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ABSTRACT Sampling using integrator-dependent shadow Hamiltonian’s has been shown to produce
improved sampling properties relative to Hamiltonian Monte Carlo. The shadow Hamiltonian’s are typically
non-separable, requiring the expensive generation of momenta, with the recent trend being to utilise
partial momentum refreshment. Separable Shadow Hamiltonian Hybrid Monte Carlo (S2HMC) employs
a canonical transformation which results in the Hamiltonian being separable and makes use of a processed
leapfrog integrator. In this work, we combine the benefit of sampling using S2HMC with partial momentum
refreshment to create the Separable Shadow Hamiltonian Hybrid Monte Carlo with Partial Momentum
Refreshment (PS2HMC) algorithm which leaves the target distribution invariant. Numerical experiments
across various targets show that the proposed algorithm outperforms S2HMC and Shadow Hamiltonian
Monte Carlo with partial momentum refreshment. Comprehensive analysis is performed on the Banana
shaped distribution, multivariate Gaussian distributions of various dimensions, Bayesian logistic regression
and Bayesian neural networks.

INDEX TERMS Bayesian neural networks, Bayesian logistic regression, Hamiltonian Monte Carlo, partial
momentum refreshment, shadow Hamiltonian Monte Carlo, Markov Chain Monte Carlo.

I. INTRODUCTION
Markov Chain Monte Carlo (MCMC) methods have been
successfully employed to sample from complex statistical
and machine learning models [1]–[4]. The first MCMC
method to be introduced into the literature is the Metropolis-
Hastings [5] method, which has since been enhanced
using gradient-free MCMC techniques [6]–[8] as well as
approaches that incorporate the gradient [9]–[11] information
of the target posterior. MCMC methods have been applied in
various contexts including health, renewable energy, finance
and inverse problems [12]–[16].

A popular MCMC algorithm is Hamiltonian Monte Carlo
(HMC) [9], [17], [18], which utilises Hamiltonian dynam-
ics to sample from the target posterior. HMC improves on
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random walk samplers such as the Metropolis-Hastings algo-
rithm by utilising the first-order gradient information of the
unnormalised posterior distribution to guide its exploration.
This results in lower auto-correlations between the generated
samples when compared to random walk samplers.

There have been various improvements to the HMC algo-
rithm first introduced by Duane et al. [9]. These variations
include Magnetic Hamiltonian Monte Carlo [11], [19]–[21],
which adds a magnetic field to HMC and leads to lower
auto-correlations in the generated samples, Riemanian Man-
ifold Hamiltonian Monte Carlo [10] which employs second
order gradient information to explore the target, Wormhole
Hamiltonian Monte Carlo [22] which efficiently samples
from isolated modes of the target distribution by exploit-
ing the Riemannian geometric properties of the target dis-
tribution, the No-U-Turn Sampler which addresses a key
impediment of HMC which is the tuning of the step size
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and trajectory length parameters that are very difficult to
manually tune [14], [23], as well asmethods that usemodified
or shadow Hamiltonian’s to sample from high dimensional
targets [1], [13], [14], [24].

Since the seminal work of Izaguirre and Hampton [1] on
integrator-dependent shadow Hamiltonian’s, there has been a
proliferation of shadowHamiltonianMonte Carlo methods in
the literature. The shadowHamiltonianmethods are premised
on the fact that shadow Hamiltonian’s are better conserved
when compared to the true Hamiltonian’s [1]. This allows
one to use larger step sizes, or perform sampling on problems
with larger dimensions, without a significant decrease in
the acceptance rates when compared to Hamiltonian Monte
Carlo methods [25]–[27]. The authors introduce a constant,
which determines how close the true and the shadow Hamil-
tonian’s are, to control the generation of the momentum. This
increases overall computational time of the method.

Sweet et al. [24] improve on the work of Izaguirre and
Hampton [1] by using a canonical transformation on the
parameters and momentum. This canonical transformation is
substituted into the non-separable Hamiltonian introduced in
Izaguirre and Hampton [1] so that it now becomes separable.
This results in a processed leapfrog integration scheme which
is more computationally efficient when compared to the orig-
inal shadow Hamiltonian Monte Carlo method of Izaguirre
and Hampton [1], as computationally expensive momentum
generation for the non-separable Hamiltonian is no longer
required.

Partial momentum refreshment has been utilised by
Radivojevic and Akhmatskay [26] and Akhmatskaya and
Reich [25] to generate momenta in the context of non-
separable Hamiltonian’s. Radivojevic and Akhmatskay [26]
also consider higher order integrators and their correspond-
ing shadow Hamiltonian’s and propose the Mix and Match
Hamiltonian Monte Carlo algorithm which provides better
sampling properties to HMC.

Heide et al. [27] derive a non-separable shadow
Hamiltonian for the generalised leapfrog integrator used in
Riemannian Manifold Hamiltonian Monte Carlo (RMHMC),
which results in improved performance relative to sampling
from the true Hamiltonian. The authors employed partial
momentum refreshment to generate the momenta. Partial
momentum refreshment has also been used by Horowitz [28]
to improve the sampling properties of Hamiltonian Monte
Carlo and byMongwe et al. [21] to enhance the performance
of Magnetic Hamiltonian Monte Carlo. The results showed
the significant benefits that can be obtained by utilising
partial momentum refreshment in Hamiltonian Monte Carlo
methods [21], [28]. Employing partial momentum refresh-
ment in S2HMC is yet to be explored in the literature. This
manuscript aims to fill this gap in the literature.

In this work, we combine the separable Hamiltonian in
S2HMC with partial momentum refreshment to create the
Separable Shadow Hamiltonian Hybrid Monte Carlo With
Partial Momentum Refreshment (PS2HMC) algorithm. The
performance of the proposed sampler is compared against

Separable Shadow Hamiltonian Hybrid Monte Carlo and
Shadow Hamiltonian Monte Carlo with partial momentum
refreshment. The target posteriors considered are the Banana
shaped distribution, multivariate Gaussian distributions with
various dimensions, real world datasets modelled using
Bayesian logistic regression and Bayesian neural networks.

The empirical results show that the PS2HMC method
outperforms the other MCMC algorithms on all the target
distributions based on the effective sample size, effective
sample size normalised by execution time and the acceptance
rate metrics.

The main contributions of this work can be summarised are
as follows:
• We introduce the Separable Shadow Hamiltonian
Hybrid Monte Carlo with Partial Momentum Refresh-
ment (PS2HMC) method, which utilises partial momen-
tum refreshment in Separable Shadow Hamiltonian
Hybrid Monte Carlo.

• Numerical experiments show that the PS2HMC algo-
rithm outperforms Separable Shadow Hamiltonian
Hybrid Monte Carlo and Shadow Hamiltonian Hybrid
Monte Carlo with partial momentum refreshment on all
the performance metrics considered.

The remainder of this manuscript proceeds as follows:
Section II discuss the Markov Chain Monte Carlo consid-
ered in this work, Section III presents the proposed method,
Section IV outlines the target densities considered, Section V
outlines the experiments conducted, Section VI presents and
discusses the results of the experiments and we provide the
conclusion in Section VII.

II. SHADOW HAMILTONIAN MONTE CARLO
Hamiltonian Monte Carlo (HMC) employs Hamiltonian
dynamics to efficiently explore the parameter space [9], [18],
[29]. HMC adds an auxiliary momentum variable p ∈ R

D

to the parameter space w ∈ R
D, where D is the number of

dimensions. The resultant Hamiltonian H : R2D
→ R from

this dynamic system is written as [18]:

H (w,p) = U (w)+ K (p) (1)

where U (w) is the negative log-likelihood of a differen-
tiable target posterior distribution and K (p) is the kinetic
energy defined by the kernel of a Gaussian with a covariance
matrixM [18], [21], [29]:

K (p) =
1
2
log

(
(2π )D|M|

)
+

pTM−1p
2

. (2)

The trajectory vector field is defined by considering
the parameter space as a physical system that follows
Hamiltonian dynamics [18], [21]. The equations governing
the trajectory of the chain are then defined by Hamilton’s
equations at a fictitious time t as follows [18]:

dw
∂t
=
∂H (w,p)
∂p

;
dp
∂t
= −

∂H (w,p)
∂w

. (3)

The evolution of this Hamiltonian system must preserve
both volume and total energy [21]. As the Hamiltonian in
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equation (1) is separable, to traverse the space we use the
leapfrog integrator [9], [18], [21]. The leapfrog integration
scheme proceeds as follows: the next point on the trajectory
is reached by taking a half step in the momentum direction,
followed by a full step in the parameters and concluding with
a half step in the momentum direction [18], [21]. Mathemat-
ically, this is expressed as:

pt+ ε2 = pt +
ε

2
∂H (wt ,pt)

∂w
wt+ε = wt + εM−1pt+ ε2

pt+ε = pt+ ε2 +
ε

2

∂H
(
wt+ε,pt+ ε2

)
∂w

. (4)

A Metropolis-Hastings acceptance step is then performed
in order to take into account the discretisation errors intro-
duced by the numerical integration scheme.

The leapfrog integrator for HMC only preserves the
Hamiltonian up to second order [1], [24]. In order to increase
accuracy and maintain the acceptance rate for larger systems,
one could decrease the step size or design more accurate
numerical integrators that preserve the Hamiltonian to a
higher order [26], [27]. However, these approaches tend to
be computationally expensive [26], [27]. The approach in
this work relies on backwards error analysis to instead derive
a shadow Hamiltonian, whose energy is more accurately
conserved by the leapfrog algorithm. We thus instead target
the corresponding modified density and employ importance
sampling to correct the generated samples towards the true
density [26], [27].

Shadow or modified Hamiltonian’s are perturbations of
the Hamiltonian that are by design exactly conserved by the
numerical integrator [1], [3], [13], [26]. In the case of shadow
Hamiltonian HybridMonte Carlo, we sample from the impor-
tance distribution defined by the shadow Hamiltonian

π̂ ∝ exp
(
− H̃ [k](w,p)

)
(5)

where H̃ [k] is the shadow Hamiltonian defined using back-
ward error analysis of the numerical integrator up to the k th

order [3], [13]. When performing backward error analysis,
the shadow Hamiltonian can be defined by an asymptotic
expansion in the powers of the discretisation step size ε
around the Hamiltonian:

H̃ = H0 + εH1 + ε
2H2 + ε

3H3 + . . . . (6)

This asymptotic expansion diverges in practice, however a
k th order truncation of the expansion is used:

H̃ [k]
= H + εH2 + ε

2H3 + ε
3H4 + · · · = H̃ +O(εk ) (7)

The Hk terms can be determined by matching the corre-
sponding components of the Taylor series in terms of ε and
the expanded exact flow of the modified differential equation
of the Hamiltonian. These modified equations can be proved
to be Hamiltonian for symplectic integrators such as the
leapfrog integrator [1], [3], [13], [24].

In this work, we focus on a fourth-order truncation of the
shadow Hamiltonian under the leapfrog-like integrator. Since
the leapfrog is second-order accurate (O2), the fourth-order
truncation is conserved with higher accuracy (O4) than the
true Hamiltonian. In theorem 1, we derive the fourth-order
shadow Hamiltonian Monte Carlo under the leapfrog
integrator.
Theorem 1: Let H : Rd×Rd = R be a smoothHamiltonian

function. The fourth–order shadow Hamiltonian function Ĥ :
Rd × Rd = R corresponding to the leapfrog integrator of
HMC is given by:

Ĥ (w,p) = H (w,p)+
ε2

12

[
KpUwwKp

]
−
ε2

24

[
UwKppUw

]
+O(ε4) (8)

Proof: The Hamiltonian vector field:
−→
H = ∇pH∇w + (−∇w +∇pH )∇p =

−→
A +
−→
B (9)

will generate the exact flow corresponding to exactly sim-
ulating the HMC dynamics. We obtain the shadow density
by simply exploiting the separability of the Hamiltonian.
The leapfrog integration scheme in equation (4) splits the
Hamiltonian as:

H (w,p) = H1(w)+ H2(p)+ H1(w) (10)

and exactly integrates each sub-Hamiltonian.
Via repeated application of the Baker-Campbell-Hausdorff

formula we obtain [30]:

8
frog
ε,H = 8ε,H1(w) ◦8ε,H2(p) ◦8ε,H1(w)

= exp
(ε
2
−→
B
)
◦ exp

(
ε
−→
A
)
◦ exp

(ε
2
−→
B
)

= H (w,p)+
ε2

12
{K , {K ,U}}

−
ε2

24
{U , {U ,K }} +O(ε4) (11)

where the canonical Poisson brackets are defined as:

{f , g} = [∇wf ,∇pf ]
[
0 I
−I 0

]
[∇wg,∇pg]T

= −∇pf∇wg+∇wf∇pg (12)

The shadowHamiltonian for the leapfrog integrator is then:

Ĥ (w,p) = H (w,p)+
ε2

12

[
KpUwwKp

]
−
ε2

24

[
UwKppUw

]
+O(ε4)

(13)

It is worth noting that the shadow Hamiltonian in (13) is
conserved to fourth-order [24], [26], [27].

Separable Shadow Hamiltonian Hybrid Monte Carlo
(S2HMC) utilises a processed leapfrog integrator to create a
separable Hamiltonian [3], [13], [24]. The separable Hamil-
tonian in S2HMC is given as:

H̃ (w,p) = U (w)+ K (p)+
ε2

24
UT
wM
−1Uw +O(ε4) (14)

VOLUME 9, 2021 151237



W. T. Mongwe et al.: Utilising Partial Momentum Refreshment in Separable Shadow Hamiltonian Hybrid Monte Carlo

which is obtained by substituting a canonical transformation
(ŵ, p̂) = X (w,p) into (13). The map should commute
with reversal of momenta and should preserve phase space
volume so that the resulting S2HMC ensures detailed bal-
ance [3], [13], [24]. Propagation of positions and momenta
on this shadow Hamiltonian is performed after performing
this reversible mapping (ŵ, p̂) = X (w,p). The canonical
transformation X (w,p) is given as [3], [13], [24]:

p̂ = p−
ε2

12
UwwKp +O(ε4)

ŵ = w+
ε2

12
KppUw +O(ε4) (15)

where (ŵ, p̂) is found through fixed point 1 iterations as:

p̂ = p−
ε

24

[
Uw(w+ εM−1p̂)− Uw(w− εM−1p̂)

]
ŵ = w+

ε2

24
M−1

[
Uw(w+ εM−1p̂)+ Uw(w− εM−1p̂)

]
(16)

After the leapfrog is performed, this mapping is reversed
using post-processing via following fixed point iterations:

w = ŵ−
ε2

24
M−1

[
Uw(w+ εM−1p̂)+ Uw(w− εM−1p̂)

]
p = p̂+

ε

24

[
Uw(w+ εM−1p̂)− Uw(w− εM−1p̂)

]
(17)

Once the samples are obtained from S2HMC, importance
weights are calculated to allow for the use of the shadow
canonical density rather than the true density. These weights
are based on the differences between the true and shadow
Hamiltonian’s as bm = exp[−(H (w,p) − Ĥ (w,p))]. Mean
estimates of observables f (w) which are functions of the
parameters w can then be computed as a weighted average.

III. SEPARABLE SHADOW HAMILTONIAN HYBRID
MONTE CARLO WITH PARTIAL MOMENTUM
REFRESHMENT
We now introduce the Separable Shadow Hamiltonian
Hybrid Monte Carlo With Partial Momentum Refreshment
(PS2HMC) algorithm. This method combines the Separable
Shadow Hamiltonian Hybrid Monte Carlo (S2HMC) algo-
rithm with the sampling benefits of utilising partial momen-
tum refreshment. The benefits of employing partial momen-
tum refreshment in general have already been established
in [21], [25], [31], while the advantages of S2HMC are
presented in [3], [13], [24]. In this work, we combine these
two concepts with the aim of creating a new sampler than
outperforms S2HMC across various performance metrics.
This approach is yet to be explored in the literature.

In this work, we utilise the partial momentum refreshment
technique outlined in [21], [25], [27] in which an auxiliary

1Hessian approximated as: UwwKp = 1
2ε
[
Uw(w + εM−1p̂) − Uw(w −

εM−1p̂)
]
.

noise vector u ∼ N (0,M) is drawn and a momentum pro-
posal is generated via the mapping:

R(p, u) =
(
ρp+

√
1− ρ2u,−

√
1− ρ2p+ ρu

)
(18)

The new parameter, which we refer to as the momen-
tum refreshment parameter, ρ = ρ(w,p, u) takes values
between zero and one and controls the extent of the momen-
tum retention [21], [26], [27]. When ρ is equal to one, the
momentum is never updated and when ρ is equal to zero,
the momentum is always updated [21]. The momentum pro-
posals are then accepted according to the modified separable
Shadow density given as H̄ (w,p, u) = H̃ (w,p)+ 1

2uMu. The
updated momentum is then taken to be ρp+

√
1− ρ2u with

probability:

γ := max{1, exp(H̄ (w,p, u)− H̄ (w,R(p, u)))}. (19)

This process produces aMarkov chain that conserves some
of the dynamics between the consecutive generated sam-
ples [21], [25]–[27], [31]. The effect of ρ is that is adds
an extra degree of freedom to the algorithm and can be
constructed so that it depends on the momentum and the posi-
tion [21], [25], [27]. In Section V-C, we assess the sensitivity
of the sampling results on the user specified value of ρ.
An algorithmic description of the PS2HMC sampler

is provided in Algorithm 1. The algorithm proceeds by
first generating a proposal of the momentum, which is
accepted or rejected via a Metropolis-Hastings step, and con-
cludes by generating the positions before applying another
Metropolis-Hastings step. Note that the Metropolis-Hastings
step for generating the momenta is actually not required
as the Hamiltonian used in equation (19) is the separable
Hamiltonian in equation (14) [26]. It is also worth noting
that the momentum regeneration scheme used in Shadow
Hamiltonian Monte Carlo with partial momentum refresh-
ment (SHMC) in this work is the same as the one outlined
in the Algorithm 1.

The proposed method involves a minimum (depending on
how the gradients are calculated) of 14 likelihood or target
posterior function evaluation to generate a single sample, this
is much larger than the minimum of 4 evaluations required by
standard HMC. However, it should be noted that the proposed
PSHMC method only adds two more likelihood evaluations
compared to S2HMC (on which the method is based) and
S2HMC has already been shown in [14], [24] to outperform
HMC. In this work, we show that our proposed PS2HMC
method outperforms S2HMC and consequently outperforms
HMC.

IV. THE TARGET POSTERIORS
In this section, we outline the target distributions that were
considered in this work. These target distributions are inline
with those used in Mongwe et al. [21], with the additional
target considered being Bayesian neural networks.
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Algorithm 1 PS2HMC
Input: maximum number of steps L, step size ε, momen-
tum update parameter ρ, number ofMonte Carlo samples
N and initial values (w0, p0).

1: for i→ 1 to N do
2: store: (w,p)← (wi−1,pi−1).
3: sample momentum update proposal: u ∼ N (0,M)
4: update: p̄ ← ρp +

√
1− ρ2u with probability γ in

equation (19).
5: Apply the pre-processing mapping in equation (16):

(ŵ, p̂) = X (w, p̄)
6: integrate Hamiltonian dynamics in equation (4):

(ŵ, p̂) = 8L
ε,H (ŵ, p̂)

7: Apply the post-processing mapping in equation (17):
(ŵ, p̂) = X−1(ŵ, p̂)

8: accept sample (wi,pi) ← (ŵ, p̂) with probability β,
and reject (wi,pi) ← (w,−p) otherwise. Here, β =
min

[
1, exp(−1Ĥ )

]
.

9: bi = exp
(
Ĥ (wi,pi)− H (wi,pi)

)
10: end for

Output: (wi,pi, bi)Ni=0

A. BANANA SHAPED DISTRIBUTION
The banana-shaped density is a 2-dimensional non-linear
target which was first presented in Haario et al. [8]. The like-
lihood and prior distributions are given as:

y|w ∼ N (w1 + w2
2 = 1, σ 2

y ), w1,w2 ∼ N (0, σ 2
w) (20)

We generated one hundred data points for y with σ 2
y = 4

and σ 2
w = 1. Due to independence of the data and parameters,

the posterior distribution is proportional to:

i=N∏
i=1

p(yk |w)p(w1)p(w2). (21)

where N = 100 is the number of observations.

B. MULTIVARIATE GAUSSIAN DISTRIBUTIONS
We follow the approach of Mongwe et al. [21] and sample
from D-dimensional Gaussian distributions N (0, 6) with
mean zero and covariance matrix6. For our purposes, we set
the covariance matrix 6 to be diagonal. We sample the
standard deviations from a log-normal distribution with zero
mean and unit standard deviation. We assess the case where
the number of dimensions D is in the set {10, 50, 100}.

C. BAYESIAN LOGISTIC REGRESSION
We utilise Bayesian logistic regression to model the real
world binary classification datasets in Table 1. The negative
log-likelihood l(D|w) function for logistic regression is given
as:

l(D|w) =
N∑
i

yilog(wT xi)+ (1− yi)log(1− wT xi) (22)

FIGURE 1. An illustration of the data flow in a Multilayer Perceptron
(MLP). In this work, we limit our investigations to MLPs with one hidden
layer and a single output.

where D is the data and N is the number of observations. The
log of the unnormalised target posterior distribution is given
as:

ln p(w|D) = l(D|w)+ ln p(w|α) (23)

where ln p(w|α) is the log of the prior distribution on the
parameters given the hyperparameters α. The parameters w
are modelled as having Gaussian prior distributions with zero
mean and standard deviation α = 10.

TABLE 1. Real world benchmark datasets. N represents the number of
observations. D represents the number of model parameters.

D. BAYESIAN NEURAL NETWORKS
Artificial neural networks are learning machines that have
been extensively employed as universal approximators of
complex systems with great success [3], [13]. This work
focuses on Multilayer Perceptrons (MLP) with one hidden
layer, a example of which is shown in Figure 1. In this paper,
MLPs are used to model the real world datasets outlined
in Table 2. These datasets are regression datasets, with the
negative log-likelihood being the sum of squared errors.

It was shown in [34] that MPLs can be utilised to approx-
imate any arbitrary function if the MLP has enough hidden
units [35]. The outputs of a network with a single output as
depicted in Figure 1 are defined as:

fk (x) = bk +
∑
j

vjkhj(x) (24)

hj(x) = 9
(
aj +

∑
i

wijxi

)
(25)

where wij is the weight connection for the ith input to the
jth hidden unit and vjk is the weight connection between
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the jth hidden unit to the k th output. Note that in this work
k = 1. The activation function 9 provides the non-linearity
required to approximate complex non-linear relationships
between inputs and outputs. The Sigmoid and Relu activation
functions are examples of common activation functions used
in practice [13], [36].

The Bayesian framework provides a principled approach
for the inference of neural network model parameters. The
Bayesian framework is strongly tied to Bayes theorem.
Employing Bayes theorem for a neural network model with
architecture H , weights w and training dataset D, we have
[13], [37], [38]:

P(w|D,H ) =
P(D|w,H )P(w|H )

P(D|H )
(26)

where P(w|D,H ) is the target posterior probability of the
weights given the data and model architecture, P(D|w,H ) is
the likelihood of the data given the model and P(w|H ) is the
prior probability of the weights. P(D|H ) is the probability of
the data given the model [13], [37].

TABLE 2. Real world datasets modelled using Bayesian neural networks.
N represents the number of observations. D represents the number of
model parameters.

V. EXPERIMENTAL SETUP
In this section we outline the experimental setup. We present
the settings used for the experiments, the performance met-
rics employed in the analysis and we present the sensitivity
analysis of the sampling results for a user chosen value of ρ.

A. EXPERIMENT SETTINGS
In the experiments, we assess the performance of PS2HMC
when compared to S2HMC and Shadow Hamiltonian Monte
Carlo with partial momentum refreshment. The MCMC
methods are compared using the effective sample size, effec-
tive sample size per second and the acceptance rate metrics.
We set the momentum refreshment parameter ρ to 0.9 across
all the targets.We further asses the effect of ρ on the sampling
results on Section V-C.

We set the trajectory length for the three MCMC methods
considered in this work to 100 across all the target densities.
A step size of 0.1 was used for the Banana distribution, 0.02
for the Bayesian logistic regression datasets, 0.005 for the
Bayesian neural network datasets while step sizes of 0.1, 0.07
and 0.05 were used for each value of D in that order for the
multivariate Gaussian distributions.

A total of ten independent chains were run for eachMCMC
algorithm across all the target posterior distributions. For
the Bayesian neural network targets, 5 000 samples were
generated after 2 500 samples of burn-in. For the other targets,
we generated 3 000 samples for each target, with the first
1 000 being discarded as the burn-in. These settings were
sufficient for the considered MCMC methods to converge

across all the posteriors. All experiments were conducted on
a 64bit CPU using PyTorch.

B. EFFECTIVE SAMPLE SIZE
This work employs the multivariate effective sample size
metric developed by Vats et al. [39] instead of the minimum
univariate ESS metric typically used in analysing MCMC
results. The minimum univariate ESS measure is not able
to capture the correlations between the different parameter
dimensions, while the multivariate ESS metric is able to
incorporate this information [3], [4], [10], [39]. Theminimum
univariate ESS calculation results in the estimate of the ESS
being dominated by the parameter dimensions that mix the
slowest, and ignoring all other dimensions [3], [39]. The
multivariate ESS is calculated as:

mESS = N ×
(
|3|

|6|

) 1
D

whereN is the number of generated samples,D is the number
of parameters,3 is the sample covariance matrix and6 is the
estimate of theMarkov chain standard error.WhenD = 1, the
multivariate ESS is equivalent to the univariate ESS measure.

We now address the effective sample size calculation for
Markov chains that have been re-weighted via importance
sampling, such is the case for the MCMC algorithms con-
sidered in this paper [3], [13], [26], [27]. For N samples
re-weighted by importance sampling, the common approach
is to use the approximation by [40] given by

ESSIMP =
1(∑N
j=1 b̄

2
j

) (27)

where b̄j = bj/
∑N

k=1 bk . This accounts for the possible
non-uniformity in the importance sampling weights. In order
to account for both the effects of sample auto-correlation and
re-weighting via importance sampling, we approximated the
effective sample size under importance sampling by:

ESS :=
ESSIMP
N

×mESS =
1(∑N
j=1 b̄

2
j

) × ( |3|
|6|

) 1
D

(28)

C. IMPACT OF PARTIAL MOMENTUM REFRESHMENT
In this section, we assess the impact of the momentum
refreshment parameter ρ on the sampling results. We ran
a total of ten independent chains of SHMC and PS2HMC
on the ten dimensional multivariate Gaussian distribution for
ρ ∈ {0.1, 0.3, 0.5, 0.6, 0.7, 0.9}. Each chain utilised the same
simulation parameters as outlined in Section V. The results
are displayed in Figure 2. The results show that SHMC and
PS2HMC produce the same acceptance rates regardless of
the value of ρ. PS2HMC outperforms SHMC across all the
considered performance metrics.

The MCMC methods show a general trend of increasing
ESS and normalised ESS with increasing ρ. The optimal
ρ depends on the target distribution and requires manual
tuning by the user. The tuning of this parameter is still an
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FIGURE 2. Acceptance rates, ESS and ESS/t for ten runs of SHMC (blue) and PS2HMC (orange) on the 10 dimensional Gaussian distribution with varying
choices of ρ.

TABLE 3. Banana shaped distribution results averaged over 10 runs. The
time t is in seconds. The values in bold indicate that the particular
method outperforms the other methods on that specific metric.

TABLE 4. Multivariate Gaussian distribution results averaged over 10
runs. The time t is in seconds. The values in bold indicate that the
particular method outperforms the other methods on that specific metric.

open research problem [21]. We plan to address the auto-
matic tuning of this parameter in future work. As a guide-
line, higher values of ρ seem to be correlated with higher
effective sample sizes. These results were also observed by
Mongwe et al. [21] in the context of sampling fromMagnetic
Hamiltonian Monte Carlo.

VI. RESULTS AND DISCUSSION
We now present and discuss the results of the exper-
iments outlined in Section V. The performance of the
MCMC methods across the various metrics are presented in

TABLE 5. Bayesian logistic regression results averaged over 10 runs. The
time t is in seconds. The values in bold indicate that the particular
method outperforms the other methods on that specific metric.

Figure 3 and Tables 3 to 6. Note that the results in Figure 3
are presented as follows: the plots on the first row for each
target distribution show the effective sample size while the
plots on the second row show the effective sample size nor-
malised by execution time t . The displayed results are for a
total of ten independent runs of each MCMC algorithm.

The execution time t in Figure 3 and Tables 3 to 6 is in
seconds. The results in Tables 3 to 6 are the mean results over
the ten runs for each MCMC algorithm. Note that we use the
mean values over the ten runs in Tables 3 to 6 to form our
conclusions about the performance of theMCMC algorithms.

The results in Figure 3 and Tables 3 to 6 show that the
proposed PS2HMC method outperforms the other MCMC
methods considered in this work on an effective sample size
basis across all the target posteriors considered. Furthermore,
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FIGURE 3. Results for the datasets over 10 runs of each method. For each dataset, the plots on the first row show the multivariate effective sample size
and the plots on the second row show the multivariate effective sample size normalised by execution time (in seconds). For all the plots, the larger the
value the better the method. The dark horizontal line in each violin plot represents the mean value over 10 runs of each algorithm.

TABLE 6. Bayesian neural network results averaged over 10 runs. The
time t is in seconds. The values in bold indicate that the particular
method outperforms the other methods on that specific metric.

i outperforms all the other methods on a normalised effective
sample size basis, or produces similar results to the other
methods.

The proposed method has a higher computational burden
when compared to the other MCMC methods due to the
extra evaluations of the shadow Hamiltonian. This results
in the normalised effective sample size performance being
affected - although still outperforming or producing similar
performance to the other MCMC methods. We intend to
address this short coming in future work by utilising surrogate

methods such as Gaussian processes by learning the shadow
Hamiltonian during the burn-in phase [41].

These empirical results show the significant benefit that
can be derived from utilising partial momentum refreshment
in S2HMC. However, the full benefits of employing partial
momentum refreshment in S2HMC are only obtained when
the momentum refreshment parameter ρ has been optimally
tuned.

VII. CONCLUSION
This work introduced the Separable Shadow Hamiltonian
Hybrid Monte Carlo With Partial Momentum Refreshment
(PS2HMC) sampler which combines the benefits of sam-
pling posteriors using Separable ShadowHamiltonian Hybrid
Monte Carlo (S2HMC) with partially updating the auxil-
iary momentum variable. This results in significant sam-
pling improvements over S2HMCwithout partial momentum
refreshment. The new method is compared to S2HMC and
Shadow Hamiltonian Monte Carlo utilising partial momen-
tum refreshment. The methods are compared on the Banana
shaped distribution, multivariate Gaussian distributions and
on real world datasets modelled using Bayesian logistic
regression and Bayesian neural networks.

151242 VOLUME 9, 2021



W. T. Mongwe et al.: Utilising Partial Momentum Refreshment in Separable Shadow Hamiltonian Hybrid Monte Carlo

The empirical results show that the new method outper-
forms all the other methods on an effective sample size
basis across all the target posteriors considered. Furthermore,
it outperforms all the other methods on a normalised effective
sample size basis, or produces similar results to the other
algorithms.

A limitation of the proposed method is the larger execution
time when compared to S2HMC. The larger execution time
is due to the evaluation on the shadow Hamiltonian when
performing the momentum refreshment. We plan to address
this in future work by utilising surrogate approaches for the
shadowHamiltonian, which should reduce the execution time
without a large reduction in the performance of the algorithm.
Another limitation of the new algorithm is the need for the
user to manually specify the momentum refreshment parame-
ter. The user would be required to perform trial and error runs
to select an appropriate value for the parameter. The results
in this work suggest that larger values of the momentum
refreshment parameter tend to improve the effective sample
size. However, a more theoretically robust approach to the
selection of the parameter is required.

This work can be improved upon by investigating an auto-
mated approach to optimally tune the momentum refresh-
ment parameter and thus removing the need for the user to
perform trial and error. As future work, we plan to compare
the performance of the proposed algorithm against manifold
based shadow Hamiltonian methods on larger datatsets. Fur-
thermore, we plan on utilising surrogate model approaches to
reduce the execution time of the proposed method.
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