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ABSTRACT Early detection of colorectal cancer (CRC) can reduce the risk of death. Polyps are the precursor
to such cancer. Analyzing the polyps from the most significant frames out of thousands of endoscopy frames
is vital for diagnosing and understanding disease. In this article, a deep learning-based monocular depth
estimation (MDE) technique is proposed to select the most informative frames (key-frames) of an endoscopic
video. In most cases, ground truth depth maps of polyps are not readily available, and that is why the
transfer learning approach is adopted in our method. An endoscopic modality generally captures thousands
of frames. In this scenario, it is quite essential to discard low-quality and clinically irrelevant frames of an
endoscopic video while the most informative frames should be retained for clinical diagnosis. In this view,
a key-frame selection strategy is proposed by utilizing the depth information of polyps. In our method,
image moment, edge magnitude, and key points are considered for adaptively selecting the key-frames. One
important application of our proposed method could be the 3D reconstruction of polyps with the help of
extracted key-frames. It gives a surgeon a real-time 3D view of the polyp surface for resection which involves
detaching the polyp from its mucosa layer. Also, polyps are localized with the help of extracted depth maps.

INDEX TERMS Key-frames, colorectal cancer (CRC), monocular depth, polyps, 3D reconstruction.

I. INTRODUCTION
Endoscopy is a minimally invasive state-of-the-art medi-
cal modality to investigate the gastrointestinal (GI) tract.
During endoscopy, an endoscopist looks to find a tumor in
the mucosa. The tumor-like growth is called polyps and,
if not treated early, may lead to cancer [1]. These polyps are
generally found in the colon region and turn into cancerous
cells at their advanced stage. Colonoscopy is a medical pro-
cedure adopted to detect such anomalies in the colon regions.
Colorectal cancer (CRC) is the most occurring cancer, and a
significant reason of deaths worldwide [2]. Wireless Capsule
Endoscopy (WCE) is an invasive modality to monitor the
conditions of the internal viscera of a human body. WCE
moves along the gastrointestinal (GI) tract to capture images.
It is extensively used to detect polyps in colon regions,
which become cancerous if left untreated. Colorectal cancer
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is the third most prevalent cancer today [3]. During the
colonoscopy, doctors comprehensively analyze the detected
polyp regions to find the dysplasia in them. Depending on
the condition of the polyp nature, they may opt for laparo-
scopic surgery. However, the number of frames captured
during the entire colonoscopy process is so humongous that
it challenges the surgeon to infer useful clinical informa-
tion. Therefore, video summarization techniques are adopted
which only retain the clinically informative frames. During
WCE, the capsule moves under the peristalsis movement,
and it is challenging to control the motion and orientation
of the camera. Thus, redundant and clinically non-significant
frames are generally obtained in a video sequence. WCE
takes nearly 8 hours, capturing close to 50000 frames. A large
part of the data is clinically not significant and needs to be
removed [4].

Several methods have been proposed for detection,
localization and classification of polyps in endoscopy
frame [5]–[8]. A recent work focussing on video
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summarization instead of anomalies detection like bleeding
or ulceration is proposed by Li et al. [9]. Iakovidis et al. [10]
used clustering-based methods for video summarization.
Similar work based on clustering technique was proposed
by Avila et al. [11]. However, clustering-based methods are
not suitable in noise environments. Endoscopy frames are
generally susceptible to noise. Also, redundant frames are
captured during the endoscopy, which makes clustering
methods perform poorly. Researchers are working on visual
attention models, like saliency maps for finding key-frames
of videos [12]. Another visual saliency-based attention model
was proposed by Ezaj et al. [13]. They used motion, color,
and texture features for hysteroscopy video summarization.
A color histogram comparison-based method was adopted
by Mendi et al. [14]. They compared the color histogram
of successive frames in a video sequence, and key-frames
were selected using k-means and PCA whenever a sig-
nificant change in content was observed. However, this
model does not fit into endoscopic videos as most of the
frames have similar color information. Recently, dictionary
learning-based approaches have been proposed for video
summarization [15]. In [16], a gastroscopic video summa-
rization technique based on a dictionary learning approach is
proposed. Key-frames are very important and help in better
prognosis and clinical management of the disease. Therefore,
colonoscopy frames that need immediate medical attention
are considered for this study. Malignant polyps usually have
a convex shape and are more textured compared to benign
polyps. Seitz et al., [17] proposed that polyp size is correlated
to the degree of dysplasia. A large and convex type polyp is
associated with more severity of dysplasia. Getting a 3D view
of the polyp surface can significantly help in resection [18].
A good 3D reconstruction of an object in an image entails
dense depth estimation. The 3D view gives shape and size
information of a polyp. Depth estimation of endoscopic
images is a challenging task as the endoscopic images are
monocular.

Attempts have been made to solve it as a per-pixel regres-
sion problem, however, supervised learning methods require
a lot of training data. It isn’t easy to acquire depth data
without using stereo cameras or expensive depth sensors,
as with endoscopy videos. Thus unsupervised methods are
being given more importance. Depth estimation in endo-
scopic video frames imparts clinical relevance to a physician.
3D reconstruction of themonocular images helps in diagnosis
and surgical planning. Recently, depth estimation, especially
monocular depth estimation (MDE) has gained high research
interest. This is due to its application in scene understand-
ing, robotics, autonomous driving, and Augmented Reality
(AR). Finding depth from a single image is an unconstrained
problem since many real-world scenes can give the same 2D
image, resulting in the same depth maps. Humans perceive
depth from cues such as perspective, prior knowledge of sizes
of objects, or occlusion. In the literature, both supervised
and unsupervised-based methods have been employed for
estimating depth.

Eigen et al., [19] introduced a multi-scale information
approach that takes care of both global scene structure and
local neighboring pixel information. A scale-invariant loss is
used for MDE. Similarly, Xu et al. [20] formulated MDE
as a continuous random field problem (CRF). They fused
the multi-scale estimation computed from the inner semantic
layers of a CNN with a CRF framework. Instead of find-
ing continuous depth maps, Fu et al. [21] estimated depth
using an ordinal regression approach. A space-increasing
discretization method is introduced by allowing objects at
larger depths to have a lesser influence on the depth maps
than the objects nearer to the observer.

Depth is generally obtained using sensors like LIDAR,
Kinect, or by using stereo cameras. Sensors are expensive,
and stereo cameras are not generally used in endoscopy due
to several restrictions. Obtaining ground-truth training data
for depth estimation is very difficult in endoscopic imaging,
so supervised methods are not feasible for endoscopic image
reconstruction. Finding correspondence between two images
for 3D reconstruction is also difficult in endoscopy videos.
It isn’t easy to find corresponding features across the frames.

Hence, unsupervised and semi-supervised methods are
employed for MDE. Garg et al. [22] used binocular stereo
image pairs for the training of CNNs and then minimized a
loss function formed by the wrapping of the left view image
into its right of the stereo pair. Godard et al. [23] improved
this method by using the left-right consistency criterion. They
trained CNNs on stereo images but used a single image
for inference. They introduced a new CNN architecture that
computes end-to-end MDE. The network was trained with
an efficient reconstruction loss function. The state-of-the-art
unsupervised MDE method, i.e., Monodepth [23] model has
limited application in in-vivo images like endoscopic images.
This is becausemost models leverage outdoor scenes [24] and
a few indoor scenes [25] for training, and they use high-end
sensors or stereo cameras, while the WCE method only cap-
tures monocular images. Hence, it is important to devise
a strategy to perform MDE in medical imaging datasets
that generally do not have ground truth depth information.
That is why, a transfer learning approach is adopted in our
method for estimating depth. Transfer learning refers to a
learning method where what has been learned in one setting
is exploited to improve generalization in another setting [26].
Zero-shot learning is the extreme case of transfer learning
where no labeled examples are present. In our method, a zero-
shot learning approach for MDE [27] is employed.

The proposed method consists of two main steps. The
first step focuses on depth estimation, and the second step
extracts key-frames. As mentioned above, a zero-shot learn-
ing approach is adopted for depth estimation in endoscopic
videos. We propose a framework to select the most informa-
tive frames of an endoscopic video sequence. Our method
employs a three-criteria approach to identify the key-frames.
Subsequently, these key-frames can be used for 3D recon-
struction. Our method is unique in the sense that it considers
depth information to find key-frames. Finally, any of the
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FIGURE 1. Proposed method of finding key-frames.

FIGURE 2. Network architecture for depth estimation from colonoscopy
video frames; The model is based on a feedforward ResNet
architecture [28].

selected key-frames can then be used for 3D reconstruction
using a GUI. Experimental results clearly demonstrate the
effectiveness of our method in choosing the key-frames and
subsequent polyp visualization. The proposed method is elu-
cidated in section II. Experimental results and conclusions are
discussed in section III and section IV, respectively.

II. PROPOSED METHOD
A. DEPTH ESTIMATION
Due to the unavailability of ground truth depth data in
endoscopy video datasets, a transfer learning approach is
adopted forMDE in our proposedmethod. Lasinger et al. [27]
proposed a zero-shot learning for depth estimation. The work
of Lasinger et al. inspires our proposed work for depth
estimation as a zero-shot approach.

This section explains how we use monocular images to
learn relative depth. As demonstrated in Figure 2, we model
monocular relative depth perception as a regression problem.
In an end-to-end method to regress pixel-wise relative depth
given a batch of input images I , we create a non-linear
function y = f (I , δ) parameterized by δ. The network is
built on a feedforward ResNet architecture that generates
multi-scale feature mappings [28]. To improve predictions,
a progressive refinement technique is used to combine multi-
scale variables.

Themodel was trained for depthmaps obtained in three dif-
ferent ways. First, the dataset contains depth maps obtained
using LIDAR sensors. This method gives depth maps of high
quality. Second, the Structure from Motion (SfM) approach

is employed to estimate the depth. The third method of get-
ting depth information from stereo images of the 3D movies
dataset. It uses optical flow to find motion vectors from each
of the stereo images. Then, the left-right image disparity
is used to find a depth map. The dataset contains images
that have varying aspect ratios. Sometimes, black bars on
frame borders appear in estimated depth maps. So, all the
images are cropped to extract only the center portion of the
frame. This ensures the framework can handle images of
varying aspect ratios. Moreover, the method focuses more on
the central part of the image frame. Using the distance of
an object from the camera to predict depth leads to sparse
3D reconstructions. This is because depth is estimated by
tracking the corresponding features over a series of frames.
Then, the induced parallax is used for triangulation and depth
estimation. However, the resultant parallax will be small for
distant features (like the sky) and won’t allow proper recon-
struction. Thus, distant objects like the sky are not considered
while estimating depth. This addresses the issue of finding
correspondences for distant objects.

The disparity map is found by using stereo matching using
optical flow. Optical flow successfully handles moderate dis-
placements. The horizontal component of the flow vectors is
used as a reference for finding a disparity map. Optical flow
is estimated taking either the left or right image as a refer-
ence and finding flow from the other. Next, the consistency
between both left and right is calculated to discard the pixels
with more than one-pixel disparity.

The datasets on which the model is trained are unique
because they contain both positive and negative disparities.
However, training on ground truth data from different sources
has some constraints: 1) The dataset contains images that
have only depth (from LIDAR sensors) or disparity images;
2) Data obtained from the SfM technique gives depth images
for which scale is not known; 3) The 3D movies dataset gives
a ground truth depth which has an unknown shift.

1) LOSS FUNCTION
A shift and scale invariant loss function is chosen to address
the problems pertaining to training on three different datasets.
Let d ∈ RN be the computed inverse depth and d′ ∈ RN be
ground truth inverse depth, where N is the number of pixels
in a frame. Here s and t represent scale and shift, respectively
and they are positive real numbers. This can be represented
in a vector form by taking Edi = (di, 1)ᵀ and p = (s, t)ᵀ and
thus the loss function becomes:

L = arg min
s,t

1
2N

N∑
i=1

(sdi + t − d′i)2 (1)

L(di,d′i) = arg min
p

1
2N

N∑
i=1

(Edᵀi p− d′i)2 (2)

The closed-form solution is given as:

popt = (
N∑
i=1

EdiEd
ᵀ
i )
−1(

N∑
i=1

Edid′i) (3)
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Substituting popt into (2) we get:

L(di,d′i) = arg min
p

1
2N

N∑
i=1

(Edᵀi p
opt
− d′i)2 (4)

2) REGULARIZATION TERM
A multi-scale scale-invariant regularization term is used,
which does gradient matching to the depth inverse space. This
biases discontinuities to be sharp and coincide with ground
truth discontinuities. The regularization term can be defined
as,

Lr (di,d′i) =
1
N

k∑
j=1

N∑
i=1

(|1xQik | + |1yQik |) (5)

where,

Qi = Ed
ᵀ
i p

opt
− d′i (6)

Here Qk gives the difference of inverse depth maps at
a scale k . We use k = 4 scale levels, halving the image
resolution at each level. Also, the scale is applied before
finding x and y gradients.

3) MODIFIED LOSS FUNCTION
The final loss function for a training set of sizeM , taking into
consideration of the regularization term, becomes:

Lfinal =
1
M

M∑
i=1

L(di, (d′)i)+ αLr (di, (d′)i) (7)

Here α is taken as 0.5.

B. SELECTION OF KEY-FRAMES
During the colonoscopy, not all the captured frames are clin-
ically significant. Most of the frames may have redundant
information, or may not be useful from a diagnostic perspec-
tive. Such frames need to be discarded and the clinically infor-
mative frames need to be retained. It is also strenuous and
computationally intensive for a physician to investigate each
frame of a video sequence. Thus, we propose a key-frame
selection technique. Subsequently, 3D reconstruction is done
to perform further analysis of the polyps. The key-frame
selection method is given in Fig. 1.

1) COLOUR SPACE CONVERSION
Our dataset contains images which are in RGB color space.
Taking cues from the human visual system which works on
saliency, we changed the color space from RGB to COC
which gives a better perception in the medical imaging [29].

The image is subsequently used to find key-frames.
A frame should satisfy three criteria before being selected as a
key-frame: 1) It should be significantly different from neigh-
boring frames. 2) The key-frame should give significant depth
information of a polyp. 3) The polyp should not be occluded
in the key-frame. We ensured that the above requirements
were met, and they are formulated as follows:

2) IMAGE MOMENT
Image moments give the information of the shape of a region
along with its boundaries and texture. Hu moments [30] are
considered as they are invariant to affine transformation, and
moment distances of consecutive frames are used to identify
the redundant frames of a video. Subsequently, the moment
difference between consecutive frames are calculated. The
frames with a higher moment distance will be considered as
the key frames. The moment distance d between two images
is calculated as:

d =
i=7∑
i=1

(Ii − I ′i )
2 (8)

where, i represents each of a total of 7 moments.

3) EDGE DENSITY
In our proposed method, the key-frames which have sig-
nificant depth information are only considered for the 3D
reconstruction of a polyp. It is observed that the polyp images
having more edges have more depth information. The edge
information can be obtained with the help of the gradient
magnitude of an image. Before finding the gradients, images
were smoothed using a Gaussian kernel.

Horizontal and vertical gradients are obtained using Sobel
operators Sx and Sy and then the gradient magnitude 1S is
calculated as follows:

1S =
√
(Sx)2 + (Sy)2 (9)

4) KEY-POINT DETECTION
The proposed moment-based key-frame detection method
may capture some occluded frames. So, the objective is to
select non-occluded key-frames from a group of key-frames
that were extracted by our proposed image moment and edge
density-based criteria. For this, a key-point detection-based
technique is used.

For key-point detection and extraction, we used ORB (Ori-
ented FAST and Rotated BRIEF). ORB is computationally
faster and robust to noises in endoscopic images. The frames
containing a lesser number of ORB points correspond to
occluded polyps.

5) ADAPTIVE KEY-FRAME SELECTION
After finding the moment distance (d), edge magnitude (s),
and the number of ORB points (p), we normalize these scores
using min-max normalization. This is done so that each of
the three scores is reduced to the range of 0 to 1 with both
values inclusive. Instead of adding the three scores directly,
we use dynamic weights to capture the changes in a video.
The variable having more significant variance is given more
weightage. Here, wi is the weight of the normalized score.
To consider intra-variable changes, we used the sum of the
magnitude of difference between consecutive frame scores as
a measure to find weights. We then normalized this score to
be used as weights for finding a fused score. The weights are
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FIGURE 3. Plot of moment distance, edge density, number of key-points and the total fused score
vs frame number of a colonoscopy video sequence.

given by:

d1 =
n∑
i=1

|di − d ′i |, s1 =
n∑
i=1

|si − s′i|,

p1 =
n∑
i=1

|pi − p′i| (10)

w1 =
d1

d1 + s1 + p1
, w2 =

s1
d1 + s1 + p1

,

w3 =
p1

d1 + s1 + p1
(11)

f = w1d1 + w2s1 + w3p1 (12)

Here, d1, s1, p1 are the sum of magnitudes of difference
between consecutive frame scores and f is the fused score
obtained by adaptively weighting the three frame scores. The
frames with the highest fused scores are selected according to
a threshold value which was set as 0.5. The variance of each
criterion with frame number is shown in Fig. 3.

III. EXPERIMENTAL RESULTS
The proposed method is evaluated on the publicly avail-
able dataset. This dataset contains colonoscopic video
sequences from three classes, namely adenoma, serrated and
hyperplasic. The adenoma class contains 40 sequences, ser-
rated class contains 15, while the hyperplasic class con-
tains 21 video sequences [32]. In this work, we consider only
the frames from the adenoma (malignant) class because this
class needs the maximum attention of the physician. The
dataset used in this work is publicly available in the url:
http : //www.depeca.uah.es/colonoscopy_dataset/.
For this work, we considered only narrowband images

(NBI) as they require less preprocessing and are generally
used for polyp classification. The adenoma class contains 40
video sequences of different patients. It contains both patchy
and convex polyp sequences. In this work, the frames which
have convex polyps are taken for estimating the depth. A few

FIGURE 4. Some images of colonoscopy dataset: the first row are the
examples of convex polyps and the second row are the examples of
patchy polyps.

TABLE 1. Key frame selection and segmentation performance using our
method on some of the sequences of CVC-Clinic Database (Sequences
with only the elevated polyps are considered).

convex and patchy polyp images of the dataset are shown
in Fig. 4. We used a pre-trained model trained on diverse
datasets by Lasinger et al. [27] in our work. A ResNet-based
multiscale architecture as proposed byXian et al. [33] is used
for depth estimation. Adam optimizer is used with a learning
rate of 10−4 for layers that are randomly initiated and 10−5

for layers initialized with pre-trained weights. Decay rates for
the optimizer are set at β1 = .9 and β2 = .999, training uses
a batch size of 8. Due to different image aspect ratios, images
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FIGURE 5. Key-frames obtained by our method and their corresponding depth maps. The polyp is visible from different viewing
angles in these selected frames.

FIGURE 6. Comparison of MDE on two input images, one outdoor and the
other one is an endoscopy image. The depth map by Monodepth [23]
performs well for outdoor environment while giving unsatisfactory results
for the endoscopy image. However, the zero-shot learning method [27]
clearly performs well for medical images but cannot accurately estimate
the depth in outdoor scenes.

are cropped and augmented for training. The input size of the
frames is taken as 384× 384.

Our method performs better than the state-of-the-art MDE
methods. The depth estimation results are shown in Fig. 6,
where the first row represents the input images, while the sec-
ond and the third row show the comparative results between
monodepth model [23] and zero-shot cross-dataset transfer
pre-trained model [27]. This clearly shows that monodepth
performs well in outdoor environments than our method.
However, the Zero-shot learning method is more accurate in
predicting depth in endoscopic images.

FIGURE 7. Polyp boundary detection using depth map; Column 1:
Original endoscopic image, Column 2: Generated depth maps, Column 3:
Detected polyp boundary using canny edge detection algorithm, Column
4: Edge refinement using connected component analysis. First three rows
of image samples are taken from CVC-Clinic Database [31], the last two
rows of images are frames taken from a video sequence of the publicly
available dataset [32].

Our method is the first-of-its-kind in which key-frames are
extracted from an endoscopic video using depth maps. Also,
it is robust to occlusions. As redundant frames are discarded
in our method, it is more convenient for physicians to analyze
essential frames of a video sequence. As explained earlier,
the moment distance criterion between consecutive frames is
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used to ensure that redundant frames are identified and then
discarded. The edge magnitude criterion leverages the depth
images data to select the best frames. Frames with fewer ORB
points have occluded polyps, and these frames are redundant.
Adaptive thresholding is used to apply three criteria to obtain
essential frames for 3D reconstruction.

The selected key-frames are finally used to reconstruct
the 3D surface of the polyp. We have used Facebook’s 3D
image GUI to view the reconstructed polyp surface; the link
to the video is shown here: https : //youtu.be/PJKfk0Mqu2I .
3D visualization of a polyp helps in surgeries involving the
removal of the polyp from its root. This gives better visu-
alization of polyps for diagnosis. Fig. 5 shows some of the
results of key-frame extraction and the corresponding depth
maps. No publicly available datasets or methods using them
that predict depth maps from endoscopic frames exist. Thus,
a comparison between different methods for predicting depth
from endoscopic images couldn’t be performed.

Another application of our proposed method could be
automatic segmentation of polyps in endoscopic images. The
depth maps generated by our proposed method can further
be used for polyp localization. The canny edge detector is
used over the depth maps, and subsequently, polyp bound-
ary is determined by using connected component analysis.
Fig. 7 shows localized polyps in some of the endoscopic
image samples. The segmentation performance on some of
the sequences of the CVC-Clinic Database [31] is shown
in Table 1. This dataset contains 25 colonoscopy video
sequences. Each sequence contains an average of 25 frames.
We defined mIoU as the mean intersection over the union
of the segmented polyp masks to the ground truth masks.
In polyp segmentation, an IoU score of ≥0.5 is generally
considered good [34].

IV. CONCLUSION
Our proposed method can determine depth maps using a
zero-shot learning approach. The zero-shot learning method
performs well on previously unseen classes like endoscopic
images. Through this, we extended MDE to in-vivo images,
which would be helpful to analyze medical images. The
essential frames are picked out from WCE videos with the
help of depth information and the proposed three criteria
selection strategy. The selection of a threshold value for
the final fused score must be empirically set to extract the
key-frames. Experimental results show the efficacy of the
proposed method in selecting key-frames from endoscopic
videos and subsequent segmentation of detected polyps in the
key-frames with the help of extracted depth maps. Also, the
3D model could be used in clinical diagnosis and surgeries.
One possible extension of this work could be the visual-
ization of polyps in detected key-frames in an augmented
reality framework.
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