ : ypes. are not mentioned.
A two-layer ensemble
Gu et NSL-KDD, Various attacks, classifier for intrusion Robust performance The dataset used in
al. [103] SL: SVM KDD 99 and such as DDoS detection, outputs from base in terms of accuracy | the validation is too
B Kyoto 2006+ attacks classifiers are combine and training speed. old.
non-linearly.
Work efficiently on
Nicolau CTUI3. Various attacks, Adjust AE models to pu§h‘ high d1men'510nal )
normal data close to the origin, data scenario, and Recall is under 90%
et UL: AE UNSW-NB15 such as DoS S .
and abnormal data far from the minimise the effect in some cases.
al. [104] and NSL-KDD attacks .
origin. of AE model
selection.
Involve four AE models to
Choi et Various attacks, regllizczrfie?;iﬁegaiggeiezggsttlrlza High accuracy in The dataset used in
UL: AE NSL-KDD such as DoS gmat i £ Y the validation is too
al. [105] model classifies anomalous the detection.
attacks . old.
data from the reconstruction
errTor.
Use fuzziness value to group
Ashfag et Various attacks, unlabelled data, and only add Classification Accuracy is under
shtaq SSL: NN NSL-KDD such as DoS the data with a high or low accuracy is A
al. [106] . . 85%.
attacks fuzziness value to the new improved.
training set.
Accuracy is
Idhammad SSL: NSL-KDD, Use UL models to preprocess Accuracy and false unstable when
of co-clustering UNB ISCX 12 DDoS attacks and classify data, and use a SL positive rate in validated by
L [107] and extra and model for further detection are UNSW-NBI15, it
a trees UNSW-NB15 classification. satisfactory. varies from 66% to
100%.
Train UL models with SSL .
Various attacks approach using normal data Detection rate is The performance is
Zavrak et SSL: AE and CICIDS2017 such as DDoS only, and validate these acceptable with UL not.stable under
al. [108] VAE . various types of
attacks models via both normal and models.
attacks.
abnormal data.
. . . High performance
Al-Jarrah SSL: NSL-KDD and Various attacks, Create multiple cla551ﬁer's in the detection with Testing time is too
et such as DDoS from labelled data to classify
K-Means Kyoto 2006+ a low percentage of long.
al. [109] attacks unlabelled data. labelled data

reconstruction error is less than the threshold, it is normal
data, otherwise, it is abnormal.

When the number of labelled data is small, how to annotate
unlabelled data from these known ones has a deep impact on
the performance of SSL models. Ashfaq et al. [106] introduce
fuzziness to categorise unlabelled data into three groups,
which are high, mid and low, with a model trained by NN,
this model is initially created from labelled data and it gives
each unlabelled data a fuzziness value. The data with a
high or low fuzziness value will join the existing labelled
data group, and this new group is used to train an updated
model to classify the test data. While the mid fuzziness data
group are still ambiguous according to the classifier, so they
will not be added to the labelled data to reduce the risk
of misclassification. Moreover, in the process of unlabelled
data, Idhammad et al. [107] run four algorithms to reduce
irrelevance and noise in the normal data to increase the
accuracy in the DDoS attack detection. Entropy of Flow Size
Distribution (FSD) within a time window is calculated and
compared with threshold, an abnormal entropy triggers the
traffic data in that specific time window be divided into three

152392

groups by co-clustering algorithm. Based on the assumption
that attack traffic becomes much more than normal traffic
during DDoS attacks, the group with a lower information gain
ratio has the normal traffic only, and the other two groups
contain anomalous traffic. After these unsupervised process,
the two data groups with malicious traffic are sent to extra-
tree algorithm for SL steps. With labelled normal data only,
abnormal states can still be realised through SSL. Zavrak and
Iskefiyeli [108] propose an AE based model whose training
uses only normal data, after the model is trained the vali-
dation dataset, which is comprised of half normal and half
anomalous data, is sent to the model to create a threshold for
anomaly detection. Since a test sample will be rebuilt in a
trained AE, the anomaly threshold is defined by the difference
between the reconstructed and the original input data. If the
difference is larger than the threshold, the sample is labelled
as abnormal, otherwise it is normal. Al-Jarrah ef al. [109]
randomly divide the whole dataset into multiple clusters first,
so that a cluster may contain labelled data only, or unlabelled
data only, or mixed. For the cluster which has untagged data
only, it finds the nearest labelled data to form a new mixed
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cluster, which contains both labelled and unlabelled data. Tri-
training is employed to process mixed clusters, it creates three
classifiers from the original dataset, and tags unlabelled data
as long as two or three classifiers agree on the labelling.
While for fully labelled cluster, the proposed model builds
binary classifier if the cluster contains multiple classes of
data, otherwise label the cluster with one class data only. The
ML applications validated via public datasets are summarised
in Table 8.

VI. CONCLUSION

Machine learning is trying to prove itself in multiple fields,
among which anomaly detection is a feasible application that
attracts lots of attentions. No matter what is the network sce-
nario, people still have numerous options from ML models.
Hence, we present a comprehensive review on the ML in
network anomaly detection. From SL to RL, each category
processes data in a different style, which leads to a large gap
in the outcome. Supervised, unsupervised or semi-supervised
learning model is picked based on the dataset on hand, the
proportion of labelled data is a key factor in selecting a model.
By contrast, RL is a totally different style, it allows the model
to try all the state-action pairs so as to identify the best
solution. In addition to the model selection, data quality is the
most vital part for anomaly detection, it directly links to the
prediction performance. Most of the solutions are validated
by public datasets or in the simulation, it will be better to
verify these models in the real network. And the resource
consumption, such as training time and CPU utilisation, of the
model is rarely discussed, this shall also be considered and
studied to reflect the efficiency. In the future, we would like to
explore more for the application of deep learning techniques
in the next generation network, such as SDN and IoT.
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