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ABSTRACT This paper focuses on controlling the dynamics of a mass-damper-spring model via a servo-
controlled linear actuator (SCLA). The displacements of the mass are sensed and measured by a linear
variable differential transformer (LVDT) whose output electrical signal is proportional with the position of
the mass. Furthermore, a positive position feedback (PPF) controller is then provided with this signal to be
processed and to generate the suitable control signal. The control signal itself is applied to the actuator which
in turn controls the mass position. The whole system dynamical equations for the amplitudes and phases are
derived with the aid of Krylov-Bogoliubov averaging perturbation method. 2D and 3D visualizations are
included to give the reader a wider aspect of the system behavior before and after control.

INDEX TERMS Mass-damper-spring model, servo-controlled linear actuator, linear variable differential
transformer, Krylov-Bogoliubov averaging perturbation method, positive position feedback controller.

I. INTRODUCTION
In mechanical engineering, there are various models that
may suffer from unwanted vibrations, especially vehicles.
The vehicles, including cars, have safety systems to elim-
inate or reduce the vibrations resulting from bumps which
annoy the passengers. Many physicists have implemented
such models in the form of a mass-damper-spring model
and tried to control it. Ji and Zhang [1], [2] suppressed a
forced nonlinear oscillator’s vibrations via a mass-spring-
damper absorber considering the primary and super-harmonic
resonance cases. Alsaleem and Younis [3] have stabilized a
DC-actuated and/or AC-actuated MEMS resonator by adopt-
ing a feedback controller with time-delay used originally in
a pull-in frequency band. Febbo [4] utilized the harmonic
balance method for extracting amplitude-phase-frequency
equations that describe the harmonically driven oscillator’s
dynamical behavior. Ji et al. [5] explored the Hopf bifurca-
tion’s effect on a nonlinear oscillator’s trivial equilibrium in
case of increasing the time delay of the feedback controller.
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Liu et al. [6] investigated a harmonically-excited Euler-
Bernoulli beam at primary and secondary resonances
under the control of delayed-feedback. Bavastri et al. [7]
designed an optimal viscoelastic vibration absorber which
was coupled to a single degree-of-freedom (DOF) system.
Beltrán-Carbajal et al. [8] extended a vibration absorber’s
capability as an absorption scheme for multi-excitation fre-
quencies in order to perform a trajectory tracking for the main
system. Ji [9] focused on the secondary resonance case of
a time-delayed nonlinear oscillator via the center manifold
theorem. Yang et al. [10] investigated a two DOF system’s
vibration characteristics for examining nonlinear absorbers’
performance in suppressing primary oscillators’ vibrations.
Ji [11] explored the coexistence of bi-stable periodic solu-
tions depending on the initial conditions of a time-delayed
nonlinear oscillator on one condition of losing the trivial equi-
librium’s stability. Sun and Jing [12] subdued the 3D quasi-
zero-stiffness property in a novel vibration isolator in order
to symmetrize scissor-like structures in the horizontal and
vertical directions along with a spring-mass-damper model.
Febbo et al. [13] studied the effects of temperature change on
two viscoelastic absorbers’ design made of distinct materials.
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Han and Cao [14] studied different types of bifurcations and
limit cycles when adopting a nonlinear perturbation with
a rotating pendulum model. El-Ganaini et al. [15] showed
the time delay effects on PPF-controlling the vibrations of
a magnetically-suspended mass subjected to a combination
of force excitations. Shen et al. [16] designed an improved
inerter vibration absorber coupled to the body of a vehicle.
Sun and Jing [17] constructed an n-layer scissor-like vibra-
tion isolator and analyzed its nonlinear characteristics for
better performance in the horizontal and vertical directions.
Han and Cao [18] combined a simple pendulum and
a mass-spring oscillator to introduce a novel rotating
pendulum for a better vibration attenuation behavior.
Ji and Brown [19] explored the coexistence of bi-stable
bifurcating solutions arisen in a time-delayed mechanical
system after the occurrence of 2:1 resonant Hopf bifur-
cations. Kandil and El-Ganaini [20] reduced the rotating
blade’s vibrations via a PPF controller with time delay
and showed the delay effects on the system behavior.
Lavazec et al. [21] proved experimentally that the nonlin-
earity type in an absorber enhanced the vibration reduc-
tion behavior around the first resonance of the studied
main system. Liu et al. [22] investigated the position and
velocity feedback active controllers with time delay in a
cantilever beam dynamical system with a carried mass.
Wang et al. [23] dealt with ultra-sub-harmonics and sub-
harmonics of a bio-inspired structure with an isolation system
that could be applicable in several industrial applications.
Awrejcewicz et al. [24] analyzed the probable internal res-
onance between a linear oscillator coupled to an absorber at
primary resonance. Hamed et al. [25], [26] utilized the macro
fiber composite in order to apply active control schemes
for attenuating the rotating blade’s unwanted vibrations.
Liu et al. [27] investigated the chaos and resonance ofMEMS
and NEMS where the time delay effects were shown for
achieving a safe operation. Salighe and Mohammadi [28]
employed a virtual absorber at different spots of Timoshenko
beams to guarantee the simultaneous suppression of the unde-
sired oscillations. Kandil et al. [29], [30] have turned the
quasi-periodic motion into a periodic one of a rotor active-
magnetic-bearings model thanks to the presented tuned PPF
and NSC controllers. Liu et al. [31] investigated differ-
ent resonance cases along with time delay of controlling
a clamped micro-beam coupled to an electrostatic micro-
actuator. Mohanty and Dwivedy [32] carried out an active
vibration absorption in order to suppress the vibrations of
a single DOF spring-mass model which was exposed to
both harmonic and parametric forces. Yan et al. [33] ana-
lyzed the multi-stability in a time-delayed cutting mechan-
ical system including the statistical basins of attraction.
Zhou et al. [34] focused on the dynamical performances of
a two DOF magnetically coupled oscillators where the tar-
get component entered the saturated steady-state responses.
Ma et al. [35], [36] presented a dual-predictive control algo-
rithm depending on an adaptive error correction for the four-
wire voltage source inverters where the error strategy was

embedded into both the outer and inner prediction loop.
They also introduced an event-triggered consensus control
approach and built a nonlinear state-space function describing
the AC micro-grid.

In this work, 2D and 3D plots are included to show the
dynamical behavior of a mass-damper-spring model before
and after control. This model is controlled with the help of
linear variable differential transformer (LVDT) and servo-
controlled linear actuator (SCLA). The control unit is pro-
vided with PPF control algorithm which gives acceptable
minimum amplitudes for the car of mass m. The whole
system dynamics and solutions are extracted via the well-
known Krylov-Bogoliubov averaging perturbation method in
order to define the amplitudes and phases of the car and
PPF vibrations. The main contributions of this work are
as follows: (1) the proposed controller suppresses the car’s
vibration amplitude to its lowest level, (2) the vibrations can
be maintained at lowest levels regardless the change in the
excitation frequency, (3) this can be done once the excitation
frequency is measured and tuned with the controller’s nat-
ural frequency, (4) the controller’s damping can reduce any
newly created vibration peak amplitudes in case of mistuning
between the excitation and the controller frequencies, (5) 2D
and 3D visualizations are included in order to picture a wide
view of the whole system dynamics to the reader.

FIGURE 1. Mass-damper-spring model with a control unit.

II. MATHEMATICAL MODELING OF THE
MASS-DAMPER-SPRING COMBINATION
WITH A CONTROL UNIT
The studied mass-damper-spring model with a control unit
is shown in Fig. 1. Here, the car of mass m is attached to a
damper (dashpot) whose viscosity coefficient is C without
mass and stiffness. The car is also attached to a spring having
a linear and cubic-nonlinear stiffnessC1 andC2, respectively,
while its mass has been neglected. The car is subjected to
a periodic excitation f cos (�t). Newton’s second law of
motion leads us to get the model kinetics which can be
represented by:

mẍ+Cẋ+C1x+C2x3 = f cos (�t)+U (t) (1)
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where x is the car’s displacement from an adequate equilib-
rium position and U (t) is the control signal produced by
the control unit. The studied model (Eq. (1)) is a lumped-
parameter model which describes only the horizontal dis-
placement (x (t)) of the car by a 2nd order ordinary differential
equation. Hence, this model’s dimension is finite and not high
(specifically 1D). We did not resort to any dimensionality
reduction method. Without generality loss, the control unit
(shown in Fig. 2) comprises of a feedback module which
is a linear variable differential transformer (LVDT) whose
ferromagnetic-core is attached to the car so as to determine
its position x efficiently. This transformer has three coils as
shown where the primary coil is in the center and the other
two secondary coils are at the terminals. The core (attached to
the car) slides freely all over the LVDT axis. The primary coil
is driven by an AC current in order to produce an induction
voltage in each secondary coil which is proportional to the
core length linking to that secondary coil. The connection
of coils is designed to generate an output voltage V as a
difference between the two secondary coils voltages. The
output voltage V is proportional to the position of the car x so
we need to make a signal conditioning in order to produce a
suitable signal for the controller. The adopted PPF controller
is a conventional robust vibration controller. We have chosen
it according to the previously published Refs. [15], [20], [25],
and [29] for its good results in reducing the vibrations effi-
ciently. Herein, it is applied to minimize the car’s unwanted
oscillations. Its input is the feedback signal x while its output
is the control signal y that is computed according to the
following relation which is represented in Fig. 2:

ÿ+µcẏ+ω2
cy = kcx (2)

where µc is the PPF’s damping coefficient, ωc is its natural
frequency and kc is the feedback gain to be adjusted due to
operation. We are coming to the final stage of actuation. The
output signal y is amplified by a control gain k which can be
also adjusted due to operation and the result is U (t) = ky.
Then it is inserted into a power amplifier so as to generate
the suitable current for the servo-controlled linear actuator
(SCLA). This SCLA is some kind of a linear motor driven
by the control signal U (t) in order to make the push-pull
motions required for controlling the car connected to it.

FIGURE 2. The control unit to be attached to the car of mass m.

In this work, we propose a theoretical approach of an
adaptive feature for improving the traditional performance
of this controller. This adaptation can be done by tuning the

measured excitation frequency � to the controller’s natu-
ral frequency ωc in order to guarantee minimum vibratory
amplitudes regardless of the excitation frequency. Simplify-
ing Eq. (1) and writing it along with Eq. (2) yield

ẍ+µẋ+ω2x+αx3 = f cos (�t)+ky (3a)

ÿ+µcẏ+ω2
cy = kcx (3b)

where µ = C/m, ω2
= C1/m, α = C2/m, f ∗ = f /m,

k∗ = k/m. The asterisks have been omitted for brevity.
To solve the system of nonlinear differential equations above,
we can resort to the Krylov-Bogoliubov averaging perturba-
tion method [37]. Before applying this method, let a small
perturbation parameter ε be imposed on some parameters of
Eqs. (3) such that µ = εµ̂, µc = εµ̂c, α = εα̂, f = εf̂ ,
k = εk̂ , kc = εk̂c in order to discriminate the free undamped
linear problem from the one above as follows

ẍ+εµ̂ẋ+ω2x+εα̂x3 = εf̂ cos (�t)+εk̂y (4a)

ÿ+εµ̂cẏ+ω2
cy = εk̂cx (4b)

When ε = 0, the general solution of Eqs. (4) can be
written as

x = a1 cos (ωt+β1) (5a)

y = a2 cos (ωct+β2) (5b)

where ai and βi are constants. Then,

ẋ = −ωa1 sin (ωt+β1) (6a)

ẏ = −ωca2 sin (ωct+β2) (6b)

When ε 6= 0, the solution in Eqs. (5) is expected to be the
same but with ai and βi as time-varying. Taking the derivative
of Eqs. (5) yields

ẋ = ȧ1 cos (ωt+β1)−ωa1 sin (ωt+β1)−a1β̇1 sin (ωt+β1)

(7a)

ẏ= ȧ2 cos (ωct+β2)−ωca2 sin (ωct+β2)−a2β̇2 sin (ωct+β2)

(7b)

Equalizing Eqs. (6) with (7) leads us to

ȧ1 cos (ωt+β1)−a1β̇1 sin (ωt+β1) = 0 (8a)

ȧ2 cos (ωct+β2)−a2β̇2 sin (ωct+β2) = 0 (8b)

Taking the derivative of Eqs. (6) yields

ẍ = −ωȧ1 sin (ωt+β1)−ω2a1 cos (ωt+β1)

−ωa1β̇1 cos (ωt+β1) (9a)

ÿ = −ωcȧ2 sin (ωct+β2)−ω2
ca2 cos (ωct+β2)

−ωca2β̇2 cos (ωct+β2) (9b)

Substituting Eqs. (5), (6), and (9) into Eqs. (4) gives us

ȧ1 sin (ωt+β1)+a1β̇1 cos (ωt+β1)

= −εµ̂a1 sin (ωt+β1)+
εα̂

ω
a31 cos

3 (ωt+β1)

−
εf̂
ω

cos (�t)−
εk̂
ω
a2 cos (ωct+β2) (10a)
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ȧ2 sin (ωct+β2)+a2β̇2 cos (ωct+β2)

= −εµ̂ca2 sin (ωct+β2)

−
εk̂c
ωc

a1 cos (ωt+β1) (10b)

Solving Eqs. (8) and (10) with using trigonometric identi-
ties and returning every scaled parameter to its original value
lead to

ȧ1 = −
µ

2
a1+

µ

2
a1 cos (2ωt+2β1)+

α

4ω
a31 sin (2ωt+2β1)

+
α

8ω
a31 sin (4ωt+4β1)−

f
2ω

sin ((ω−�) t+β1)

−
f
2ω

sin ((ω+�) t+β1)−
k
2ω

a2 sin ((ω−ωc) t

+β1−β2)−
k
2ω

a2 sin ((ω+ωc) t+β1+β2) (11a)

a1β̇1 =−
µ

2
a1 sin (2ωt+2β1)+

3α
8ω

a31+
α

2ω
a31 cos (2ωt+2β1)

+
α

8ω
a31 cos (4ωt+4β1)−

f
2ω

cos ((ω−�) t+β1)

−
f
2ω

cos ((ω+�) t+β1)−
k
2ω

a2 cos ((ω−ωc) t

+β1−β2)−
k
2ω

a2 cos ((ω+ωc) t+β1+β2) (11b)

ȧ2 = −
µc

2
a2+

µc

2
a2 cos (2ωct+2β2)−

kc
2ωc

a1sin((ωc−ω)t

+β2−β1)−
kc
2ωc

a1 sin ((ωc+ω) t+β2+β1) (11c)

a2β̇2 = −
µca2
2

sin (2ωct+2β2)−
kc
2ωc

a1 cos ((ω−ωc) t

+β1−β2)−
kc
2ωc

a1 cos ((ω+ωc) t+β1+β2) (11d)

For seeking the first approximation solution, we keep only
the slowly-varying terms on the right-hand sides of Eqs. (11)
where they can be considered constant in the interval [0, π].
For a simultaneous resonance case (� ≈ ω, ωc ≈ ω),
Eqs. (11) will be

ȧ1 = −
µ

2
a1−

f
2ω

sin ((ω−�) t+β1)

−
k
2ω

a2 sin ((ω−ωc) t+β1−β2) (12a)

a1β̇1 =
3α
8ω

a31−
f
2ω

cos ((ω−�) t+β1)

−
k
2ω

a2 cos ((ω−ωc) t+β1−β2) (12b)

ȧ2 = −
µc

2
a2−

kc
2ωc

a1 sin ((ωc−ω) t+β2−β1) (12c)

a2β̇2 = −
kc
2ωc

a1 cos ((ω−ωc) t+β1−β2) (12d)

Expressing the closeness of frequencies in the studied res-
onance case by the detuning parameters σ and σc as follows

σ = �−ω (13a)

σc = ωc−ω (13b)

Substituting Eqs. (13) into (12) yields the following
autonomous system of DEs:

ȧ1 = −
µ

2
a1+

f
2ω

sinφ1+
k
2ω

a2 sin (φ1−φ2) (14a)

a1φ̇1 = σa1−
3α
8ω

a31+
f
2ω

cosφ1+
k
2ω

a2 cos (φ1−φ2)

(14b)

ȧ2 = −
µc

2
a2−

kc
2ωc

a1 sin (φ1−φ2) (14c)

a2φ̇2 = (σ−σc) a2+
kc
2ωc

a1 cos (φ1−φ2) (14d)

whereφ1 = σ t−β1 andφ2 = (σ−σc) t−β2.We need to study
the steady-state behavior of the system, or in other words,
we need to get the fixed points of Eqs. (14). It can be done by
supposing that the fluctuations in both ai and φi are zero, i.e.
ȧi = φ̇i = 0. This leads to

µa1s =
f
ω
sinφ1s+

k
ω
a2s sin (φ1s−φ2s) (15a)

−2σa1s+
3α
4ω

a31s =
f
ω
cosφ1s+

k
ω
a2s cos (φ1s−φ2s) (15b)

µca2s = −
kc
ωc
a1s sin (φ1s−φ2s) (15c)

−2 (σ−σc) a2s =
kc
ωc
a1s cos (φ1s−φ2s) (15d)

where ais and φis are the steady values of ai and φi,
respectively. Solving Eqs. (15c) and (15d) gives us

a1s =
ωc

kc

√
µ2
c+4 (σ−σc)

2a2s = γ a2s (16)

Solving Eqs. (15c) with (15a), and (15d) with (15b)
leads to

µωa21s+
kµcωc
kc

a22s = fa1s sinφ1s (17a)

−2σωa21s+
3α
4
a41s+

2 (σ−σc) kωc
kc

a22s = fa1s cosφ1s (17b)

Solving Eqs. (17) to Eliminate φ1s with using (16) gives
the sextic equation in a1s and a2s as follows:

γ1a61s+γ2a
4
1s+γ3a

2
1s+γ4 = 0 (18a)

γ1γ
6a62s+γ2γ

4a42s+γ3γ
2a22s+γ4 = 0 (18b)

where

γ1 =
9α2

16

γ2 =
3α
2

[
2 (σ−σc) kωc

kcγ 2 −2σω
]

γ3 =

[
µω+

kµcωc
kcγ 2

]2
+

[
2 (σ−σc) kωc

kcγ 2 −2σω
]2

γ4 = −f 2

The solutions of Eqs. (18) along with (16) obtain the
steady-state amplitudes ais. On the other hand of this anal-
ysis, the steady-state amplitudes ais and phases φis should
be tested for stability so as to check whether they are
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FIGURE 3. Response curves of the mass m to the excitation frequency
detuning σ at variant excitation force f before control (k = 0 and
α =

{
+0.8,−0.8

}
): (a, c) 2D plot, (b, d) 3D plot.

FIGURE 4. Response curves of the mass m to the excitation frequency
detuning σ at variant damping µ before control (k = 0): (a) 2D plot,
(b) 3D plot.

stable or not. It can be easily known via the characteris-
tic equation’s eigenvalues of Eqs. (14) in terms of small
disturbances around the fixed points [38]. If all of the
real parts of the computed eigenvalues are negative, the
steady-state solution is asymptotically stable, otherwise it
is unstable. Moreover, the bifurcation will happen if an
eigenvalue traverses the imaginary axis of the complex
plane.

III. RESULTS AND DISCUSSION
Herein, the mass-damper-spring dynamics can be discussed
via several plots before and after activating the control unit.
The plots clarify the influences of different parameters on the
model’s frequency- and force-response-curves. Furthermore,
3D plots are included to give a wider view of the model’s
behavior before and after control. The adopted dimensionless
parameters in the model’s operation are chosen as: µ = 0.02,
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FIGURE 5. Response curves of the mass m to the excitation force f at
variant frequency detuning σ before control (k = 0 and α =

{
+0.8,−0.8

}
):

(a, c) 2D plot, (b, d) 3D plot.

FIGURE 6. Response curves of the mass m to the excitation force f at
variant damping µ before control (k = 0): (a) 2D plot, (b) 3D plot.

ω =
√
10 ∼= 3.1623, σ ∈ [−0.3, 0.3], � = ω+σ ,

α = 0.8, f = 0.06, k = kc = 1.5, µc = 0.001, σc ∈
[−0.3, 0.3], ωc = ω+σc, unless otherwise changed. In Fig. 3,
the response curves of the mass m’s vibrational amplitude
a1 to the excitation frequency detuning σ are shown before
applying the control unit (k = 0) at different values of the
excitation force f . It is clear that the mass m’s amplitude
responds linearly for small values of f in Fig. 3a. As long
as the force f increases, the curve leans to the right denoting
a nonlinear hardening phenomenon. In this case, the mass m
may follow one of the multiple solutions until it jumps off
from it to another one when the curve’s tangent becomes
vertical. This is where the Saddle-Node (SN) bifurcation
point exists. For generality, the locus of all possible SN points
is plotted at variant f to contain the unstable branches where
the mass m cannot approach. Also, we have indicated the
backbone curve in order to view the locus of maxima of the
shown curves. On the other hand in Fig. 3b, the 3D surface

VOLUME 9, 2021 153017
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FIGURE 7. Response curves of the mass m (a, b) and the PPF
controller (c, d) to σ at variant k with f = 0.06.

FIGURE 8. Response curves of the mass m (a, b) and the PPF
controller (c, d) to σ at variant controller damping µc with f = 0.06
and k = 1.5.

153018 VOLUME 9, 2021
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FIGURE 9. Response curves of the mass m (a, b) and the PPF
controller (c, d) to σ at variant f with k = 1.5.

FIGURE 10. Response curves of the mass m (a, b) and the PPF
controller (c, d) to σ at variant controller frequency detuning σc with
f = 0.06 and k = 1.5.

VOLUME 9, 2021 153019
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FIGURE 11. Response curves of the mass m (a, b) and the PPF
controller (c, d) to f at variant σ with k = 1.5 and σc = 0.0.

FIGURE 12. Response curves of the mass m (a, b) and the PPF
controller (c, d) to f at variant µc with k = 1.5, σ = 0.25, and σc = 0.0.

153020 VOLUME 9, 2021
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FIGURE 13. 3D visualization of the time-frequency simulation of:
(a, b) the mass m’s amplitude, and (c) the PPF controller’s amplitude at
f = 0.06, k=1.5, and σ c = 0.0 before and after control.

defines the dependence of a1 on both σ and f . This is a
comprehensive view of Fig. 3a to show the direct influence
of σ and f on the amplitude value and jump phenomena.

FIGURE 14. Comparison between the time responses of (a) the mass m’s
amplitude, and (b) the controller’s amplitude at f = 0.06 and σ D 0
before and after control.

Also, Figs. 3c and 3d clarify how the negativity of the nonlin-
earity parameter α converts the hardening effect to softening
effect where the right-bending is now left-bending with the
same force variability of Fig. 3a as shown. For clarity, the top
of the surface is indicated by dark red color while the bottom
is indicated by dark blue color as shown.

Figure 4 presents the response curves of the mass m’s
vibrational amplitude a1 to the excitation frequency detuning
σ before applying the control unit (k = 0) at different values
of the damping µ. It is well-known from the modern control
theory that the damping coefficient can attenuate (or damps)
the output signal. This is clear in the figure where increasing
the damping µ has reduced the maxima of the curves and
also the intersection with the SN locus.

In Fig. 5, the effect of varying σ appears on the response
curves of the mass m vibration amplitude a1 to the force
f before control. We can notice that the variability of σ
from −0.05 to 0.10 can exhibit the appearance of SN points
and also jump phenomena just as described in Fig. 3a.

VOLUME 9, 2021 153021
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FIGURE 15. Time response simulation of the mass m’s amplitude
subjected to jump phenomena before control during: (a) sweeping σ up,
(b) sweeping σ down.

This variability modifies also the curve shape from linear
case to nonlinear case of the amplitude values doubled. The
SN locus is plotted to show the path of vertical tangents.
Figure 5b shows the 3D surface of such relation in Fig. 5a.
Also, Figs. 5c and 5d show the softening effect at α = −0.8
where the reverse variability of σ from 0.05 to −0.10 can
generate SN points and jump phenomena just as described in
Fig. 3c. Furthermore, Fig. 6 clarifies what has been discussed
in Fig. 4 about the damping effect of µ but here is on the
response curves to the force f . The damping effect is explicit
in lowering the gap between the vertical tangents’ points
(SN points) which is a utility in quite avoiding the jump
phenomena.

From now on, we are going to discuss the effect of control
unit on the vibrational amplitudes of mass m when k 6= 0.
Figure 7 portrays the response curves of both the mass m and
the PPF controller to the frequency detuning σ at different
values of the control gain k . We are keeping the equality that
k = kc in all of the following figures. As can be seen in

FIGURE 16. Time response simulation of: (a) the mass, and (b) the
controller amplitudes subjected to jump phenomenon at the left peak
during sweeping σ up.

Figs. 7a and b, the single peak (which was before control)
has been split into double peaks separated by something like
a canyon. This canyon’s width can be controlled by the value
of the control gain k as shown. The larger the gain k is, the
wider the canyon is. There is a utility which is the middle
point in this canyon is the minimum amplitude point that
we wish to force the mass m to stay at. You should not
forget that the loci of the vertical tangents have been included
there for indicating the SN points locations. Figures 7c and d
show also the PPF controller amplitudes behavior with σ
and k where the canyon appears also and is controlled by
adjusting k .
Figure 8 demonstrates how the controller damping µc can

affect the generated peaks amplitudes for both the massm and
the PPF vibrational amplitudes. This can be considered an
advantage for suppressing the dual peaks amplitudes in case
that σ has deviated to any one of the peaks. It is also evident
in the 3D plots that increasing µc suppresses the peaks to
acceptable levels.
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FIGURE 17. Time response simulation of: (a) the mass, and (b) the
controller amplitudes subjected to jump phenomenon at the right peak
during sweeping σ up.

Again, the effect of the force f on the response curves of
the mass and the controller is shown in Fig. 9 at k = 1.5. It is
clear that the peaks amplitudes are monotonically increasing
in the excitation force f . This is very harmful at the peaks
even after control. The good thing is that the middle point of
the canyon (minimum amplitude point) has not been affected
by the variant excitation force.

In the previous discussion, we were talking about the
possibility of forcing the mass m to stay at the minimum
amplitude point in order to avoid the high peaks in case of
σ deviation away from zero. The following figure is the clue.
Figure 10 presents the response curves of the mass and the
controller to σ at different values of σc. It can be seen from
Figs. 10a and c that the mass m and the controller can exhibit
minimum amplitudes not only at σ = 0 but at different values
of σ on one condition which is σ = σc. The chosen values
of σc in the figure are σc = −0.30, −0.15, 0.0, +0.15, and
+0.30 in order to show the reader different cases where the

FIGURE 18. Time response simulation of: (a) the mass, and (b) the
controller amplitudes subjected to jump phenomenon at the right peak
during sweeping σ down.

minimum amplitudes are at σ = −0.30, −0.15, 0.0, +0.15,
and +0.30, respectively. This is so obvious in Figs. 10b
and d where the minimum amplitudes of the mass and the
controller can be reached on the line of σ = σc as shown.
The idea in guaranteeing the condition σ = σc is evident
in Eq. (13) where it can be achieved only if � = ωc. This
can be practically fulfilled if we can measure the excitation
frequency � and provide this value to the PPF controller
(Fig. 2) instead of ωc. At this moment, the relation σ = σc
can be guaranteed in order to have minimum vibrational
amplitudes for the mass m.

Figure 11 shows the relation between the excitation force
and the output amplitudes of the mass and the controller at
different values of excitation frequency detuning σ where the
controller detuning σc = 0. We can notice that the mass
barely vibrates at σ = 0 while the whole vibrations have
been transferred to the PPF controller. However, the mass’s
vibrations increase as σ deviates from zero as shown and the

VOLUME 9, 2021 153023



A. Kandil et al.: 2D and 3D Visualizations of Mass-Damper-Spring Model Dynamics Controlled by SCLA

FIGURE 19. Time response simulation of: (a) the mass, and (b) the
controller amplitudes subjected to jump phenomenon at the left peak
during sweeping σ down.

jump phenomena are produced once again. In case you have
noticed, the minimum vibratory level can be reached only if
σ = σc as we stated before regardless the value of f . The
corresponding 3D plots confirm such behaviors. On the other
hand in Fig. 12, the controller damping µc can slightly damp
the f -response curves in order to avoid a vertical tangents
region at one of the produced peaks (at σ = 0.25 and σc = 0)
as shown.

Figures 13 to 19 portray a confirmation of the previ-
ously plotted figures using the 4th order Runge-Kutta numer-
ical technique. Figure 13 show a 3D visualization of a
time-frequency response of the actual peak amplitudes of
the mass m and the controller for the last 100 peaks of
1000-seconds time signals. Before control in Fig. 13a, we can
see the actual jump phenomena in the range σ ∈ [0.05, 0.065]
where we have discussed in Figs. 3 and 4. After control in
Figs. 13b and c, the minimum amplitudes can be reached at
σ = 0 while there are dual peaks with new jump phenomena

in the range σ ∈ {[−0.225,−0.210] ∪ [0.245, 0.260]}.
Figures 14 to 19 show the 2D time history sections of
Fig. 13 to clarify the system states before and after control
and to depict all of the jump phenomena shown in Fig. 13.

IV. CONCLUSION
In this paper, 2D and 3D plots were included to show the
dynamical behavior of a mass-damper-spring model before
and after control. This model was controlled with the help of
LVDT and SCLA. The control unit was provided with PPF
control algorithm which gave acceptable minimum ampli-
tudes for the car of mass m. The whole system dynamics
and solutions were extracted via the well-known Krylov-
Bogoliubov averaging perturbation method in order to define
the amplitudes and phases of the car and PPF vibrations.
Some concluded points could be summarized as follows:

A. THE CASE BEFORE ACTIVATING THE CONTROL UNIT
1) The mass m’s amplitude responded linearly to small

values of the excitation force f .
2) As long as f increased, the frequency-response curve

leant to the right denoting a nonlinear hardening phe-
nomenon.

3) Hence, the mass m might follow one of the multiple
solutions until it had jumped off from it to another one
when the curve’s tangent became vertical (where the
SN bifurcation point existed).

4) The damping coefficient µ could attenuate the curves
maxima and also the intersection with the SN locus.

5) The variability of frequency detuning σ from −0.05 to
0.10 could exhibit the SN points and also jump phe-
nomena in the force-response curve.

6) On the force-response curve, the parameter µ has low-
ered the gap between the SN points which was a utility
in avoiding the jump phenomena.

B. THE CASE AFTER ACTIVATING THE CONTROL UNIT
1) On the force-response curve, the single peak of the pre-

control case was split into dual peaks separated by a
canyon whose width could be controlled by the control
gain k .

2) That canyon’s middle point has been the minimum
amplitude point that we wished the mass m to stay at.

3) The controller damping µc could suppress the gener-
ated dual peaks amplitudes.

4) The mass m and the controller could exhibit minimum
amplitudes not only at σ = 0 but also at different values
of σ on one condition that σ = σc.

5) That could be practically fulfilled if � was measured
and provided to the control unit instead of ωc.

6) The mass m barely vibrated at σ = 0 while the whole
vibrations have been transferred to the controller.

7) In case of mistuning (σ 6= σc), the mass vibrations
increased as σ deviated from zero and the jump phe-
nomena were produced once again.
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8) The parameter µc could slightly damp the f -response
curves in order to avoid a vertical tangents region at one
of the produced dual peaks.

1) OUR FUTURE WORK INCLUDES
1) A study on the distributed-parameter system of an

infinite-dimension to be reduced to a finite-dimension
model.

2) Delay times to be involved in both feedback and control
signals.

3) Implementation of an adaptive controller in order to
confront more disturbances of different types.
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