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ABSTRACT In this paper, we propose a new deep Q-network (DQN) design for quality-of-service (QoS)
multicast routing (DQMR) protocol to establish efficient QoS multicast (EQM) trees in cognitive radio
mobile ad hoc networks (CR-MANETs). An EQM tree is a shortest-path multicast tree with minimum end-
to-end (E2E) cost (a combination of queuing size ratio and link stability) subject to QoS constraints such as
queuing size ratio, link stability, number of hops, number of time slots and avoiding the licensed channel of
primary users. Particularly, we propose an NP-complete optimization problem such that its feasible solution
is an EQM tree. To address this problem, we design a new DQNmodel and a new game-based model to form
EQM trees in real-time by offline training instead of online training as done in previous papers. Moreover, the
DQMR protocol is also guaranteed to have high stability, low routing delay, low control overhead, and high
packet delivery ratio (PDR). Furthermore, one more new contribution of the paper is that exact closed-form
expressions for the E2E queuing delay of a multicast routing tree are also derived assuming randomwaypoint
mobility and the reference point group mobility models to compare with simulation results of routing delay.
Simulation results show that the DQMR protocol outperforms multicast ad hoc on-demand distance vector
routing protocol in terms of routing delay, control overhead, and PDR.

INDEX TERMS Cognitive mobile ad hoc networks, cross-layer, deep Q-network, game theory, QoS
multicast routing.

I. INTRODUCTION
Cognitive radio (CR) technology has been deployed inmobile
ad hoc networks (MANETs) which allows mobile devices to
cognitively establish dynamic topologies without necessarily
relying on any fixed infrastructure [3]. The benefits of CR are
bought by enabling the unlicensed mobile nodes operating
in an opportunistic with the licensed spectrum bands, thus
improving the spectrum utilization in cognitive radio mobile
ad hoc networks (CR-MANETs) [4]. Multicast routing pro-
tocols in CR-MANETs mainly relied on flooding operation
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to find the best route to destinations in the whole network,
which often consumes considerable resources such as con-
trol overhead, spectrum, delay, and energy [5], [6]. Due to
the dynamic nature of MANET environments, the routing
optimization problem and QoS constraints are always non-
deterministic polynomial-time (NP) complete [7], [8].

Reinforcement learning (RL) is an area of machine learn-
ing that enables agents to learn in an interactive environment
by trial and error using feedback from its own actions and
experiences in order to maximize its reward and minimize
its penalty. Due to the versatility of RL, it has ability to
solve a myriad of problems ranging from computer vision,
speech recognition, robotics, and self-driving car, to wireless
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communications [9]. Moreover, RL technique is suitable
for routing problems in distributed networks such as
CR-MANETs since it has ability to learn automatically the
dynamic features of network such as new flow arrivals,
queuing behavior, topology changes, bandwidth, link quality,
and energy consumption to enhance the system QoS while
optimizing available network resources [9]–[11].

A. RELATED WORK
A stable QoS multicast routing protocol was investigated by
the authors in [12] to minimize the network resource utiliza-
tion while satisfying the jitter delay, reliability, and band-
width constraints. The optimal multicast routing tree (MRT)
was also obtained with the optimal allocation of node buffer
and link bandwidth. Yang et al. [13] investigated the non-
asymptotic capacity inMANETswithmulticast traffic, where
two Markov chain theoretical models were developed to fea-
ture the fastest packet propagation process at source and the
fastest received packet process at the multicast group.

RL-based routing protocols were extensively studied in
wireless ad hoc networks, where the best route was estab-
lished with low delay, efficient bandwidth, and low energy
consumption [9], [14]. The authors in [11] studied a
Q-learning reliable routing with a weighting agent approach,
where the rewards were given to the agent considering
the data transmission latency or network lifetime. In [15],
a Q-learning-based adaptive routing model (QLAR) was
developed via RL techniques, which was able to predict the
network mobility state information at different times such
that each mobile node determined the route with the highest
throughput and stability. The authors in [16] studied a QoS-
aware Q-routing algorithm inMANETs, where a source node
selected its neighbor associated with the optimal Q-value for
a destination. By this way, a reactive route with low com-
putational cost and reduced communication overhead was
established. To reduce the latency and energy consumption,
a Q-learning-based multi-objective optimization routing pro-
tocol was proposed in flying ad hoc networks [17], where the
data transmission delay and residual energy of nodes were
considered in the reward function for Q-learning.

B. MOTIVATIONS
Most of previous papers have limitations as follows:

• Q-learning models have not been designed in detail
and sufficiently to solve QoS routing optimization and
resource allocation problems.

• Since mobile nodes move frequently in MANETs, the
Q-learningmodels must be updated online continuously.
Thus, the system spent much time and resources for
routing process.

• The channel-time slots allocation issue has received less
attention in QoS routing papers, which can decrease the
efficiency of data transmission and resource allocation.

• The end-to-end (E2E) queuing delay problem for rout-
ing has not been analyzed in previous works, which is

essential to estimate the average E2E delay and behavior
of the routing protocol.

These unsolved issues motivate us to design a new deep
Q-network design for QoS multicast routing leveraging deep
Q-network (DQN) and game theory (GT), followed by math-
ematical analysis of E2E queuing delay (EQD) in this paper.
For ease of presentation, Table 1 summarizes the main abbre-
viations used in this paper.

TABLE 1. List of abbreviations.

C. MAIN CONTRIBUTIONS
In this paper, we study mainly on QoS routing problems in
the network layer with information obtained from the phys-
ical layer and the data link layer by cross-layer design. The
contributions of the paper can be summarized as follows:

• This paper aims to propose a new deep Q-network
(DQN) design for quality-of-service (QoS) multicast
routing (DQMR) protocol to establish efficient QoS
multicast (EQM) trees in cognitive radio mobile ad hoc
networks (CR-MANETs). An EQM tree is a shortest-
path multicast tree with minimum end-to-end (E2E) cost
(a combination of queuing size ratio and link stability)
subject to QoS constraints such as queuing size ratio,
link stability, number of hops, number of time slots and
avoiding the licensed channel of primary users.

• Firstly, we propose an NP-complete optimization prob-
lem such that its feasible solution is an EQM tree. Since
this problem is too complicated to solve, it is divided
into two sub-problems that are minimum E2E cost of
multicast tree (MEC) problem and channel-time slot
allocation for multicast tree (CTA) problem.

• Secondly, we design a new DQN model, called DQN-
MEC model, to address the MEC problem. This model
is trained offline to predict optimal online link values
(Q∗−values), which supports the DQMR protocol to
establish minimumE2E cost multicast trees in real-time.

• Thirdly, we propose a game-based model to solve
the CTA problem, called GT-CTA model. This model
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supports the DQMR protocol to obtain minimum E2E
cost multicast trees with minimum number of time slots
for given number of channels, while preventing interfer-
ence links and avoiding affected regions of multiple pri-
mary users. Moreover, the design of GT-CTA model is
proven mathematically as a convergent potential game.

• Fourthly, the DQMR protocol is proposed by using the
DQN-MEC and GT-CTAmodels to establish EQM trees
with high stability, low routing delay, low overhead, and
high packet delivery ratio (PDR).

• Fifthly, since the routing delay depends on many fac-
tors such as different kinds of delay, mobility model,
network topology and so on; it cannot be analyzed
correctly. Thus, we derive exact closed-form expres-
sions for the E2E queuing delay of a multicast rout-
ing tree (EQD-MRT) under the random waypoint
mobility (RWP) and the reference point group mobil-
ity (RPGM) models, that show an approximation and
the same pattern as the simulation result of routing
delay, which confirms the correctness of the developed
analysis.

• Finally, the simulation results show that the DQMR pro-
tocol outperforms multicast ad hoc on-demand distance
vector (MAODV)-based routing protocol [18] in terms
of routing delay, control overhead, and PDR.

The rest of the paper is arranged as follows. Section II
introduces the system model, the basic concept of DQMR
protocol. Section III formulates the QoS multicast routing as
an optimization problem. Section IV develops theDQN-MEC
model. Section V proposes a GT-CTA model. Section VI
proposes the DQMR protocol. Section VII provides a solid
theoretical analysis for the EQD-MRT. Section VIII presents
the performance evaluations. Finally, Section IX concludes
the paper.

II. SYSTEM MODEL
We consider a CR-MANET consisting of multiple pri-
mary users (PUs) and secondary users (SUs) as shown in
Figs. 1 and 2. Each SU can access opportunistically licensed
channels which are not occupied by PUs [4]. In two-
dimensional space, the SUs can move based on RWP model
and RPGMmodel [19]–[21], while PUs rely on RWPmodel.
We assume that each node is aware of its location through the
global positioning system (GPS) and the location of destina-
tions in the multicast group [21], [22]. Moreover, each node
has a fixed radio range and can exchange control packets by
using control channels that do not affect the licensed channels
of PUs [23].

A. BASIC CONCEPT OF THE PROPOSED DQMR PROTOCOL
In this paper, we use the same multicast group manage-
ment techniques as MAODV protocol, e.g., join group, leave
group, to maintain the multicast tree. The basic concept of the
DQMR at a node, as shown in Figs. 1 and 2, can be presented
as follows:

FIGURE 1. Basic concept of the DQMR protocol.

FIGURE 2. Illustration of the basic concept of the DQMR protocol:
(a) cross-layer design, (b) DQN-MEC model, and (c) GT-CTA model for
multicast QoS routing.

Overview:
• Each SU (node) uses cross-layer design in Fig. 2(a) to
get parameters from physical, data link, and network
layers such as node’s position, node speed, direction,
channel, queue, hop count, IP address of source and
destination, affected region of PUs, and multicast tree
information. In routing process, these parameters will
be used for DQN-MEC model in Fig. 2(b) and GT-CTA
model in Fig. 2(c) to obtain EQM trees. Particularly,
the DQN-MEC model predicts Q∗−values to establish
minimum E2E cost multicast trees in real-time, and
the GT-CTA model selects optimal channel-time slot
strategies (Nash equilibrium points) for the minimum
E2E cost multicast trees.
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Multicast tree discovery:
• If a source (src) needs to establish a multicast tree to
the multicast group D, it will require the information
of neighbors. For every destination dsti ∈ D, the
src uses the DQN-MEC model to calculate link values
Q∗i (src,w) for all w in the set of the src’s neighbors to
select the best neighbor w∗i associated with the high-
est value Q∗i (src,w∗i ). Then, the src generates a route
request RREQ) packet and broadcasts it to the set of the
best neighbors {w∗i }.

• If a node w ∈ {w∗i } receives a RREQ, it will record the
sender as the previous node in the route table. Node w
calculates the set of best neighbors to re-broadcast the
RREQ packet by the same way as the src.

• If a destination (dst) receives a RREQ packet, it will
record the sender as the previous node in the route table
and unicast a route reply RREP) packet to the previous
node.

• If a node receives a RREP packet, it will append the
sender to the set of next hops (NH) in the route table.
Next, node v forwards the RREP to the previous node
by using unicast technique. This process is repeated until
the source receives all RREPs from all destinations and
go to the channel-time slot allocation process.

Channel-time slot allocation process:
• Each multicast tree member (TM) of the EQM tree
applies the GT-CTAmodel to obtain an optimal channel-
time slot strategy. Go to data transmission process.

Data transmission process:
• The src and TMs of the EQM tree send data to the mul-
ticast group members based on their next hops (NH) and
channel-time slot strategies. If the EQM tree is broken,
the maintenance process will be activated and DQN-
MEC model and GT-CTA model will be used to locally
find alternative routes to the multicast group members.

A CR-MANET is considered as a directed graph
G = (V,L),whereV is a set of SUs, andL is a set of directed
links among nodes. A link between node pairs (v,w) indicates
that v is a sender, w is a receiver, and w is within v’s range and
v is within w’s range. The set of destinations is referenced to
the set of destination’s positions which is denoted as D.

B. QUEUING DELAY MODEL
We assume that a node is a server and number of control
packet traffic for routing increases in proportion to the num-
ber of links between an intermediate mobile node and its
neighbors. Thus, the control packet traffic arrival can be
modeled by Poisson process, and the service time is expo-
nentially distributed. Hence, we can employ M/M/1 queuing
system for nodes to evaluate and analyze the delay caused by
intermediate nodes in routing process, where packets arrive
according to Poisson process and the service time is modeled
by exponential distribution. The arrival rate and service rate
are denoted by λ and µ, respectively. Based on the Markov
chain for M/M/1 system and Little’s theorem [24], each node
in the network has a queuing delay model with the following

preliminary results: the average time of a packet spending in
the system is T = 1/(µ − λ), which including the queuing
delay plus the service time; the average of time a packet
spending in queue is W = T − 1/µ; the average number
of packets in the system is N = λT; and the average number
of packets in the queue is NQ = λW.

We define the queue size ratio as a part of the cost function
in Eq. (3) which supports the DQN-MEC model to select
optimal links with low queuing delay for routing process. The
queuing size ratio of a link (v,w) can be expressed as follows:

Qr(v,w) =
max{Qz(v),Qz(w)}

Qzmax
, (1)

where Qz(·) is a queue size of a node and Qzmax denotes the
maximum Qz of a node.

C. LINK STABILITY
We use the link stability ratio in [25] as a part of the cost
function in Eq. (3) which supports the DQN-MEC model to
select optimal links with high stability. The distances between
v and w at time ti and ti+1 are denoted by Dti (v,w) and
Dti+1(v,w), respectively. The link stability ratio of a link
l = (v,w) over interval time 1t = ti+1 − ti can be expressed
as follows:

LS1t (l) =

0, if Dti+1(l) ≤ Dti (l),
1D(l)
2vmax1t

, otherwise,
(2)

where 1D(l) = Dti+1(l) − Dti (l) and vmax is the maximum
speed of nodes. Note that the value of LS1t (l) indicates that
the smaller LS1t (l) is, the higher the stability of the link l is.

D. COST FUNCTION
Wedesign a cost function of a link l = (v,w) as a combination
of the queue size ratio in Eq. (1) and the link stability in
Eq. (2) which supports the DQN-MEC to select a link with
high stability and low queuing delay. Thus, the cost function
is used to reduce routing delay and obtain a high stability
EQM tree in the routing process, which can be defined as

cost(l) = α1Qr(l)+ α2LS1t (l), (3)

where 1t is a period of time and α1 + α2 = 1.
For a source src and a destination dst ∈ D, we consider

a route P(src,dst) = {src = n0 → n1 → · · · → nm−1 →
nm = dst} of a multicast tree T, where (ni, ni+1) ∈ T,∀i =
0, . . . ,m − 1. The number of hops of route P is denoted
as #hops(P) = m and the E2E cost of the route P can be
expressed as

cost(P) =
∑

(ni,ni+1)∈P,
∀i=0,...,m−1

cost(ni, ni+1). (4)

E. CHANNEL MODEL
We present a channel model used for the GT-CTA model,
which support the DQMR to establish EQM trees.We assume
that there is a set of L licensed channels C = {ch1, . . . , chL}.
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In a time slot t , each node v only uses either a channel (ctxtv)
to transmit messages or a channel (crxtv) to receive messages.
If node w is a receiver of node v, the transmission channel
of node v must be the same as the receiving channel of node
w. The set of receivers of node v in time slot t is denoted as
RCVt

v. The set of nodes transmitting on a channel chc in time
slot t is denoted as TNt

c and the set of nodes transmitting in
time slot t is TNt

= TNt
1 ∪ · · ·TNt

L .

1) THE CHANNEL-TIME SLOT CONDITION FOR
PREVENTING INTERFERENCE
In a time slot t , a set of multicast links MLtv = {(v,w); ∀w ∈
RCVt

v} is satisfied for the channel-time slot condition for
preventing interference if and only if

crxtw = ctxtv,∀w ∈ RCVt
v, (5)

NBRCVtv
∩ TNt

ctxtv
= {v}, (6)

w /∈ TNt ,∀w ∈ RCVt
v. (7)

In a time slot t , the condition (5) implies that all receiving
channels crxtw of all nodes w ∈ RCVt

v are the same as the
transmission channel ctxtv of node v, the condition (6) means
that only node v can transmit to all nodes w ∈ RCVt

v on
channel ctxtv at time slot t (a node cannot receive from more
than one transmitter at the same time) and the condition (7)
indicates that when node v transmits to RCVt

v on channel
ctxtv, all nodes w ∈ RCVt

v do not transmit over all channels
(a node cannot receive and transmit at the same time).

III. PROBLEM FORMULATION
To support the proposed DQMR protocol to establish EQM
trees in routing process, we propose an optimization problem
such that its feasible solution is an EQM tree. We consider a
tree T as a set of routes from a source to multiple destinations

T = {P1 = P(src,dst1), . . . ,PM = P(src,dstM )}, (8)

where src is the source, dsti is a destination belonging to
multicast groupD, andM is the number of destinations. The
E2E cost of the tree T can be represented as cost(T) =
(cost(P1), . . . , cost(PM )). A tree T∗ is a minimum E2E cost
tree if every route P∗i ∈ T∗ has a minimum cost(P∗i ).
We have that T∗ = argmin

T∈T
cost(T), where T is the set of

trees from a source to a multicast group and min
T∈T

cost(T) =
{min
T∈T

cost(P1), . . . ,min
T∈T

cost(PM )}.

We define a set of time slots as TS = {ts1, . . . , tsM }.
A node v has a channel-time slot strategy which is defined
as CTv = (tstx

v = t tx, ctxt
tx
v , ts

rx
v = t rx, crxt

rx
v ), where

tstx
v , ts

rx
v ∈ TS, ctxt

tx
v , crxt

rx
v ∈ C = {ch1, . . . , chL} and

tstx
v 6= tsrx

v . A channel-time slot strategy of a tree T is defined
as CTT = {CTv : ∀v ∈ T}. The number of time slots of a
route P is defined as TS(CTP) = max

v∈P
{tstx

v }, and the number
of time slots of the multicast tree T is defined as

TS(CTT) = max
v∈T
{tstx

v } = max
P∈T
{TS(CTP)}. (9)

The problem can be formulated as follows:

(P) : min
T∈T

cost(T) and min
CTT∈CTT

TS(CTT) (10a)

s. t. Qr(Pi) ≤ Qrth ∀Pi ∈ T, (10b)

LS(Pi) ≤ LSth, ∀Pi ∈ T, (10c)

#hops(Pi) ≤ #hopsth, ∀Pi ∈ T, (10d)

CTT satisfies the PI condition, (10e)

CTT satisfies the TT condition, (10f)

CTT does not affect PUs, (10g)

where the queue size ratio (Qr) and link-stability ratio (LS)
of a route P are defined as follows:

Qr(P) = max
(v,w)∈P

{Qr(v,w)}, LS(P) = max
(v,w)∈P

{LS(v,w)},

(11)

CTT denotes a set of channel-time slot strategies (CTT) and
constraints (10e) – (10g) are defined as follows:
• The channel-time slot strategy CTT satisfies the pre-
venting interference (PI) condition (10e) if all sets
ML(t)

v ,∀v ∈ T satisfy the conditions (5), (6), (7) defined
in Section II-E1.

• The channel-time slot strategy CTT satisfies the tree-
based time slots (TT) condition (10f) if the time slot tstx

v
must be greater than tstx

w where w is the parent of v.
• The channel-time slot strategy CTT does not affect PUs
(10g) if all setsML(t)

v ,∀v ∈ T does not affect the affected
region of PUs.

The problem (P) is an NP-complete problem, and it is a new
problem that has not been solved before. To address this prob-
lem, we divide it into two sub-problems that are minimum
E2E cost of multicast tree (MEC) problem and channel-time
slot allocation (CTA) for multicast tree problem.

The MEC problem is formulated to find a shortest-path
multicast tree such that each route from a source to a des-
tination of the multicast tree has a minimum E2E cost subject
to QoS constraints. The MEC problem can be formulated as

MEC : min
T∈T

cost(T)

s. t. (10b), (10c), (10d). (12)

TheCTAproblem is formulated to find an optimal channel-
time slot strategy of a tree T with minimum number of time
slots, while preventing interference links and avoiding the
affected regions of multiple PUs. The CTA problem can be
formulated as

CTA : min
CTT∈CTT

TS(CTT) (13)

s. t. (10e), (10f), (10g).

IV. PROPOSED DQN MODEL FOR THE MEC
PROBLEM: DQN-MEC MODEL
The DQN-MEC model with offline training in Fig. 2 is
designed to predict the optimal Q∗−values which are used to
select the best neighbors towards the respective destinations
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in routing process. This neighbors selection process supports
the DQMR protocol in establishing EQM trees. For every
destination dsti ∈ D, we need to find a route P∗i (src,dsti)
which is a solution of the MEC problem. Hence, we first
propose a DQN-MECmodel for theMEC problem in the sce-
nario of one source and one destination. Then, the obtained
DQN-MEC model can be efficiently extended to the general
scenario with one source and multiple destinations.

The DQN-MEC model is run offline once based on a
realistic simulation environment on a computer to get a DNN
model. Each node is equipped a program which can read
the resulting DNN model to predict the Q∗−values for rout-
ing process in real-time. When the network environment is
changed with network size and number of nodes, the training
process will be retrained, and each node will update the new
DNN model. The proposed DQN-MEC model is modeled
as a model-free RL which includes Q-learning model and
experience replay as follows:

A. Q-LEARNING MODEL
Q-learning model is designed to make the DQN applicable to
the DQMR protocol.
• Agent:We consider a node holding a packet or a pair of
(packet, node) as an agent which wants to find a route
from a source to the destination. Particularly, the packet
starts at the source and finds the route to a destination
which is an optimal solution of MEC problem.

• State: The agent has a set of states Swhich is considered
as the set of nodes V. At a certain time, if the agent is at
node v ∈ V, its state is denoted as sv.

• Action: At a certain time, the agent at state sv has a set
of neighbors NBv which is considered as a set of actions
Av of the agent, i.e., the agent can move to any neighbor
in NBv. We denote a node w ∈ Av as an action aw of the
agent at state v.

• Environment:At a certain time, the agent at state sv has
an environment which includes the position, speed and
direction information of all node v’s neighbors.

• Reward function: At state sv, if the agent selects an
action aw ∈ Av, the reward function of a link l is
defined as

RW(l) =


−αccost(l)− αhWgth,

if l satisfies the QoS conditions,
RWmin, otherwise,

(14)

where l = (sv,aw), Wgthop ∈ (0, 1) denotes a weight
of one hop (a connected link between two nodes), αc and
αh are the weights in (0, 1) such that αc + αh = 1, and
the QoS conditions are

(a) w ∈ Av, (b) Qr(l) ≤ Qrth, (c) LS(l) ≤ LSth,

(15)

The conditions (15a) – (15c) imply the QoS constraints
(10b) – (10c) of the MEC problem. For the cost of

route (12) and the number of hops constraint (10d), they
can only be known after that the route is established.
Thus, the metric cost and #hops are included in the
reward function to guarantee that a minimum cost route
will be found and a long route will not be formed. The
objective function (12) and the constraint (10d) are used
to formulate the reward (14), where the values of αc and
αh are adjusted to obtain the best reward value in the
training process. Particularly, when the src obtains the
best route to the destination, i.e., the DQN-MEC is con-
verged and there exists a best neighborw∗ = π∗(ssrc), if
the number of hops is greater than the constraint hopth,

the weights αq and αh of the reward function are adjusted
by αq = αq − ε and αh = αh + ε and the DQN-
MEC model is repeated until obtaining the best route
satisfying the number of hops constraint or exceeding
time.

• Quality function (Q−function): At the state sv, the
agent takes an action aw ∈ Av to obtain the Q−function
which is presented as follows:

Q(sv,aw) := (1− α)Q(sv,aw)

+α
(
RW(sv,aw)+γ max

a∈Aw
{Q(sw, a)>0}

)
,

(16)

where α and γ is the learning rate and discount factor,
respectively. We set max

a∈Adst
Q(sdst, a) = 0 in (16) to

guarantee that the Q−values updating process will stop
at the destination.

• Policy: When the Q−values converge to Q∗−values,
a policy is a function π∗ that takes state sv as input
and returns the action to be taken by the agent. The
policy π∗ can be expressed as π∗(sv) = w∗ =
argmaxaw∈Av Q

∗(sv,aw). The policy is applied to the
DQMR protocol to select the best neighbors in the
multicast-tree discovery process.

B. EXPERIENCE REPLAY
Different from regular Q-learning, when the network is
complex and frequently changes its topology, experience
replay is developed for deep Q-network to learn Q∗−values
instead of taking much time for re-training. In particu-
lar, experience replay is a replay memory technique which
is used to store the agent’s experiences at each time-step
et,v = (st,v, at,w, rt (v,w), st+1,w, qt (v,w)), in a dataset D =
{e1, . . . , eN }, where rt (v,w) = RWt (v,w) and qt (v,w) =
Q∗t (v,w). The experience replay of the DQN-MECmodel can
be described as follows:

• Based on the simulation time of 1, 000 seconds and the
section time of 5 seconds in Section VIII, we generate
randomly a set of 1, 000/5 = 200 environments.

• For every generated environments, we use the
Q-learning model to obtain optimal Q∗−values. A sam-
ple of datasets for DNN is generated as follows:
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– The input variables include the source’s position,
the destination’s position, the current node v’s
position, and the information of neighbors nodes
(w ∈ V): position of w and reward RW(v,w). To fix
the number of neighbor nodes for training process,
we assign a maximum value to information value of
node w, for all w 6∈ NBv. Thus, the total number of
variables for the input of DNN is 50×2+3 = 123.

– The output is a vector including Q∗(sv,aw),
∀w ∈ V, if node w 6∈ NBv, and we assign a
maximum value to Q∗(v,w). Thus, the number of
variables for the output is 50.

• An environment provides 50 samples corresponding to
the number of current states; thus, the obtained dataset
has 200× 50 = 10, 000 samples.

V. PROPOSED GAME-BASED MODEL FOR THE
CTA PROBLEM: GT-CTA MODEL
The GT-CTA model is modeled to assist the DQMR protocol
to obtain EQM trees with minimum number of time slots
for given number of channels, while preventing interference
links and avoiding regions of multiple primary users. For a
multicast-tree T, the GT-CTA model is proposed as a static
best-response potential game [26] as follows:

• Player: Each node of the tree T is considered as a player.
• Environment: An agent at a certain time has an envi-
ronment which includes the channel-time slot schedule
of node v’s neighbors and the affected regions of PUs.

• Strategy: A strategy of node v is defined as sv =
CTv = (tstx

v = t tx, ctxt
tx
v , ts

rx
v = t rx, crxt

rx
v ). The set of

strategies of node v is denoted as Sv. At the initial time,
each node is assigned a strategy s∞ = (−∞, 0,−∞, 0).
For a strategy sv ∈ Sv, we denote s−v as the strategies of
all agents except for agent v and S−v as the set of all s−v.

• Strategy selection (SS) rules: The game is operated
into epochs. In an epoch, each node v observes the
environment to calculate a set of strategies Sv. If the
parent w of node v has not already selected a strategy,
i.e., sw = s∞, the set of strategies Sv is assigned to ∅.
Otherwise, a strategy sv must satisfy the following rules:

(i) The sv does not affect to the licensed channel of
PUs, i.e., ctxt

tx
v and crxt

rx
v are not in the affected

region of licensed channels.
(ii) The time slot tstx

v must be greater than tstx
w , where

w is the parent of v.
(iii) The time slot tsrx

v must be the same as tstx
w , where w

is the parent of v.
(iv) Node v is the only transmitting neighbor of node v’s

children set except for children of node v in time
slot t = tstx

v . It means that ANChildv ∩TNt
ctxtv
= {v},

where ANChildv = NBChildv \ Childv which is the
neighbors set of the node v’s children set except
for children of node v. This rule imply that each
node v has priority to choose its strategy which
may conflict with its children. Then, its child nodes

will update their own strategies to eliminate these
conflicts with parent nodes.

• Payoff: The payoff of a node v for taking a strategy
sv ∈ Sv is defined as

RWv(sv, s−v) =

{
−tstx

v , if sv satisfies (SS) rules,
−∞, otherwise.

(17)

• Best Response: The best-response of node v can be
expressed as

πv(s−v) = s∗v = arg max
sv∈Sv

RWv(sv, s−v). (18)

• Potential function: The potential function of the game
can be defined as

8 : CT → R
sT 7→ 8(sT) = min

v∈T
RW(sv, s−v). (19)

where CTT is a set of channel-time slot strategies and
sT = CTT is a strategy of tree T.
Theorem 1: The proposed game is the best-response

potential game, i.e., we have that

πv(s−v) = arg max
sv∈Sv

8(sv, s−v). (20)

Besides, the best-response of the game will converge to a
Nash equilibrium point within 1+M × (Nhop− 1) iterations
at most, where Nhop is the maximum number of hops of the
multicast tree and M is the number of destinations of the
multicast group.
This theorem indicates that the game has a Nash equilib-

rium point and it will converge to a Nash equilibrium point
within finite iterations. Moreover, the potential function (19)
is equivalent to the objective function (13) of the CTA problem
at optimum; thus, the Nash equilibrium point of the best-
response of the game is also a subset of the feasibility set of
the CTA problem.

Proof: The proof of the theorem is divided into two parts
as follows:

The first part: Based on the strategy selection rules,
if a node v chooses a strategy sv = CTv = (tstx

v =

t tx, ctxt
tx
v , ts

rx
v = t rx, crxt

rx
v ), the strategy sv satisfies the

rule SS-(iv), i.e., sv does not conflict with strategies of all
neighbors except for children of node v. We have:
• Case 1: The strategy sv does not conflict with the strate-
gies of node v’s children.
– If for all sv ∈ Sv, 8(sv, s−v) = RW(sw, s−w) with
w 6= v, we have arg max

sv∈Sv
8(sv, s−v) = Sv. Thus,

the condition (20) is satisfied.
– If there exists a strategy sv ∈ Sv such that
8(sv, s−v) = RW(sv, s−v) and max

sv∈Sv
8(sv, s−v) =

RW(s∗v , s
∗
−v) with s∗v ∈ Sv, we have that

RW(s∗v , s
∗
−v) must be greater than or equal to

RW(sv, s−v). Thus, the condition (20) is satisfied.
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– If there exists a strategy sv ∈ Sv such that
8(sv, s−v) = RW(sv, s−v) and max

sv∈Sv
8(sv, s−v) =

8(s∗v , s
∗
−v) = RW(sw, s−w) with w 6= v, we

have that RW(s∗v , s
∗
−v) must be greater than or

equal to RW(sv, s−v) because if RW(s∗v , s
∗
−v) <

RW(sv, s−v) = 8(sv, s−v) < 8(s∗v , s
∗
−v), we have

RW(s∗v , s
∗
−v) < 8(s∗v , s

∗
−v) = RW(sw, s−w) that

contraries with the assumption. Thus, the condition
(20) is satisfied.

• Case 2: The strategy sv of node v conflicts with a strat-
egy of a child w of node v. It means that the function 8
always takes −∞ and arg max

sv∈Sv
8(sv, s−v) = Sv. Thus,

the condition (20) is satisfied.
The second part: In the multicast tree, there is only the
source, which transmits data to the next nodes at the first
hop, that needs one time slot to transmit data by multicast
technique. From the second hop of the multicast tree, the
maximum number of links that can interfere with each other
isNhop; thus, the maximum number of time slots that needs to
transmit data without interference isM .Hence, the maximum
number of time slots that needs to transmit data from a source
to multicast group is 1+M × (Nhop − 1).
Agents will obtain new better strategies after each iter-

ation, i.e., the number of time slots of the multicast tree
will decrease after each iteration. Thus, the best-response of
the game will converge to a Nash equilibrium point within
1+M × (Nhop − 1) iterations at most. �

Finally, the algorithm of the GT-CTAmodel at a node v can
be presented as follows:

Step 1.Node v requires the information of strategies sw,
for all neighbors w ∈ NBv.

Step 2. Node v calculates the set of available strate-
gies Sv based on strategy selection rules. Next, node
v chooses a best-response a∗v = πv(a−v) in (18) as a
current strategy.
Step 3. Steps 1 and 2 are repeated until node v can-
not find a better strategy, i.e., the sum of the payoffs
converges.

VI. THE PROPOSED DQN-BASED QoS MULTICAST
ROUTING PROTOCOL: DQMR PROTOCOL
In this section, we present the DQMR protocol that uses
the DQN-MEC and GT-CTA models to establish EQM
trees which are a shortest-path multicast tree with minimum
E2E cost subject to QoS constraints, preventing interference
links and avoiding regions of primary users. Moreover, the
DQMR protocol has high stability, low routing delay, low
control overhead and high PDR. In practical MANETs, the
mobile nodes can move based on different mobility models,
as shown in Fig. 3. In particular, nodes 1 to 11 can move
according to the RWP model while other nodes can move
according to the RPGM model with different groups such
as nodes 12, 13, 14 in the first group, nodes 15 to 18 in
the second group, and nodes 19 to 22 in the third group.
Thus, the DQMR protocol is tailored to work well in both

mobility models. In the given CR-MANET with a source
node (src) and the multicast group D, the DQMR protocol,
as shown in Figs. 3 and 4∗, can be presented as follows:
Initialization:
• Each node in the given CR-MANET initializes variables
of routing table as follows:

The set of last visit nodes LVrt = ∅.
The route cost RCrt = +∞.

• Step 1. If a node needs to establish the tree to the
multicast group D, the node becomes a source node
(src), go to Step 2. Otherwise, go to Step 3.

Multicast Tree Discovery Process (Fig. 4∗∗):
Sending RREQ Process:
• Step 2. The src requires information of neighbors
including position, speed, direction, queue size and
channels of PUs information. For each destination
dsti ∈ D, the src predicts values Q∗i (src,w) for all
w ∈ NBsrc by using the DQN-MEC model to select
the best neighbor w∗i with the highest valueQ

∗
i (src,w∗i );

for example in Fig. 3, the best neighbors of src are
nodes 3,dst2, 15 and 16 corresponding to destinations
dst1, (dst2,dst3),dst4 and dst5.The src updates the set
of last visit nodes LVsrc = LVrt ∪ {src}, the set of next
visit nodes NVsrc = {w∗i , ∀dsti ∈ D} \ LVsrc, the list
of costs from the src to all next visit nodes CLsrc =

{cost(src,w∗i ), ∀w
∗
i ∈ NV} and the route cost RCsrc =

0. Next, the src generates a route request (RREQ) packet
including LVrreq = LVsrc, NVrreq = NVsrc, CLrreq =

CLsrc and RCrreq = RCsrc, and broadcasts the RREQ
to neighbors. Go to Step 4. The RREQ packet contains
the following fields:〈 packet_type, hop_count, rreq_id,

multicast_IP_address,
multicast_seq_number,

source_IP_address, source_seq_number,
last_visit, next_visit, link_cost, route_cost

〉
Receiving RREQ Process:
• Step 3. If the node receives a RREQ, go to Step 3.1.
Otherwise, the process is ended.
– Step 3.1. The RREQ is dropped if at least one of the

following cases is satisfied:
∗ The node is not in the list NVrreq of the RREQ.
∗ The new cost RCrreq + cost(w, node) is smaller

than or equal to the route cost RCrt in the route
table, where cost(w, node) can be found in the
CLrreq.

For example in Fig. 3, nodes 9 and 10 drop a RREQ
from the src. If the RREQ is dropped, the process
is ended. Otherwise, go to Step 3.2.

– Step 3.2. The node records the sender’s ID as the
previous node. Go back to Step 2.

Route Reply Process (Fig. 4∗∗∗):
• Step 4. If the node is the dst, go to Step 5. Otherwise,
go to Step 6.
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FIGURE 3. Illustration of the proposed DQMR protocol by using Figure in CR-MANETs.

FIGURE 4. Illustration of the proposed DQMR protocol by using Flowchart: the proposed DQMR protocol ∗; the multicast tree discovery process ∗∗;
the route reply process ∗∗∗; the channel-time slot allocation �; data transmission process ��.

• Step 5. If the dst receives a RREQ packet, it will gen-
erate and reply a RREP packet to the previous node by
unicast transmission, go to Step 9. Otherwise, the pro-
cess is ended. The RREP packet contains the following
fields: 〈

packet_type, hop_count,
multicast_IP_address,
multicast_seq_number,
source_IP_address

〉
• Step 6. If the node receives a RREP packet, it appends
the sender to the set of next hops (NH) in the route
table and goes to Step 7. Otherwise, the process is
ended.

• Step 7. If the node is the src, go to Step 8. Otherwise,
node v unicasts the RREP packet to the previous node,
go to Step 8.

Channel-time slot allocation process (Fig. 4�):
• Step 8. Each node of the obtained EQM tree, as shown
in Fig. 3, applies the GT-CTAmodel to obtain an optimal
channel-time slot schedule such that the EQM tree has
minimum number of time slots for given number of
channels, while preventing interference links and avoid-
ing the affected regions of multiple PUs. For example in
Fig. 3, the EQM tree uses 3 time slots (t1, t2 and t3) and
channels c1, c2 and c3 to prevent interference links and
avoid the affected regions of PUs. Go to Step 9.

Data Transmission Process (Fig. 4��):
• Step 9. The source and mobile nodes of the obtained
EQM tree multicasts data to the multicast group mem-
bers based on their next hops (NH) and the optimal
channel-time slot strategy. Particularly, the source gen-
erates data packets based on the Poisson process. Next,
the source multicasts the data packets to the next hops
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by using the channel-time slot strategy. If a node of the
EQM tree receives a data packet, it will forward the data
packet to the multicast group by the same way as the
source.

Multicast tree maintenance process:
• Step 10. During the routing and data transmission pro-
cesses, if one of established links from a node to the
next hops is broken, the nodewill build alternative routes
locally by the same approach as the src in the multicast
routing process. Particularly, if the node cannot connect
with at least one of next hops, it will require the infor-
mation of neighbors and calculate LVrreq, NVrreq, and
CLrreq. Next, the node generates and broadcasts a RREQ
packet to its neighbors. If a node w receives a RREQ
from the node and knows routes to the multicast group,
it will replies a RREP to the node to establish alternative
routes. If node w receives a RREQ from the node and
does not know routes to the multicast group, it will con-
tinue to find alternative routes to the multicast group by
the same approach as the node. Thus, this maintenance
process is a local process and it only establishes some
alternative links to repair the broken EQM tree.

VII. E2E QUEUING DELAY ANALYSIS
In this section, we present E2E queuing delay analysis to
show comparison with E2E queuing delay and routing delay
in simulation for the established multicast routing trees.

A. E2E QUEUING DELAY ANALYSIS 1 IN RANDOM
WAYPOINT MOBILITY MODEL
We present the analysis of EQD-MRT in the environment of
RWP model. As shown in Fig. 3, nodes 1 to 11 move accord-
ing to the RWP model which can be presented as follows:
each node begins by pausing for a number of seconds. Next,
the node selects a random direction (angle) in (0, 2π ) and a
random speed in (0, vmax) to move in a number of seconds.
Then, the node again pauses for a number of seconds before
another random direction and speed. This process is repeated
over the simulation times.

We assume that the network includes N mobile nodes
which are deployed in a square of A = [0, 1]2 with area
S(A) = 1km2 and nodes can move based on RWP model
with the maximum speed vmax. We have
• The average distance between two nodes [27] is calcu-
lated by the expected distance between two independent
points chosen uniformly at random inA, which is LA =
0.521405.

• The average number of nodes in a region B ⊂ A is
N(B) = N × S(B)/S(A).

• The average speed of a node is v = 0.5× vmax.

• The average direction deviation between two any nodes
can be calculated by the expected distance between
two independent points chosen uniformly at random in
[0, 2π ] which is α = 2π/3.

• Let vv and vw be the speeds of node v andw, respectively.
The distance deviation (DD) between v and w in an

interval time 1t = ti+1 − ti can be calculated as

DD(v,w,1t) = |Dti+1(v,w)− Dti (v,w)|, (21)

whereDti (v,w) andDti+1 (v,w) are the distances between
node v and node w at time ti and ti+1, respectively.

Lemma 1: The average distance deviation (DD) between
two nodes in an interval time 1t can be expressed as

DD(vmax,1t) = |
√
AX2 + BX + C − D|, (22)

where A = 0.75, B = 0.7821075, C = 0.271863, D =
0.521405, X = vmax1t and vmax is the maximum speed of
each node.

Proof: Considering two nodes v and w with αw =
αv + α = αv + 2π/3, vv = vw = v = 0.5 × vmax, we have
DD(vmax,1t) = DD(v,w,1t), where 1t = ti+1 − ti.
We denote (x(v)i , y

(v)
i ) is the position of node v at time ti.

Without loss of generality, we can assume that x(v)i > x(w)i ,
y(v)i = y(w)i = 0 and αv = 0. We have

x(v)i+1 − x
(w)
i+1 = x(v)i − x

(w)
i + v1t(cosαv − cosαw)

= x(v)i − x
(w)
i + 1.5v1t

y(v)i+1 − y
(w)
i+1 = v1t(sinαv − sinαw)

= −0.866025v1t, (23)

Dti (v,w) = LA = 0.521405,

Dti+1(v,w) =
√
(LA + 1.5v1t)2 + (0.866025v1t)2

=

√
Av2max1t2 + Bvmax1t + C, (24)

where A = 0.75, B = 0.7821075, C = 0.271863. The proof
of Lemma 1 is concluded. �
Lemma 2: The average number of nodes moving out of a

node v’s transmission range (number of node v’s broken links)
in an interval time 1t is

N
out
rwp(X ) = (Nbv + 1)

R2 − (R− DD(X ))2

R2
, (25)

where X = (vmax,1t), vmax is the maximum speed of each
node, R is the transmission range of each node, and Nbv
is the average number of node v’s neighbors which can be
expressed as

Nbv = N
πR2

S(A)
− 1. (26)

Proof: Lemma 2 can be easily proved based on
Lemma 1. �
Lemma 3: The average number of packets in a node is

Nrwp(vmax,1t) = N +
λ

Nbv
1tN

out
rwp(vmax,1t), (27)

where λ is the arrival rate of queuing delay model, N is
the average number of packets in the system, vmax is the
maximum speed of each node, 1t is the maximum lifetime
each packet and Nbv is the average number of neighbors of a
node which is presented as (26).
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Proof: The Eq. (27) can be explained as follows:

• The first term in the right-hand side of (27) presents
the average number of packets in the system of queuing
delay model.

• The second term is the average number of packets that
cannot be sent to receiver nodes which move out of the
transmission range of node v, i.e. these packets still in
the queue until lifetime expires.

Thus, the lemma is proven. �
For a tree T = {P1 = P(src,dst1), . . . ,PM =

P(src,dstM )} in (8), where src is the source, dsti is a desti-
nation belonging to multicast group D, and M is the number
of destinations. The E2E queuing delay of the tree T can be
represented as

EQD(T) =
1
M

M∑
i=1

∑
ni∈Pi

q_delay(ni), (28)

where q_delay(ni) is the queuing delay of node ni.
Theorem 2: We assume that the maximum lifetime of a

packet is 1t . When a new routing packet arrives at a node
at a certain time, the average time of this packet spending in
this node is

Trwp(vmax,1t) = (Nrwp(vmax,1t)+ 1)/µ, (29)

where µ is service time rate of the queuing delay model, the
vmax is the maximum speed of each node,Nrwp is the average
number of packets in a node which is presented as (27).
As a consequence, the E2E queuing delay of a tree T can

be calculated as

EQDrwp(T) = (nhop + 1)Trwp(vmax,1t), (30)

where nhop is the average #hops of routes of the tree T.
Proof: Theorem 2 can be proved by using the results of

Lemmas 1, 2, 3 and (28). �

B. E2E QUEUING DELAY ANALYSIS 2 IN REFERENCE
POINT GROUP MOBILITY MODEL
We present the analysis of EQD-MRT in the environment
of RPGM model. As shown in Fig. 3, nodes 12 to 22 are
divided into three groups and move according to the RPGM
model [19], which satisfy the following characteristics:

• The network is divided into multiple adjacent regions.
Each region is only occupied by a single group (in-place
mobility model).

• Each group has a group leader node and multiple
members.

• Each group leader can move according to the RWP
model in a fixed region. Each member deviates from the
group leader by some degree.

Corollary 1: Assume that the network includes N nodes,
K groups which are deployed in a square of A and each
node has a fixed radio range R. The average number of nodes
moving out of a node v’s transmission range (number of node

v’s broken links) in an interval time 1t is

N
out
rpgm(X ) = N

out
rwp(X )

Nb
os
v

Nbv
, (31)

where X = (vmax,1t), vmax is the maximum speed of each
node and Nb

os
v is the average number of outside neighbors of

node v which is calculated by (32).
Proof: Given a node v in a groupG, we can consider the

region of groupG as a discDG with center v0 and radiusRG =√
S(A)/(Kπ ) while the transmission region of node v is a disc

Dv with center v and radiusRv = R. The regionDv\(DG∩Dv)
includes nodes which are called outside neighbors of node v.
The average number of outside neighbors of node v can be
expressed as follows:

Nb
os
v = N

S(Dv \ (DG ∩Dv))
S(A)

. (32)

The average distance between node v and the center v0 of
DG (the distance between two centers of DG and Dv) is
d = 2RG/3. Since node v is in DG, the value RG + Rv is
always greater than or equal d , i.e., RG + Rv ≥ d . We have
the following cases:
• If the region Dv is a subset of the region DG, i.e.,
RG − Rv > d ,

S(Dv \ (DG ∩Dv)) = S(∅) = 0. (33)

• If the region DG is a subset of the region Dv, i.e.,
Rv − RG > d ,

S(Dv \ (DG ∩Dv)) = S(Dv \DG) = π(R2v − R
2
G).

(34)

• If two regions Dv and DG are overlapped, i.e.,
|RG − Rv| < d , we have

S(Dv \ (DG ∩Dv)) = S(Dv)− (A+ B− C), (35)

where

A = R2min cos
− 1((d

2
+ R2min − R

2
max)/(2dRmin)),

B = R2max cos
− 1((d

2
+ R2max − R

2
min)/(2dRmax)),

C = 0.5
√
abcd, (36)

a = (−d + Rmin + Rmax), b = (d + Rmin − Rmax),
c = (d −Rmin+Rmax), d = (d +Rmin+Rmax), Rmin =

min{RG,Rv} and Rmax = max{RG,Rv}.
Moreover, node v’s outside neighbors can be considered as

neighbors that move based on RWP model related to node v.
The number Nb

out
v can be considered as the average number

of node v’s neighbors which move based on RWP model
related to node v. Hence, based on (25), the corollary is
concluded. �
Corollary 2: Using the assumptions as in Lemma 3 and

Theorem 2, we have
• The average number of packets in a node is calculated
the same as in (27), i.e.,

Nrpgm(vmax,1t) = N +
λ

Nbv
1tN

out
rpgm(vmax,1t).

(37)
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• The average time of this packet spending in a node is
calculated the same as in (29), i.e.,

Trpgm(vmax,1t) = (Nrpgm(vmax,1t)+ 1)/µ. (38)

• The E2E queuing delay of a tree T is calculated by same
as in (30), i.e.,

EQDrpgm(T) = (nhop + 1)Trpgm(vmax,1t). (39)

VIII. PERFORMANCE EVALUATION
A. ENVIRONMENTS FOR PERFORMANCE EVALUATION
In this section, we present the environments and parameters
for the performance evaluation as shown in Table 2.

TABLE 2. Simulation environments and parameters.

The DQMR protocol is implemented under RWP model
in VII-A and RPGM model VII-B. In the RWP model
in VII-A, we set the pausing time as 3 seconds, the moving
time as 5 seconds. In the RPGMmodel, we set the number of
groups is 4 or 9.

B. PERFORMANCE METRICS
To evaluate the performance of the DQMR, the following
metrics are considered:
• Routing delay is defined by the average time to establish
a multicast tree per one session.

• The control overhead is defined by the average number
of control packets to establish amulticast tree per session
per node.

• The PDR is defined by the average number of data
packets delivered to multicast group over the number of
data packets supposed to be delivered to destination per
session.

• E2E queuing delay is defined by the average E2E queu-
ing analysis delay of multicast routing trees in (28) per
one session.

C. THE CONVERGENCE PERFORMANCE OF THE
DQN-MEC MODEL AND THE GT-CTA MODEL
The convergence performance of the DQN-MEC model is
shown in Fig. 5(a). This confirms the DQN-MEC model
converges quickly after 1, 000 epochs which shows that the

DQN-MEC model can achieve the Q∗−values for routing
process in training process. Moreover, Fig. 5(b) shows the
rapid convergence of the total payoffs of the GT-CTA model
within only 1 + M × (Nhop − 1) = 1 + (4 − 1) ∗ 5 =
16 iterations, where Nhop = 4 is the maximum number
of hops, M = 5 is the number of destinations. This result
shows that the proposed game with GT-CTA model achieves
the optimal solution of CTA problem with small iterations,
which also confirms the results in Theorem 1. This short-
time convergence may expedite the feasibility of the practical
implementation of the channel-time slot allocation based on
game theory in CR-MANETs.

FIGURE 5. Total Q-values and payoffs convergences of the proposed
DQN-MEC (a) and GT-CTA (b) models, respectively.

D. NUMERICAL RESULTS FOR THE RWP MODEL
We present the numerical results of the DQMR protocol in
the environment of RWP model by using simulation.

FIGURE 6. Routing delay with 3 PUs as a function of node speed for RWP
model.

In Fig. 6, we show the routing delay as a function of node
speed for RWP model. As can be observed, the routing delay
of the DQMR protocol is lower than that of the MAODV-
based one in most scenarios of node speed. The reason is
that instead of flooding the RREQ packets in MAODV-based
protocol, the DQMR protocol only multicasts RREQs to the
predicted best neighbors based on the DQN-MEC model,
thus, reducing routing delay. In addition, the DQN-MEC
and GT-CTA models support the DQMR protocol to obtain
EQM trees with high stability and high reliability, which also
alleviates the re-routing processes and routing delay.
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FIGURE 7. Control overhead with 3 PUs as a function of node speed for
RWP model.

FIGURE 8. PDR with 3 PUs as a function of node speed for RWP model.

FIGURE 9. Scalability with 3 PUs and 50 km/h as a function of multicast
group size for RWP model.

Fig. 7 presents the control overhead as a function of node
speed for RWP model. As can be observed, the control over-
head increases gradually with the growth of maximum speed
of node, and the control overhead of the DQMR protocol is
lower than that of the MAODV-based one. The reason is that
the DQMR protocol just multicasts RREQs to the predicted
best neighbors instead of conventional flooding. Moreover,
the DQMR protocol can form EQM trees with high stability
and high reliability based on the DQN-MEC and GT-CTA
models. Hence, the control overhead of the DQMR protocol
can be effectively reduced.

Fig. 8 shows the PDR of protocols with 3 PUs as a func-
tion of node speed for RWP model. As can be observed,
at the maximum speed of 80 km/h, the DQMR protocol
achieves about 91%while theMAODV-based protocol is only
around 84%. The reason is that the DQMR protocol provides
EQM trees with high stability and optimal channel-time slot
strategies that helps data to reach the destination faster and
more reliable than MAODV-based protocol.

In Fig. 9, we show the scalability of the DQMR protocol by
demonstrating the PDR as a function of multicast group size
(number of destinations) for RWPmodel. As can be observed,

the PDR has almost constant value and is not affected by
the number of destinations. The reason is that our DQMR
protocol employs the DQN-MEC model and GT-CTA model
to create the underlying tree-based structure that can improve
the stability and scalability of the DQMR protocol under
different sizes of multicast group.

FIGURE 10. Number of time slots with 50 km/h and 5 licensed channels
as a function of number of PUs for RWP model.

In Fig. 10, we plot the number of time slots allocating for
packet transmission as a function of number of PUs for RWP
model. When the number of PUs is increased, the system
requires more time slots for data packet transmission to avoid
interfering with the licensed channel of PUs. It is observed
that the protocols without using GT-CTA model consume
more time slots for packet transmission than the ones with
GT-CTA model. The reason is that the GT-CTA model can
help the DQMR to form EQM trees with minimum number
of time slots.

E. NUMERICAL RESULTS FOR THE RPGM MODEL
We present the numerical result of the DQMR protocol in the
environment of RPGM model by using simulation.

In Fig. 11, we show the routing delay as a function of
node speed for RPGM model. As can be observed, the rout-
ing delay of the DQMR protocol is lower than that of the
MAODV-based one in most of node speed. The reason is that
based on the DQN-MEC and GT-CTA models, the DQMR
protocol which only multicasts RREQs to the predicted best
neighbors can obtain a high stability and reliability EQM
trees. Thus, it can reduces the re-routing processes and rout-
ing delay. Besides, based on the simulation parameters in
Table 2, the EQD-MRT can be calculated by Corollary 1 to
show that the EQD-MRT and routing delay of RPGM model
with 9 groups is smaller than its counterpart with 4 groups.

Fig. 12 presents the control overhead as a function of
node speed for RPGM model. It can be observed that the
control overhead of DQMR protocol is lower than that of the
MAODV-based one. With the deployment of the DQN-MEC
and GT-CTA models, the DQMR protocol just multicasts
RREQs to the predicted best neighbors and establishes EQM
trees with high stability and high reliability. Moreover, based
on Eq. (31), the average number of a node’s broken links of
RPGM model with 9 groups is smaller than its counterpart
with 4 groups. This leads to a smaller control overhead of the
RPGMmodel with 9 groups compared to its counterpart with
4 groups.
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FIGURE 11. Routing delay with 3 PUs as a function of node speed for
RPGM model.

FIGURE 12. Control overhead with 3 PUs as a function of node speed for
RPGM model.

FIGURE 13. PDR with 3 PUs as a function of node speed for RPGM model.

Fig. 13 shows the PDR of protocols with 3 PUs as a
function of node speed for RPGM model. At the maximum
speed of 80 km/h with RPGM (9 group) mobility model,
the DQMR protocol achieves about 95% while the MAODV-
based one is only about 87%. The DQMR protocol can
establish high stability EQM trees having optimal channel-
time slot strategies that helps the data packet to reach the
destination faster and more reliability than MAODV-based
protocol. Furthermore, the PDR of all protocols assuming
the RPGM model with 9 groups is also higher than that of
using 4 groups due to the smaller node’s broken links when
deploying a larger number of groups as in (31).

In Fig. 14, we show the scalability of the DQMR protocol
by demonstrating the PDR as a function of multicast group
size for RPGM model. As can be observed, the PDR has
almost constant value and is not affected by the number of
destinations. The reason is that the DQMR protocol applies
the DQN-MEC and GT-CTA models to obtain EQM trees

FIGURE 14. Scalability with 3 PUs and 50 km/h as a function of multicast
group size for RPGM model.

FIGURE 15. Number of time slots with 50 km/h and 5 licensed channels
as a function of number of PUs for RPGM model.

that can help the DQMR protocol to achieve the stability and
scalability under different sizes of multicast group.

In Fig. 15, we consider the number of time slots allocating
for packet transmission as a function of number of PUs for
RPGMmodel. The system requires more time slots for packet
transmission to avoid interfering with the licensed channel
of PUs as the number of PUs increases. It is shown that the
protocols without using GT-CTA model consumes more time
slots for data transmission than the ones with GT-CTAmodel.
This shows the benefit of the designed game theory approach
in Section V, which helps to improve the resource utilization
of DQMR protocol.

F. ANALYSIS RESULTS OF DELAY: EQD-MRT
We present the delay analysis results for E2E queuing delay
of a multicast routing tree (EQD-MRT) with the comparison
of the simulation results. Since the routing delay depends
on several factors such as different kinds of delay, mobility
model, network topology and so on; it cannot be analyzed
correctly. Thus, we analyze the EQD-MRT instead of routing
delay, that shows an approximation and the same pattern as
the simulation result of routing delay, which confirms the
correctness of the developed analysis.

Fig. 16 presents the analysis of E2E queuing delay
(EQD-MRT) with the comparison of the simulation result for
RWP model. As can be observed, the average number of
nodes on a route of themulticast tree is 4.Thus, the analysis of
EQD-MRT is calculated by 4Trwp in (30) of Theorem 2. The
analytical result of the EQD-MRT has the same pattern as the
simulation result of routing delay which can well estimate
the tendency and behaviors of routing delay in terms of node
speed.
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FIGURE 16. The EQD-MRT of the proposed DQMR protocol as a function
of node speed for RWP model.

FIGURE 17. The EQD-MRT of the proposed DQMR protocol as a function
of node speed for RPGM model.

Fig. 17 presents the analysis of E2E queuing delay
(EQD-MRT) with the comparison of the simulation result for
RPGM model. As can be observed, the average number of
nodes on a route of themulticast tree is 4.Thus, the analysis of
EQD-MRT is calculated by 4Trpgm in (39) of Corollary 2. The
analytical result of the EQD-MRT also has the same pattern as
the simulation result of routing delay which can well estimate
the tendency and behaviors of EQD-MRT in terms of node
speed.

The small gap between the analytical results and simu-
lation ones in Figs. 16 and 17 is due to the fact that the
analysis is performed based on the average time of a packet
spending in a node, as shown in (29) and (38). On the other
hand, the cost in (3) includes queue size ratio parameter and
the simulation results rely on the DQMR protocol to find
EQM trees with high stability and high reliability. Thus, the
simulation result of routing delay is smaller than the analysis
of EQD-MRT.

IX. CONCLUSION
In this paper, we proposed a DQMR protocol assisted by
game-based channel-time slot allocation to establish EQM
trees in CR-MANETs. Particularly, the DQMR protocol used
the DQN-MEC model to establish shortest-path multicast
trees with minimum E2E cost subject to QoS constraints.
Besides, the DQMR protocol also used the GT-CTA model
for the obtained tree to minimize the number of time slots,
prevent interference links and avoid regions of primary users.
Moreover, the DQMR protocol was also guaranteed to have
high stability, low routing delay, low control overhead and

high PDR. Furthermore, exact closed-form expressions for
the EQD-MRT were also derived assuming RWP model and
RPGM model to compare with routing delay in simulation.
The evaluation results showed that the DQMR protocol out-
performed the MAODV-based one in terms of control over-
head, PDR, and routing delay, showing to be an efficient
protocol in CR-MANETs. In future works, we will propose
multicast routing protocol with deep reinforcement learning
and different mobility models to address the multiple sources
problem, which promises in providing an ultra-reliable and
low-latency routing protocol in high dynamic environments
for 5G and future CR-MANETs.
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