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ABSTRACT Unmanned aerial vehicles (UAVs) are becoming an integral part of numerous commercial
and military applications. In many of these applications, the UAV is required to self-navigate in highly
dynamic urban environments. This means that the UAV must have the ability to determine its location in an
autonomous and real time manner. Existing localization techniques rely mainly on the Global Positioning
System (GPS) and do not provide a reliable real time localization solution, particularly in dense urban
environments. Our objective is to propose an effective alternative solution to enable theUAV to autonomously
determine its location independent of the GPS and without message exchanges. We therefore propose
utilizing the existing 5G cellular infrastructure to enable the UAV to determine its 3-D location without the
need to interact with the cellular network. We formulate the UAV localization problem to minimize the error
of the RSSI measurements from the surrounding cellular base stations. While exact optimization techniques
can be applied to accurately solve such a problem, they cannot provide the real time calculation that is
needed in such dynamic applications. Machine learning based techniques are strong candidates to provide
an attractive alternative to provide a near-optimal localization solution with the needed practical real-time
calculation. Accordingly, we propose two machine learning-based approaches, namely, deep neural network
and reinforcement learning based approaches, to solve the formulated UAV localization problem in real time.
We then provide a detailed comparative analysis for each of the proposed localization techniques along with
a comparison with the optimization-based techniques as well as other techniques from the literature.

INDEX TERMS 5G, UAV 3-D autonomous localization, optimization, deep learning, reinforcement
learning, neural networks, Q-learning.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) are increasingly demon-
strating their potential for use in various military and civilian
applications. UAVs have the advantages of a generally small
size, convenient use and strong maneuverability which makes
them suitable for such applications. The applications of UAVs
in the military field include intelligence reconnaissance,
emergency response, and geographic survey, while the civil-
ian field applications include package delivery, aerial pho-
tography, infrastructure inspection, electric power inspection,
agricultural plant protection, search and rescue and environ-
mental monitoring [1]. However, there are several challenges
for the UAV to deliver on the forementioned applications.
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One of themost important enabling requirements for the UAV
to deliver on such applications is the ability to determine its
location at any given point in time. The localization technique
used currently by most commercial UAVs is a combination of
the GPS and the Inertial Measurement Unit (IMU). However,
in dense urban environments and indoor environments, the
global navigation satellite systems (GNSS) signals do not
provide an accurate and reliable localization solution due to
reflections by high-rise structures and line of-sight (LOS)
blockage. Also, the dependence on detectable transmissible
signals may comprise the success of certain missions. Hence,
it is necessary to design an alternative high-precision posi-
tioning method that is not based on GPS or other detectable
signals.

As an alternative to the global positioning system (GPS),
the radio received signal strength index (RSSI) measurements
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from the surrounding cellular infrastructure can be used
for localization purposes due to its simplicity and cost-
effectiveness. Since the cellular infrastructure is widely
deployed in urban areas worldwide, the reliance on cellu-
lar signals can offer an attractive alternative to GPS for
UAV localization applications. We focus our attention on
the 5G technology in this paper since it is expected to be
widely deployed around the world. According to the 3rd
Generation Partnership Project (3GPP), the 5G technology
offers attractive features such as dense small cell deploy-
ments, millimeter wave (mmWave) communications, and
device-to-device (D2D) communications [28]. The 5G tech-
nology addresses the current cellular network challenges,
including ultra-low latency and higher reliability and capac-
ity requirements, by optimizing the network operations to
guarantee, in real-time, the QoS needs of emerging wireless
and IoT services and consequently is expected to be widely
deployed [29].

Cellular-connected UAV communication possesses sub-
stantially different characteristics that pose new technical
challenges as opposed to cellular communication with ter-
restrial mobile devices. Such challenges include dominance
of line-of-sight (LoS) interference and reduced ground base
stations (GBSs) antenna gain [2]. UAVs flying at high alti-
tudes are served from the side-lobes of the base station (BS)
antennas [3]. Several studies suggest that cellular networks
with communication techniques toward 5G such as higher
antenna gains due to beamforming can potentially be uti-
lized to provide improved connectivity for UAVs [2] [4].
As such, several recent efforts and open work items are
directed towards the integration of the UAVs with 5G cellu-
lar networks. Our objective is the autonomous localization
of the UAV without the need to actually interact with the
cellular network. Accordingly, we focus on the broadcast
signals transmitted by the 5G cellular networks which can
be detected by any cellular-enabled device. Specifically, the
5G cellular network periodically broadcasts the Synchroniza-
tion Signal Block (SSB), which is composed of 4 subblocks
including the Primary Synchronization Sequence (PSS), the
Secondary Synchronization Sequence (SSS), the Physical
Broadcast Channel (PBCH) and the Demodulation Reference
Signal (DMRS), mainly for synchronization, cell search and
initial beamforming [13]. The UAV can detect and measure
the Secondary Synchronization Reference Signal Received
Power (SS-RSRP) from the surrounding base stations for self-
localization purposes.

The UAV localization problem formulation based on cellu-
lar measurements is non-trivial and difficult to solve. While
exhaustive optimization techniques can be applied to accu-
rately solve for such a problem, a real-time calculation
is needed in such dynamic environments. Machine Learn-
ing (ML) based techniques could potentially provide an
attractive alternative to provide a near-optimal localization
solution that provides a practical real-time calculation that is
needed in such dynamic applications. Deep Learning (DL)
is a branch of supervised machine learning involving neural

networks with several layers capable of capturing complex
non-linear relationships between the inputs and the outputs.
Deep learning-based approaches typically fall into one of
two categories, namely, regression-based models and the
fingerprint-based techniques which require extensive data
collection to build a fingerprint database for the training.
Reinforcement Learning (RL) is another branch of machine
learning where the agent can learn through direct interaction
with the environment. The Reinforcement Learning model is
based on the Markov decision process (MDP). Specifically,
Reinforcement Learning agents make decisions, observe the
results, and then automatically adjust their policies to achieve
their objective to select an action that maximizes a reward.

A. RELATED WORK
There are several recent studies that have investigated the
use of cellular signals and/or Machine Learning based
approaches in the localization of mobile devices or UAVs.

In [5], the authors propose utilizing higher order Voronoi
tessellations at the base station to localize mobile devices in
an outdoor environment. In the proposed base station ordering
localization technique (BoLT) algorithm, the mobile device
sends back a list containing the order of neighboring BSs
based on the received signal power achieving a localiza-
tion accuracy of a few meters. In [6], CellinDeep, a deep
learning-based localization system for mobile devices in an
indoor environment is proposed by creating a footprint map of
RSSI measurements at different locations during the training
phase. The area is divided into grid cells of 1m2 and RSSI
measurements from 17 cell towers are recorded prior to the
training phase at each cell. The localization problem is then
presented as a classification-problem to find the grid cell with
the maximum likelihood followed by a fine localizer module
achieving a fine grained accuracy of 0.78m. Alternatively
in [7], the authors introduce DeepCReg, a convolutional neu-
ral network based regressor that leverages cellular data to
estimate the location of a mobile device in an outdoor envi-
ronment. The system achieves median localization accuracy
of 2.82m in the 2-D localization problem for mobile devices.
In [8], an optimization-based approach utilizing carrier phase
measurements is proposed to localize and navigate a UAV
in 3-D assuming limited GPS presence. According to the
authors, this technique realizes a Root Mean Square Error
(RMSE) location error of 0.8m using 7 CDMA BSs and
0.36m usingmeasurements from 9CDMABSs. In both cases,
the UAV had access to the GPS for 10 seconds then the
GPS was cut off. During the time the GPS was available, the
cellular signals were used to cluster and characterize the clock
deviations.

However, to the best of our knowledge, none of the pre-
sented works provide an accurate and effective real-time
solution to the 3-D localization problem for the UAV in
an outdoor environment. The presented techniques either
mostly focus on the localization of the agent in the 2-D space
assuming the height of the mobile device is known yielding
low accuracy when extended to 3-D or require extensive
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knowledge of the environment during the training phase to
build a fine-grained accurate fingerprint map. Such proposed
approaches and data collection processes would be infeasible
and unscalable in large 3-D outdoor geographic areas and
unknown environments.

B. PAPER CONTRIBUTIONS AND STRUCTURE
The objective of this paper is to provide an accurate real-time
solution for the 3-D autonomous localization of UAVs in an
outdoor environment using existing 5G networks independent
of GPS or other detectable mobile signals. This is the first
work, to the best of our knowledge, to analyze the effective-
ness of various machine learning based approaches to provide
a real-time solution to the 3-D UAV self-localization problem
using 5G cellular networks in an outdoor environment with
near optimal accuracy. The major contributions of this paper
can be summarized as follows
• We formulate the UAV localization problem as an opti-
mization problem in which the drone needs to rely on
the RSSI measurements of the surrounding 5G base
stations without having to actually interact with these
base stations. The objective function minimizes the
overall mean least square error to determine the UAV
location.

• We propose a 3D UAV localization algorithm through
multi-lateration that is based on 5G RSSI measurements
from 4 base stations. We develop an optimization-based
approach to determine the optimal bound of the solu-
tion to the formulated localization problem. We present
Nelder-Mead as a heuristic approach as well as Exhaus-
tive Search based solutions.

• We propose a deep supervised learning approach to pro-
vide a near-optimal localization solution that provides
a real-time calculation that is needed in such dynamic
environments. We adopt a black-box mapping approach
between the inputs, which are the noisy measured dis-
tances based on 5G RSSI readings and the 4 gNBs’
coordinates, and the output, which is the estimated UAV
coordinates.

• We propose a reinforcement learning based approach to
provide a practical real-time calculation for the localiza-
tion problem.

• We provide an in-depth comparative analysis between
the proposed deep neural network and reinforcement
learning based approaches to assess the efficiency and
specific use case for each approach to solve the local-
ization problem.

• We provide a comparative analysis with a benchmark
solution to the UAV localization problem using cellular
signals proposed in the literature based on cellular car-
rier phase measurements and weighted non-linear least
squares estimation.

• We conduct the complexity analysis for our proposed
deep and reinforcement learning approaches to examine
the fulfilment of the objective of meeting the real time
calculation requirement.

The rest of this paper is organized as follows. In Section II,
we introduce our environmental assumptions and present our
system model. In Section III, we formulate the 5G based
3-D UAV localization problem. In Section IV, we solve the
formulated UAV localization problem through applying the
proper optimization techniques to determine the optimal
bound of the solution. In Sections V and VI, we propose
two machine learning based techniques to provide real-time
near-optimal localization. Specifically, we propose a deep
supervised learning approach in Section V as well as a rein-
forcement learning approach in Section VI. In Section VII,
we present and analyze our analytical results as well as
present an alternative approach proposed in the literature
based on Carrier phase measurements for comparison pur-
poses. Finally, Section VIII concludes this paper.

II. SYSTEM MODEL
The RSSI measurements from at least four cellular base
stations are needed to localize the UAV in 3D given that the
intersection of 4 spheres (one sphere per gNB) is a point.
Accordingly, we consider a suburban outdoor environment
with four 5G gNBs located around 100−300m apart as shown
in Fig. 1.

FIGURE 1. Environmental setup and system model.

Let the index 1 ≤ i ≤ 4 specify a given gNBi and let di
represent the Euclidian distance between each gNBi and the
UAV. The estimated coordinates of the UAV are denoted by
the vector x while the coordinates of the antennas of every
gNBi are denoted by the vector gi where x, gi ∈ Rn and
n = 3. Let hi represent the height of the UAV reference to
the antenna of gNBi and ri represent the distance between the
vertical projection of the UAV in the plane z = hgNBi and the
gNBi.

We adopt the free-space path loss model in accordance
with [9] and assume standard practical antenna configura-
tions in accordance with [3], [4]. The measured received
power Pdi from each base station, given a transmit power of
Pti, is given by

Pdi = Pti − L(hi, ri), (1)
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where L(hi, ri) represents the probabilistic mean model path
loss in both LoS and NLoS links and is given by

L (hi, ri) = LLOS × PLOS + LNLOS × PNLOS , (2)

where LLOS and LNLOS represent the mean path losses in
case of LoS and NLoS scenarios, respectively. PLOS is the
probability of LoS conditions between the UAV and the gNBi
while PNLOS is the probability of NLOS conditions. LLOS and
LNLOS are given by

LLOS = 20 log
(
4π fcdi
c

)
+ ηLOS , (3)

LNLOS = 20 log
(
4π fcdi
c

)
+ ηNLOS , (4)

where fc is the carrier frequency, c is the speed of light and
LoS and ηNLoS represent the mean additional losses for LoS
and NLoS, respectively. PLOS and PNLOS are functions of
environment-dependent parameters, a and b and are given by

PLOS =
1

1+ aexp(−b( 180
π

tan−1
(
hi
ri

)
− a))

, (5)

PNLOS = 1− PLOS (6)

Consequently, the path loss model can be expressed as

L (hi, ri) =
A

1+ aexp(−b( 180
π
θi − a))

+20 log
(

ri
cos (θi)

)
+ B, (7)

where,

A = ηLOS − ηNLOS , (8)

B = 20 log
(
4π fcdi
c

)
+ ηNLOS (9)

θi = tan−1
(
hi
ri

)
(10)

Then the estimated distance, di, between gNBi and the
UAV is given by

di = 10
((L(hi,ri)− A

1+aexp(−b( 180π θi−a))
−B)/20)

(11)

For every gNBi, measuring the received SNR and deter-
mining the estimated distance, di, between the UAV and gNBi
will translate into an estimated location of the UAV denoted
by the vector xi which is potentially any point on the surface
of the sphere with center gi and radius di given by:(

xi − xgi
)2
+
(
yi − ygi

)2
+
(
zi − zgi

)2
= d2i (12)

The multi-lateration algorithm, to be described shortly,
uses the RSSImeasurements, P, and themeasured path losses,
L, between the UAV and each of the 4 gNBs given by

P = [Pd1 Pd2 Pd3 Pd4] (13)

L = [L(h1,r1) L(h2,r2) L(h3,r3) L(h4,r4)] (14)

The estimated distances, D, based on the noisy RSSI read-
ing between the UAV and every gNBi are given by

D = [d1 d2 d3 d4] (15)

We assume that the probability density function of the
distance measurement noise, εi, follows a zero mean gaussian
distribution in accordance with [1]. Accordingly, we model
the distance di between the UAV and gNBi as

di = ai + εi, (16)

where ai corresponds to the actual distance between the UAV
and gNBi.
According to [16], 3 spheres in the 3-D space with radii di,

dj, and dk and centers given by the coordinates of gNBs gi,
gj and gk are the vertices of the triangle defining a 2-D plane,
Tijk . The 3 spheres intersect at straight line orthogonal to the
plane defined by Tijk .
The intersection of this straight line with the plane Tijk is

given by point Zl with barycentric coordinates given by

16T 2
ijkZl = −2d

2
i

∣∣∣∣gj − gk ∣∣∣∣2
+ d2j

(∣∣∣∣gj − gk ∣∣∣∣2 + ||gk − gi||2 − ∣∣∣∣gi − gj∣∣∣∣2)
+d2k

(∣∣∣∣gj − gk ∣∣∣∣2 − ||gk − gi||2 + ∣∣∣∣gi − gj∣∣∣∣2)
+
∣∣∣∣gj − gk ∣∣∣∣2 (− ∣∣∣∣gj − gk ∣∣∣∣2 + ||gk − gi||2
+
∣∣∣∣gi − gj∣∣∣∣2) (17)

Accordingly, we approximate the UAV location by xL =
(xL, yL, zL) as

xl = Zl +
nl .|hl |
|nl |

, (18)

where the index L = [1,4], nl is the normal vector to the
2-D plane Tijk and the vector hl corresponds to the height of
the UAV relative to plane Tijk . Next, our objective is to find
the estimated location xe = (x, y, z) that minimizes the error
of measurements from the 4 gNBs.

III. PROBLEM FORMULATION
We formulate the UAV localization problem as an optimiza-
tion problem to minimize the sum of the least square estimate
for the errors of the measured distances between the UAV and
the m = 4 gNBs. This problem can be written as

Minxe
m∑
i=1

Err2i

=

m∑
i=1

(||xe − gi|| − di)2

=

m∑
i=1

(√
(x − gxi)2 +

(
y− gyi

)2
+ (z− gzi)2 − di

)2

subject to L (di, θi) < Lthi
Erri < Errthi
huav > hmin, (19)

VOLUME 9, 2021 155237



G. Afifi, Y. Gadallah: Autonomous 3-D UAV Localization Using Cellular Networks

where Lthi is the maximum tolerable path loss and is given by

Lthi =
A

1+ aexp(−b( 180
π
θopt − a))

+20 log

(
rmax

cos
(
θopt

))+ B (20)

The objective function in (19) results in a constrained non-
linear programming problem (NLP) classified as NP-hard
problem which is difficult to solve. Accordingly, we utilize
the penalty method to reformulate the objective function in
the form of an unconstrained NLP problem given by

MinxeψiCi

+

∑m

i=1

(√
(x − gxi)2 +

(
y− gyi

)2
+ (z− gzi)2 − di

)
,

2

(21)

where the penalty coefficient ψi > 0, and the constraints are
given by

Ci = max(0,L (h, ri)− Lth,Erri − Errthi, hmin − huav)

(22)

For each gNBi, we assume each distance measurement
noise, εi, is an independent random variable with standard
deviation σi and probability density function given by

f (εi) =
1

σi
√
2π

e
−

1
2

(
εi
σi

)2
(23)

The joint probability density function of the distance mea-
surement errors is given by the product of the four probability
densities [31] given by

f (ε) =
∏m

i=1

1

σi
√
2π

e
−

1
2

(
εi
σi

)2
, (24)

where

ε =
[
ε1, ε2, . . . , εm

]T (25)

Next, we derive theoretical lower and upper bounds for
the localization error vector, ε, to analyze the impact of the
accuracy of the RSSI measurements from the four gNBs
on the UAV localization error. The Cramér-Rao Lower
Bound (CRLB) is one of the commonly utilized metrics for
characterizing the lower bound of the accuracy limitations
in RF-based localization applications [5]. The CRLB is cal-
culated through the inverse of the covariance matrix of the
RSSI measurements errors known as the Fisher information
matrix [32]. Let the Fisher information matrix, F , be defined
as an m× m matrix with element Fi,j given by

Fi,j = −E
[

∂2

∂εi∂εj
log f (ε)

]
(26)

The CRLB, εLB, for the distance measurement error, εi,
is given by

εLB = F−1i,i (27)

We derive an upper bound to guarantee a minimum confi-
dence level,Cmin, for the UAV localization error. Specifically,
the upper bound, εUB, for the distance measurement noise, εi,
satisfies

εUB∫
−εUB

1

σi
√
2π

e
−

1
2

(
εi
σi

)2
dεi ≥ Cmin (28)

As such, the theoretical lower and upper bounds for the
UAV localization error can be established based on the chan-
nel propagation conditions of the RSSI measurements from
the four gNBs.

IV. THE OPTIMIZATION BASED APPROACH
Our objective in this section is to accurately solve the local-
ization problem in (21). Several techniques can be utilized
to provide optimal and near optimal solutions with high
accuracies. The exact solution can be found by utilizing the
Exhaustive Search method bounded by the coverage area of
the 4 gNBs. Despite its accuracy, this technique involves a
significant complexity given the large area in which the UAV
is allowed to fly. To illustrate its complexity, we perform a
complexity analysis to be presented in the form of the big-O
notation.We let n to denote the algorithm’s variable input size
including the RSSI readings from m gNBs as measured by
a UAV to be localized in 3-D at a given time instant t and
their corresponding coordinates. In Table 1, we illustrate the
computational function of each complexity notation. Initially,
we solve the multilateration algorithm which contributes a
linear complexity ofO(n). To this end, we state the worst-case
complexity of the computational steps for each optimization
algorithm. The complexity is proportional to the flying space
A of the UAV bounded by the coverage area of the 5G gNBs
which is typically very large. The complexity can thus be
given by

ComplexityES = O (nA) (29)

To solve the given localization problem at hand without the
substantial number of iterations and complexity, we propose
to utilize the Nelder-Mead (NM) algorithm as a heuristic
optimization approach. The Nelder-Mead algorithm is conve-
nient and efficient in solving unconstrained multidimensional
objective functions and does not require any differentiation to
search for the optimal point [17]. The Nelder-Mead algorithm
is composed of four operations, namely, reflection, expan-
sion, contraction, and shrink [18]. The reflection, expansion,
contraction and shrink coefficients are given by α, γ , ρ and σ ,
respectively. As shown in Algorithm 1, we use the estimates
obtained by equation (15) as the initial test points.

Next, we analyze the computational complexity of the
steps described in Algorithm 1. Thismethod includes an outer
loop of n iterations and an inner loop of t iterations. Accord-
ingly, the computational complexity of the Nelder-Mead
based localization technique can be given in the form of big-O
notation by

ComplexityNM = O (nt)+ O (ntlog(m)) (30)
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Algorithm 1 Nelder Mead Based Optimization
Input: x1,...,xn+1,α, γ , ρ, σ

1: while (termination criteria not met)
2: Order the vertices of the simplex such that:

f (x1) ≤ f (x2) ≤ · · · ≤ f(xn+1).
3: Calculate the centroid xo of all points except xn+1.
4: Calculate the reflection of xn+1 given by xr = xo + α

(xo − xn+1) where α > 0.
5: Expansion. If f (xr) < f(x1), then calculate

xe = xo+γ (xr−xo), where γ > 1. If f (xe) < f(x1), replace
xn+1 with xe; otherwise, replace xn+1 with xr.

6: Reflection. If f (x1) ≤ f(xr) < f(xn), then replace xn+1 with
xr.

7: Contraction. If f(xr) > f(xn), then compute
xc = xo + ρ(xn+1 − xo) where 0 < ρ ≤ 0.5. If f
(xc) < f(xn+1),
then replace xn+1 by xc.

8: Shrink. Replace all points except x1 by xi = x1+σ (xi−x1)
where σ > 0.

9: End

The computational complexity for both approaches is pro-
portional to the number of iterations needed to reach the opti-
mal solution. As such, we conclude that Exhaustive Search
and Nelder-Mead algorithms do not guarantee to meet the
real-time requirement but are to be used to determine the
true bound of the solution as benchmarks for comparison to
our state-of-the-art machine learning based approaches to be
proposed in the next sections.

TABLE 1. Computational complexity illustration for algorithm steps.

V. THE PROPOSED DEEP LEARNING BASED APPROACH
Our objective in this section is to develop a machine learning
based model capable of capturing the non-linear co-related
relationships between the UAV location and the measured
5G RSSI readings from the 4 gNBs. In this section, we deal
with the optimization problem as a black-box mapping pro-
cess between the inputs and the outputs. We propose to
leverage deep supervised learning to solve the formulated
error minimization problem in a computationally efficient
manner such that it can be practically used for real-time UAV
localization. We propose utilizing an Artificial Neural Net-
work (ANN) as a framework to learn the mapping between
the inputs and outputs. There are various types of ANNs.
We propose to leverage a Multi-Layer Perceptron (MLP)
composed of a deep feedforward neural network architec-
ture as no feedback loop is required between the inputs.

The model is to be trained offline to resolve the 3-D UAV
localization problem as a regression problem as opposed to a
classification problem to enable scalability with the 3-D UAV
localization area. The training data needed for the proposed
deep supervised learning approach are to be synthetically
generated through applying the Nelder-Mead and Exhaus-
tive Search optimization-based techniques that we discussed
in section IV.

As summarized in Algorithm 2, we deal with the optimiza-
tion problem as a black-box mapping process between the
input, which is the noisy measured distances based on the
5G RSSI readings and the gNB coordinates and the output,
which is the estimatedUAV coordinates. Therefore, we train a
feed-forward neural network to learn this mapping. As shown
in Fig. 2, the input vector in a 16 × 1 vector composed of
the 4 gNBs 3-D coordinates and their corresponding RSSI
readings while the output is a 3 × 1 vector corresponding to
the estimate of the 3-D UAV location. We study the effect of
various neural network architectures, backpropagation train-
ing functions and hyper parameter tuning on the performance
evaluation of the proposed deep learning algorithm. The neu-
ral network weights are trained in a supervised manner with
forward and back-propagation algorithms to optimize a given
performance function [19].

There are various implementations for the backpropaga-
tion building on the standard backpropagation algorithm.
Specifically, we use Levenberg-Marquardt backpropagation
and Bayesian Regularization which are two backpropagation
training functions used for neural network approximations.
The Levenberg-Marquardt (LM) algorithm is a robust back-
propagation algorithm for performance function approxima-
tion [21], [22]. It is a pseudo-second order method which
estimates the Hessian matrix, which is a square matrix used
to describe the local curvature of the function, using the sum
of outer products of the gradients. The Levenberg-Marquardt
algorithm does not consider the outliers in the data, which
may lead to overfitting noise. To overcome this problem,
Bayesian Regularization can be applied to the neural network
learning problem. Bayesian Regularization expands the cost
function used by the model to minimize the error as well
as the effective number of parameters using the minimal
weights [23]. Bayesian Regularization adds little overhead to
the to the Levenberg-Marquardt process given that a Hessian
approximation is already computed.

Next, we perform the complexity analysis of the proposed
deep learning approach to be presented in the form of the
big-O notation. The complexity of the proposed deep learning
algorithm operating in the online phase has a linear value that
is calculated as

ComplexityDL = O(Cn), (31)

where C > 0 is a constant corresponding to the neural
network dimensions given by

C = ninputs × nLayer1 × nLayer ... × nLayerHd × noutputs, (32)
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FIGURE 2. n-layer feed-forward neural network architecture.

Algorithm 2 Deep Supervised Learning Approach
Input: The set of gNB coordinates, the corresponding

RSSI readings and estimated UAV coordinates.
1: Algorithm hyperparameters: Initial Mu ε [0,1], Mu increase

factor, Mu decay factor, max Mu, no. of training epochs K,
Performance goal e, Batch size. B, back propagation
training function FCN.

2: Random initialization of network weights and biases
3: for training epochs← 1 to K
4: while (MSE > e) do
5: Sample random batch size B from the training data.
6: Compute performance evaluation for training and

validation data sets.
7: Perform forward and back propagation gradient descent

training function FCN.
8: Update neural network hidden layer weights and biases.
9: if (gradient<min_grad) then
10: break // end Epoch
11: if (trainFCN=trainLM) and (validation >max_val) then
12: break // end Epoch
13: if (MU>mu_max) then
14: break // end Epoch
15: end
16: end

where Hd represents the number of hidden layers of the neural
network. The calculated computational complexity in case
of the deep learning based technique is proportional only to
the neural network size as opposed to the number of itera-
tions required to compute the optimization based techniques.
As such, the proposed deep learning-based technique can be
used in real-time to solve the formulated UAV localization
problem.

VI. THE PROPOSED REINFORCEMENT LEARNING BASED
APPROACH
As mentioned earlier, our objective is to come up with a real-
time efficient solution for the UAV 3-D localization problem.
Therefore, we also devised a RL based algorithm in order to
be able to determine the most suitable ML based technique
for this problem. RL is a branch of ML that learns directly
by interacting with the environment. It addresses problems
where there is no explicit training data available. Q-Learning
(QL) is a type of RL learning involving agents which make
decisions, observe the results, and then automatically adjust

their policies to achieve their objective to select an action that
maximizes a reward. It is worth noting that a QL agent can be
trained in an offline or online implementation. The traditional
table-based QL, proposed by Watkins [10], maximizes the
expected value of the total reward over any and all successive
steps by taking action in the current state and follows an
optimal policy afterwards. The tabular QL does not scale with
the increase in the size of state space. In most real applica-
tions, there are too many states to visit and keep track of. For
scalability, function approximation is used to approximate a
value function of each state-action pair through a number of
iterations. An artificial neural network representation, also
known as deep Q-network (DQN), can be used for non-linear
function approximations [24]–[27]. The goal is to select the
action which has the maximum Q-value using the following
update rule

Q (s, a)← (1− α)Q (s, a)+ α
[
r (s)+ γ max

a′
Q
(
s′, a′

)]
(33)

where s is the state, a is the action, α is the learning rate
and r is the reward attained for the current state-action pair.
The discount factor γ determines the importance of future
rewards, i.e. a high discount factor sets the priority towards
distant rewards, whereas a lower value will force the agent
to consider only immediate rewards. In the next subsections,
we first present the Q-learning environmental setup. We then
detail the proposed QL architecture and the overall operation
for the formulated UAV localization problem.

A. Q-LEARNING ENVIRONMENT
In this subsection, we define the state, action and reward for
the Q-learning agent. We define the state, s, as a 16×1 vector
composed of the 3-D coordinates and the correspondingRSSI
readings from the 4 gNBs as follows

s = [gx1 gy1 gz1 gx2 gy2 gz2 gx3 gy3 gz3
gx4 gy4 gz4 d1 d2 d3 d4] (34)

Let the action space A correspond to the allowable flight
area of the UAV bounded by the coverage area of the 4 gNBs
to maintain the SINR threshold along with the minimum
height requirement of the UAV as defined by the constraints
in equation (19). We discretize the 3-D action space, A,
to equally spaced increments. For example, considering a
200 × 200 × (hmax − hmin)m3 area, it can be divided into
1m increments along each axis. Assuming hmin = 30m and
hmax = 100m, then A is a 3× 1 vector with n = 1× 2868471
discrete possible elements. We also investigate the effect of
discretizing the action space into smaller sized increments
e.g. 0.1m in our evaluation to enable localizing the UAV to
a decimeter accuracy.

We define the action aεA as a 3 × 1 vector corresponding
to the estimated UAV location. It can be written as

a= [xuav yuav zuav] (35)
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We define the reward as the negative of mean square error
as follows

r = −
∑m

i=1
Err2i = −

∑m

i=1
(||xe − gi|| − di)2 (36)

We approximate Q-value function by setting the discount
factor γ to zero to consider only the immediate reward.

B. DEEP Q-NETWORK
In this subsection, we present the proposed architecture to
estimate the Q-value function. We utilize a DQN represen-
tation, termed as the critic network, to estimate the Q-value
for a given state-action pair. The critic network architecture
is shown in Fig. 3. The input to the neural network is a 19×1
input vector composed of the state and action pair and the
output is a scalar estimate of the immediate reward. The net-
work is composed of an addition layer followed by H-hidden
layers with tanh activation functions. The Q-learning agent
interacts directly with the environment and the critic network
is trained according to set hyper parameters. We train the
critic network by applying experience replay and batch train-
ing where the union of the state, action, reward, and transition
of each step is stored as an item in the experience pool, and
a particular number of samples from the experience pool are
selected to feed into the neural network in each step to do
the weighting parameters’ update [30]. We apply Bayesian
regularization back propagation to determine the critic net-
work learnable parameter, θ , that minimizes the MSE for the
Q-value approximation.

C. THE OVERALL Q-LEARNING APPROACH
In this subsection, we detail the overall algorithm and compu-
tational complexity for the proposed reinforcement learning
based approach. As shown in Fig. 4, the current state 16× 1
vector, s, is input to the agent. The agent multiplies the state
vector, s, by a 1×n unit vector J. The resulting 16×n vector is
then applied to the addition layer of critic network to evaluate
the approximate Q-value for each state-action pair. The action
with the maximum Q-value is then selected as the most likely
estimate for the UAV location. The proposed reinforcement
learning based approach is summarized in Algorithm 3.

FIGURE 3. Critic network architecture.

FIGURE 4. Q-learning algorithm representation for the online stage.

We now perform the complexity analysis of the proposed
RL based approach to be presented in the form of the big-O
notation. In this case, the complexity is proportional to
the discretization step size of the flying space of the UAV
bounded by the coverage area of the 5G gNBs. To estimate
a UAV location at a single point, we first resize the state
vector by performing a copy operation with constant time
complexity. A critic network is used to approximate the func-
tion mapping between the inputs corresponding to the gNB
coordinates, the RSSI readings and an estimate of the UAV
location and the output which is a scalar value corresponding
to the maximum reward. The complexity of the critic network
can thus be given by

Complexitycritic = O (Cn) , (37)

where C > 0 is a constant corresponding to the neural
network dimensions given by

C = ninputs × nLayer1 × nLayer .. × nLayerHr × noutputs, (38)

where Hr represents the number of the hidden layers of the
critic network. Finally, the action with the maximum reward
is selected as the estimated UAV location. Consequently, the
complexity of the reinforcement learning algorithm is given
by

ComplexityRL = O (Cn)+ O(nlogA) (39)

The calculated ComplexityRL is proportional to the critic
network size and the discrete action space independent of any
iterations needed to converge to an optimal solution as is the
case of optimization-based techniques. As such, the proposed
RL based technique can be used solve the formulated UAV
localization problem to meet the real time requirement.

VII. EVALUATION RESULTS
In this section we conduct simulations to evaluate the per-
formance of each of proposed approaches to solve the UAV
localization problem formulated in section III. We consider
a 500 × 500 × 100m3 outdoor flight area with the system
and environmental parameters settings as shown in Table 2.
We assume random noise with zero mean gaussian distri-
bution and standard deviation, σi. As shown in Table 3,
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Algorithm 3 Reinforcement Learning Approach
Input: Action space A, Batch size B, Experience replay

buffer length E.
1: Random initialization of network weights and biases
2: for training episodes← 1 to K
3: while (MSE > e) do
4: Sample random batch size B from the training data.
5: Compute performance evaluation for training and

validation data sets.
6: Perform forward and back propagation gradient

descent training function FCN.
7: Update neural network hidden layer weights and biases.
8: if (gradient<min_grad) then
9: break // end Epoch
10: if (trainFCN=trainLM) and (validation >max_val) then
11: break // end Epoch
12: if (MU>mu_max) then
13: break // end Epoch
14: end
15: end

we consider various gNB-UAV placement scenarios. The
deep learning hyper parameter settings used during the train-
ing phase are shown in Table 4. The reinforcement learn-
ing agent hyper parameter settings used to train the critic
network are summarized in Table 5. We consider the mean-
square error (MSE) merit function to approximate the map-
ping of the weights of the neural networks during the offline
phase. We evaluate the optimal results solved by utilizing the
Exhaustive search, Nelder-Mead, as well as a Carrier phase
optimization-based approach proposed in [8] to be described
in detail in section VII.A for benchmarking purposes. Then,
we perform an in-depth comparative analysis for performance
of each of our proposed deep neural network and reinforce-
ment learning based approaches as compared to the optimal
benchmark techniques. Specifically, we assess the efficiency
and specific use case for each of the deep neural network
and reinforcement learning based approaches to solve the
localization problem. In our proposed deep and reinforcement
learning approaches, the neural networks are trained during
the offline phase with the objective of providing a real-time
near-optimal localization solution. All the results are based
on a data size of 100 runs and 98% confidence analysis.

TABLE 2. Environmental and system parameters.

A. THE CARRIER PHASE APPROACH
In order to compare our proposed techniques to a representa-
tive technique from the literature, we present an optimization-
based approach utilizing carrier phase measurements which

TABLE 3. Base station and UAV placement scenarios.

TABLE 4. Deep learning neural network parameters.

TABLE 5. Reinforcement learning agent hyper parameters.

is proposed in [8] to solve the UAV localization problem.
The authors utilize cellular signals to localize and navigate
a UAV assuming limited GPS presence. The authors assume
the initial presence of GPS to accurately determine the carrier
phase ambiguity for each of the N base stations then lever-
age the relative stability of BSs clocks to estimate the UAV
location at later stage when GPS is cut off. The carrier phase
observable in meters zi from BSi at time t= k, corresponding
to equation (11), can be expressed as

zi (k) = λφi + λT
∑k−1

l=0
fDi (l)+ vi (k), (40)

where λ is the wavelength of the carrier signal, φi is the
observed carrier phase reading for BSi, T is the carrier period
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FIGURE 5. Optimization-based localization results (a) Mean localization error for exhaustive search vs. Nelder-Mead; (b) Maximum localization
error as compared to theoretical bounds for exhaustive search vs. Nelder-Mead.

and vi(k) is the zero mean gaussian measurement noise. The
carrier phase observable can be re-parametrized in terms of
UAV and BS positions as follows

zi (k) =
∣∣∣∣∣∣rTuav(k)− rTi ∣∣∣∣∣∣+ c [δtuav(k)− δti(k)]

+λNi + vi (k) , (41)

where ruav and ri are the UAV and BSi 2-D position vectors,
respectively, whereas δtuav and δti are the receiver and cel-
lular BS clock biases, respectively, c is the speed of light
and Ni is the carrier phase ambiguity for BSi. The terms
c [δtuav − δti]+ λNi can be combined into one term that can
be defined as

cδti(k) = c
[
δtuav(k)− δti(k)+

λ

c
Ni

]
(42)

According to the study, cellular BSs possess tight carrier
phase synchronization, which results in very similar clock
biases up to an initial bias cδt0i, and proceed to leverage this
relative frequency stability to reduce the parameters to be
estimated. Accordingly, the authors reparametrize the clock
biases in terms of a time varying common bias term, cδt ,
as well as BSi specific clock bias deviation term, εi (k),
as follows

cδti (k) = cδt (k)+ εi(k) (43)

Accordingly, the carrier phase observable is expressed as

zi (k) =
∣∣∣∣∣∣rTuav(k)− rTi ∣∣∣∣∣∣+ cδt (k)+ cδt0i + ηi(k), (44)

where ηi (k) = εi (k) + vi(k) is the overall measurement
noise and cδt0i is the initial carrier phase bias term that
is estimated at the beginning of the setup during the GPS
availability duration by knowing the initial UAV position and
measurement zi (0) and is given by

cδt0i =
∣∣∣∣∣∣rTuav(0)− rTi ∣∣∣∣∣∣− zi (0) (45)

The above estimation ignores the initial measurement
noise. However, the authors propose to average several mea-
surements for the total duration in which the GPS is initially
available. To estimate the common bias term cδt (k), the
authors propose to lump the N BSi clocks into clusters, each
of size Nl where N =

∑L
l=1 Nl and L is the total number of

clusters. Extending this approach to our application scenario
to localize the UAV through measurements from four base
stations, we let N = 4 and L ≤ 2. Note that, given the
2-D position of the UAV is being estimated with L clock clus-
ters, the number of clusters, L, cannot exceed N-2. Next, the
authors utilize a weighted non-linear least squares (WNLS)
estimator to estimate the UAV location given by

x j+1 (k) = x j (k)+
(
HTR−1η H

)−1
HTR−1η + δz (k) , (46)

where j is the WNLS iteration index, Rη is the measurement
noise covariance and H is the measurement Jacobian and
δz (k) is given by

δz (k) =
[
δz (k)1 , .., δz (k)N

]T (47)

This method contains an outer loop of iterations n and
an inner loop of iterations j. Accordingly, the computational
complexity of this localization technique is given by

ComplexityCP = O (njN )+ O (njlog(N )) (48)

The calculated ComplexityCP is proportional to the needed
number of iterations of the computational steps to converge
to an optimal solution and as such is not guaranteed to meet
the real time requirement.

It is worth noting that this approach has major drawbacks
that render it impractical where GPS presence in urban areas
has the limitations that we discussed earlier. Moreover, the
study’s results are based on assuming an altimeter is available
to accurately estimate the UAV height and it then proceeds to

VOLUME 9, 2021 155243



G. Afifi, Y. Gadallah: Autonomous 3-D UAV Localization Using Cellular Networks

FIGURE 6. Deep learning-based localization results (a) Mean localization error vs. no. of nodes for a 1-Layer NN; (b) Mean localization error vs. no.
of Epochs for a 2-Layer NN; (c) Mean localization error vs. no. of layers; (d) Mean localization error vs. data size.

estimate the 2-D position vector for the UAV due to the poor
vertical diversity of cellular phase measurements.

B. THE OPTIMIZATION BASED RESULTS
We first perform simulations to determine the optimal bound
of the solution by evaluating the performance of Exhaustive
Search technique which can usually be done on smaller sys-
tem scales due to its complexity. We then assess the perfor-
mance of the Nelder-Mead technique in comparison to the
exhaustive search to examine its relative performance to the
gobal optimal solution obtained by the Exhaustive Search.
The objective is to enable us to examine the possibility of
using the Nelder-Mead technique at larger scales, instead of
resorting to the use of exact optimization techniques, due to
its lower complexity. This is to help researchers decide on
the use of such an alternative in similar problems to save

considerable time and resources while obtaining reasonably
close optimal bounds.

As shown in Fig. 5(a), we demonstrate the mean UAV
localization error assuming random placement for each of
the four gNBs and UAV versus different standard devia-
tion values of the noisy RSSI readings. The results show
that Nelder-Mead as a heuristic optimal approach performs
closely to Exhaustive Search. By examining the results,
we find that the Nelder-Mead and Exhaustive Search meth-
ods result in a mean localization error of 0.7 and 0.5 for a
random UAV-gNB placement scenario and random standard
deviations 0.01 < σi < 0.1, respectively. In Fig. 5(b),
we show the maximum localization error for both algorithms
as compared to the bounds derived in section III. We evaluate
εUB based on a 98% confidence analysis and evaluate εLB
assuming optimal propagation conditions for each of the
four RSSI measurements. As expected, the maximum UAV
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FIGURE 7. Reinforcement learning-based localization results (a) Mean localization error vs. number of layers; (b) Mean localization error vs.
experience replay batch size; (c) Mean localization error vs. number of nodes per hidden layer; (d) Mean localization error vs. action space
discretization step size.

localization error for both is within the theoretical bounds for
both optimization based algorithms.

C. THE DEEP LEARNING BASED RESULTS
In this section we evaluate the performance of the deep
supervised learning-based approach in solving our formu-
lated UAV localization problem. Fig. 6 demonstrates the
effect of various neural network architectures, backprop-
agation training functions and hyper parameter tuning on
the performance evaluation of the proposed deep learning
algorithm. As shown, the localization accuracy improves as
the number of nodes increases since the higher number of
nodes enables the neural network to learn the non-linear co-
relations. We also investigate the effect of varying the batch
size on the neural network performance. As shown in Fig. 6,
the smaller batch sizes accelerate the training converging

to suboptimal accuracy as opposed to using larger batch
sizes. The performance also improves with increasing the
number of network layers. However, the rate of improvement
slows down as the number of layers increases as the network
becomes susceptible to overfitting due to the increase in the
number of parameters. We also demonstrate the effect of
training the neural network using different functions. The
mean square error is lower in case of applying Bayesian
Regularization as opposed Levenberg-Marquardt given that
the validation criteria prevents overfitting while allowing the
training for a larger number of epochs. We also show that the
localization accuracy increases with increasing the number
of training epochs. However, the performance improvement
decreases significantly when the number of training epochs
exceeds 220 epochs as the network weights converge to the
local suboptimal solution.
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FIGURE 8. Overall analysis (a) Mean localization error vs. gNB-UAV placement scenario;
(b) Time complexity vs. problem dimension.

Our simulation results show that a neural network archi-
tecture that consists of 4 hidder layers with at least 100 nodes
per layer is needed to capture the non-linear relationships
between the inputs and the outputs. We also studied the
effect of training the neural network by utilizing training data
obtained from applying the different optimization algorithms.
Our simulation results show a neural network with a 4 hidden
layers architecture trained for at least 260 epochs with a
minimum training data size of 106 and utilizing Bayesian
regularization yields the best results. Our simulation results
also show that the mean localization error of a 4-layer neural
network trained for 280 epochs utilizing Bayesian regular-
ization with a training data size of 106 obtained by applying
the Exhaustive Search and Nelder-Mead algorithms is 2.6m
and 2.7m, respectively. This confirms our earlier observation
regarding the closeness of the optimal bound results of both

the Exhaustive Search and the Nelder-Mead optimization
techniques.

D. THE REINFORCEMENT LEARNING BASED RESULTS
In this section, we evaluate the performance of the reinforce-
ment learning-based approach that we proposed as compared
to the optimal solution obtained by applying the Exhaustive
Search and Nelder-Mead techniques and the near optimal
solution obtained by applying the deep learning approach.
As shown in Fig. 7, we see the effect on performance
with increasing number of layers of the critic network.
As expected, the performance improves with increasing the
number of network layers from 1 to 2 given the quadratic
relationship between the inputs and the outputs. However,
the performance degrades as the number of layers increases
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to 3. This can be attributed to the need for additional training
episodes and/or experience buffer size to accurately train
the network with a higher number of weights and biases.
We also show the effect of the experience replay batch size
in training the critic network. The performance improves
when the experience replay batch size used to train the critic
network is increased. Finally, we demonstrate the effect of
action space discretization step size by which we are able
to reach near optimal localization results when the action
space is discretized to a decimeter accuracy. Our simulation
results show that a 2-layer critic network with 30 nodes
per layer is capable to capture the non-linear relationship
between the inputs consisting of the RSSI readings, gNB
coordinates and the UAV action space, and the output which
is the expected reward or localization error to be minimized.
We show that a QL agent with experience replay batch size of
8 × 104 utilizing Bayesian regularization for at least 11,000
episodes and action space discretization step size of 0.1 m
yields best error result of 0.87m, which is comparable to the
optimal solution. Accordingly, we conclude that the proposed
reinforcement learning based approach can be utilized to
effectively solve the formulated localization problem with
comparable accuracy to the optimization based techniques.

E. OVERALL RESULTS AND ANALYSIS
In this section, we provide a comparative analysis for each
of the techniques including Exhaustive search, Nelder-Mead,
Deep Learning, Reinforcement learning and the Carrier phase
technique proposed in [8] in terms of mean localization
error and time complexity. First, we show the mean local-
ization error for each approach under different gNB-UAV
placement scenarios. As shown in Fig. 8(a), the results
demonstrate that our proposed deep and reinforcement learn-
ing approaches can perform closely to optimal results realized
by iterative Exhaustive Search, Nelder Mead and Carrier
Phase approaches.

Next, we show in Fig. 8(b) the time complexity derived
in the form of big-O notation that we have derived for
each of the presented localization techniques as a func-
tion of the problem dimension n. The results demonstrate
that the computational complexity of our proposed deep
and reinforcement learning based approaches is lower with
increasing the problem dimension as compared to the other
optimization based approaches and accordingly provide the
advantage of meeting real-time constraints needed in such
dynamic environments. Our simulation results show the
effectiveness of our proposed deep and reinforcement learn-
ing based approaches to solve the UAV localization problem.
We demonstrate that our proposed reinforcement learning
algorithm achieves a lower localization error as compared
to deep supervised learning-based algorithm. However, the
reinforcement learning algorithm requires higher computa-
tional complexity that is proportional to the discrete action
space size as compared to the deep supervised learning-based
approach.

As such, we conclude the following
• The reinforcement learning based approach is better
suited in case when the flight space of the UAV is pre-
constrained to a relatively small area and a high local-
ization accuracy is needed.

• In case the flight space of the UAV is very large, the deep
supervised learning based approach is recommended to
solve the UAV localization with lower computational
complexity in real time.

• The use of the heuristic approach provides optimal
bound results that are quite close to those of the exact
optimal solution at a much lower computational cost
than that of the exact optimal solution. Hence the use
of heuristic solutions to obtain the optimal bounds is
recommended to save a lot of time and effort while
providing the needed guidance.

VIII. CONCLUSION
In this study, we proposed autonomous UAV 3-D localization
solutions that work independently of the GPS or other
detectable mobile signals transmitted by the UAV. This is
done through utilizing the existing cellular infrastructure to
enable the UAV to determine its location using the locations
of four surrounding base stations of the cellular network.
We formulate the UAV localization problem as an optimiza-
tion problem to minimize the error of the RSSI measurements
from the surrounding cellular base stations. We solved this
problem using exact and heuristic optimization techniques to
determine the optimal bound of the solution. We then pro-
posed a deep supervised learning-based approach as well as a
reinforcement learning based approach to solve the problem
in real time, which is critically needed in such applications.
Simulations results show that the proposed machine-learning
based solutions perform closely to the optimal bound while
proving the required real-time results. While both the pro-
posed deep learning and reinforcement learning approaches
provide a near optimal solution, the results show that the
proposed reinforcement learning algorithm achieves a lower
localization error as compared to deep supervised learning-
based algorithm at the expense of the added complexity that
it sustains.
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