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ABSTRACT Deep neural networks (DNN) are now dominating in the most challenging applications
of machine learning. As DNNs can have complex architectures with millions of trainable parameters
(the so-called weights), their design and training are difficult even for highly qualified experts. In order
to reduce human effort, neural architecture search (NAS) methods have been developed to automate the
entire design process. The NAS methods typically combine searching in the space of candidate architectures
and optimizing (learning) the weights using a gradient method. In this paper, we survey the key elements
of NAS methods that – to various extents – consider hardware implementation of the resulting DNNs.
We classified these methods into three major classes: single-objective NAS (no hardware is considered),
hardware-aware NAS (DNN is optimized for a particular hardware platform), and NAS with hardware
co-optimization (hardware is directly co-optimized with DNN as a part of NAS). Compared to previous
surveys, we emphasize the multi-objective design approach that must be adopted in NAS and focus on
co-design algorithms developed for concurrent optimization of DNN architectures and hardware platforms.
As most research in this area deals with NAS for image classification using convolutional neural networks,
we follow this trajectory in our paper. After reading the paper, the reader should understand why and how
NAS and hardware co-optimization are currently used to build cutting-edge implementations of DNNs.

INDEX TERMS Automated design, classification, co-design, deep neural network, hardware accelerator,
neural architecture search, optimization.

I. INTRODUCTION
Machine learning (ML) technology is now routinely applied
in cutting-edge applications such as image, speech, and natu-
ral language recognition, data mining, autonomous car driv-
ing, and automated system design in which humans had no
competitors a few years ago. The core ML algorithms utilize
deep neural networks (DNNs) — complex computational
models that must be designed and then trained using suit-
able data from a given application domain [1]. For example,
DNN called ViT-H/14 that shows state-of-the-art classifica-
tion accuracy on one of the most significant image classifica-
tion benchmarks (ImageNet) consists of 632million trainable
parameters [2]. As designing such complex DNNs is very
time-consuming and requires skilled experts, much effort has
been invested in recent years to automate this work.
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Neural architecture search (NAS) [3]–[5] is a method
capable of automated design of complex neural net-
works (NN) such as DNNs. In its single-objective setup,
it creates neural networks that are optimized according to
one objective (typically, the quality of output, expressed in
terms of accuracy or other similar metrics). NAS has to solve
two problems concurrently – designing the NN’s architecture
(including its size, structure, and types of components) and
optimizing its trainable parameters (the so-called weights).
Each of these problems is difficult in itself, and its solving
requires considerable computing resources. The NAS meth-
ods typically combine searching in the space of candidate
NNs (see Sect. IV-B) and optimizing (learning) the weights
using a gradient method. However, the most significant bene-
fit of the NAS methods is if they are used in a multi-objective
setup and optimize not only the NN quality but also other
parameters such as size or latency. If more objectives are
considered, NAS methods currently provide state-of-the-art
DNN implementations [6]–[8].
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Only a fully trained NN is needed in most ML applications
while its training is performed on a computer cluster before its
deployment. However, even such a fully trainedNNmust exe-
cute billions of elementary arithmetic operations to process a
single input, i.e., to perform the so-called inference. Note that
each of the trainable parameters typically undergoes at least
one multiplication during inference.

In order to reach desired latency or energy efficiency,
hardware accelerators for NN inference were developed in
recent years [9], [10]. In this direction, hardware-aware
NAS methods were proposed to design NN architecture
(and weights) optimally for a given hardware platform.
Compared to single-objective methods, multi-objective
hardware-aware NAS delivered similar accuracy but reduced
latency, size, and/or power consumption, which was demon-
strated across different hardware platforms [7], [11], [12].
However, these methods only optimize the NN architec-
ture. They do not extend the search space to co-optimize
NN architecture with parameters of hardware platforms
(such as amount and type of resources, dataflow strate-
gies, buffer sizes, and compiler options). Thus, they neglect
the hardware design freedom provided by many platforms
(e.g., in FPGAs) [13]. Hence, the newest NAS methods
co-optimize NN architectures and hardware configuration
to further improve latency and other parameters that are
important in many applications such as IoT or mobile
phones. These methods work in three search spaces (weights,
NN architectures, and hardware configurations) and must
innovatively orchestrate several search algorithms to pro-
duce the best trade-offs between the accuracy and various
hardware-relevant metrics [8], [14], [15].

Modern NAS methods thus enabled to increase the
design productivity by releasing human experts’ capacity
and improve the quality, performance, and energy efficiency
of resulting neural accelerators by adopting a data-driven
automated search-based design approach.

A. PREVIOUS SURVEYS
The body of work dealing with NAS has significantly
increased since 2015, as illustrated in Fig. 1. This rapid
development is captured by detailed survey papers being
published since 2018 [4], [5], [16]–[18]. Some special-
ized surveys focused on particular search methods such as
metaheuristics [19], neuroevolution [20], and reinforcement
learning-based NAS [21]. The most recent survey [22] pro-
vides a unifying view on NAS in terms of representation of
DNNs, variation operators, multi-objective search, constraint
handling, and performance estimation. However, these sur-
veys only briefly mention hardware-aware NAS, if at all.
The hardware design community only very recently started
to survey relevant papers on hardware-aware NAS [23]–[25].
A detailed survey is currently provided only by unpublished
paper [25]. As their work was finished in 2020, it does
not fully cover the most recent approaches in which neural
architecture is co-designed with a hardware accelerator.

FIGURE 1. The number of papers on NAS according to automl.org
database (∗June 30, 2021).

B. PLAN OF THE SURVEY
In this paper, we focus on this new category: NAS with
hardware co-design. Rather than providing a unified view
which is hard to establish in this rapidly expanding field, our
survey tries to follow the development from single-objective
NAS methods, via hardware-aware NAS (in which DNN is
optimized for a particular hardware platform) to the NAS
with hardware co-search, in which the hardware design space
has to be explored in addition to the space of network archi-
tectures. Relevant NAS methods are classified according to
carefully selected criteria and arranged in a tabular form. For
the last category, we propose a new classification approach
to understand how multiple search algorithms interact to
construct an efficient DNN and its hardware accelerator.
We emphasize the importance of fair comparison and bench-
marking methodology for NAS methods and show exam-
ples of such comparisons. The entire topic is challenging to
present because it requires that the reader is familiar with
different fields: DNNs,methods formulti-objective optimiza-
tion, and hardware accelerator design. Hence, the survey
starts with a brief introduction to DNNs and explains the
principles of the accelerator design.Most research in this field
deals with NAS for convolutional neural networks (CNN)
applied to the image classification task. Our survey is pri-
marily focused on this area. Table 1 provides a list of abbre-
viations used throughout this paper. As a core database of
relevant papers, we selected automl.org [26], which contains
not only papers from standard databases of IEEE or ACM but
also unpublished preprints.

The rest of the paper is organized as follows. Section II
summarizes relevant principles of neural networks, empha-
sizing CNNs, and their optimization and benchmarking.
Section III is devoted to hardware accelerators developed for
CNN inference. NAS methods that optimize only the CNN
accuracy are surveyed in Section IV. The hardware-aware
NAS is introduced in Section V, in which we also describe
common multi-objective optimization approaches. The NAS
with hardware co-design is discussed in Section VI. Special-
ized techniques and hardware platforms in NAS are treated
separately in Section VII. Section VIII deals with evaluation
and benchmarking of NAS methods. Concluding remarks are
given in Section IX.
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TABLE 1. List of abbreviations. Note that full titles of NAS methods,
human-created CNN models, and benchmark sets are not included.

II. ARTIFICIAL NEURAL NETWORKS
Artificial neural networks are computational models inspired
by biological brains. They are used in machine learning
tasks such as classification, prediction, control, and func-
tion approximation. NN is defined by its architecture and
weights [1]. The number and type of layers, neurons, and
other parameters that define the architecture of the NN are
called hyperparameters. Once the architecture and hyperpa-
rameters of NN are specified, NN can undergo a training
procedure whose goal is to optimize trainable parameters
(the so-called weights) to minimize a given loss function.
In classical supervised gradient learning, the training algo-
rithm works in iterations (epochs). For each data input
(i.e., an input vector or a subset from input vectors called
a batch), it computes the output vector, which is compared
with the desired vector to determine the error. The error is
propagated back along with the network, and by utilizing the
gradient of the loss function, the weights are appropriately
updated. While training is performed with a training data set,
the final quality score of the NN (such as the classification
accuracy) is determined for a test data set. The accuracy gives
the proportions of correct classifications over a given data set.
In this paper, the accuracy always refers to the accuracy on
the test data. The top-n accuracy is the proportion of testing

data for which any of the n highest-probability predictions is
considered as a correct result.

In this paper, we will primarily deal with convolutional
neural networks (CNNs) whose architecture is defined as a
sequence of layers with no feedback that are composed of
artificial neurons and other elements, and at least one of the
layers is the so-called convolutional layer [27]. We will only
briefly mention recurrent neural networks (RNNs) that have
been developed for time-dependent problems. They support
both feedback and feed-forward connections and can store
intermediate results internally in the NN. Long short-term
memory networks (LSTMs) are the most popular variant of
RNNs capable of capturing long-term time dependencies [1].

After introducing selected basic types of NNs, this section
will focus on well-known CNN models developed by human
experts and various techniques improving the performance
of CNNs. As the main focus of this paper is the automated
design of hardware-aware CNNs, we will not further deal
with other types of DNNs, training algorithms, and applica-
tion domains.

A. NEURONS AND MULTI-LAYER NETWORKS
A basic artificial neuron is an elementary building block of
complex NNs. A neuron has n inputs (x1, x2, . . . , xn) and
returns a scalar output y (Fig. 2). The inputs are multiplied
with the weights (w1,w2, . . . ,wn) and summed together with
a bias term b. A non-linear activation function σ (z) is then
applied to calculate the output of the neuron, i.e.

y = σ (z), where z =
n∑
i=1

xiwi + b. (1)

FIGURE 2. A single neuron (left) and an example of a multi-layer
fully-connected feed-forward neural network (right).

Common activation functions are Rectified Linear Unit
(ReLU), sigmoid or hyperbolic tangent [1]. When used as
a classifier, one neuron can, after training, only classify the
input vectors to linearly separable classes.

To approximate general functions, a multi-layer NN is
used, which consists of multiple layers of neurons in which
a suitable number of neurons that work in parallel constitute
one layer (Fig. 2). Fully connected (FC) layers are usually
organized in such a way that if some layer contains n neu-
rons, then each neuron is connected to all m neurons of the
previous layer, which requires to set up m × n weights.
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If the NN has to approximate a function F(x1, x2, . . . , xn)
then the last (output) layer contains just one neuron. If the
NN works as a classifier into k classes, then the output
layer has k neurons. The i-th neuron gives the probability of
i-th class, which is often obtained using a softmax function:

p(zi) =
ezi∑k
j=1 e

zj
. (2)

The number of layers and the number of neurons in
each layer are hyperparameters of a multi-layer fully con-
nected NN. When the trained NN is deployed, it only per-
forms feed-forward computations to obtain the result for
every input; this is called the inference.

B. CONVOLUTIONAL NEURAL NETWORKS
In order to reduce the number of weights and automatically
extract essential features from raw data, CNNs have been
introduced in the image processing domain. CNNs contain
between five and hundreds of layers. Each convolutional
layer generates, by applying one or several convolutional
kernels (filters), a successively higher level of abstraction of
the input data, called a feature map. The core computational
procedure of a convolutional layer is a high-dimensional
convolution (Fig. 3). The convolutional layers take input acti-
vation maps, arranged in three dimensions (i.e., height Hin,
width Win and channel Cin), and generate output activation
maps, arranged in three dimensions (i.e., height Hout , width
Wout and channel Cout ). Mathematically, it is the convolution
between the input activation maps and a set of Cout 3D filters.
More precisely, every single 2D Hout × Wout plane of the
output activation maps is a result of the convolution between
the 3D input activation maps with a set of 3D filters. The
final step is adding a 1D bias. Formally, the convolutional
processes with the input activationmaps, the output activation
maps, the filters and the biasmatrices denoted asX , Y ,W , and
B, respectively, can be expressed as

Y (z, t, q) = B(q)+
∑Cin

k=1

∑Hf

j=1

∑Wf

i=1
X (zS + j, tS + i, k)

×W (j, i, k, q), (3)

Hout = (Hin − Hf + S)/S, (4)

Wout = (Win −Wf + S)/S, (5)

FIGURE 3. High dimensional convolution in CNNs.

where 1 ≤ z ≤ Hout , 1 ≤ t ≤ Wout and 1 ≤ q ≤ Cout .
The stride S is the number of pixels of which the filter is

shifted after each convolution. The parameters used in the
convolutional process are summarized in Table 2.

TABLE 2. Parameters of convolutional layers.

CNNs are organized to learn the non-linear mapping
between the features and resulting classes, layer by layer,
where higher-level features are extracted from lower-level
features obtained in previous layers. A non-linear activation
function typically follows each convolutional layer. CNNs
also contain pooling layers, normalization layers, and spe-
cialized blocks of layers (e.g., residual and inception blocks
will be discussed in Section II-C). Pooling layers combine,
by applying the averaging or maximum operators, a set of
input values into a small number of output values to reduce
the dimension of feature maps. Normalization layers enable
to control the input distribution across layers which can help
to speed up the training process and improve accuracy.

C. HUMAN-CREATED CNN MODELS AND BENCHMARKS
The use of a CNN called AlexNet [27] (Fig. 4a) trained on
GPUs led to a breakthrough result in the ImageNet 2012 chal-
lenge focused on image classification. AlexNet achieved a
top-5 error of 15.3%, i.e., 10.8% lower than other com-
petitors utilizing conventional classifiers. The ImageNet

FIGURE 4. Examples of hand-crafted CNNs and their blocks: (a) AlexNet
for CIFAR-10 classification; (b) Residual block from ResNet [31];
(c) Inception block from GoogleNet [30]. Abbreviations of layers:
Conv – convolution; Pool – pooling; FC – fully connected; BN – batch
normalization; Add – addition; MaxP – max. pooling; Concat –
concatenation.
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benchmark data set contains 1.2 million training images, with
roughly 1000 images in each of 1000 categories [28].

Since that time, various innovations have been proposed
to improve CNNs, leading to CNNs showing around 90%
top-1 accuracy on ImageNet. In addition to maximizing the
classification accuracy, many efforts have been invested in
minimizing the size and latency of CNNs to deploy them in
resource-constrained devices such as mobile phones.

Major innovations are presented by CNN models given in
Table 3; a detailed benchmarking analysis is in [29]. Please
note that some of the following networks exist in several
versions (e.g., ResNet-8, ResNet-14 etc.), which differ in the
number of layers, the structure of building blocks, and some
other parameters. The top-1 accuracy depends on the training
algorithm setup and time and resources available for training.
We will briefly introduce some CNN models important for
this paper.

TABLE 3. Parameters and performance of selected human-created
CNN models on ImageNet. MobileNetV3 models were developed
with help of NAS.

GoogLeNet [30] is the first complex CNN formed by
stacking with inception modules (Fig. 4c) in which various
convolutional operations with different sizes are performed
in parallel and their results are aggregated by concatenation.
ResNet [31] introduced the so-called residual blocks (Fig. 4b)
containing a shortcut connection that enables to eliminate the
gradient vanishing problem without degeneration in CNNs
since the gradient is directly passed through shortcut connec-
tions. A three-layer residual block is also called the bottleneck
module because the two ends of the block are narrower than
the middle. MobileNetV1 used depthwise separable convo-
lutions as an efficient replacement for traditional convolu-
tion layers. MobileNetV2 proposed the linear bottleneck and
inverted residual structure [32]. MobileNetV3 [33] directly
employed a platform-aware NAS to find the structure of
the network and the key hyperparameters. Inspired by the
scaling of the so-called Transformer language models, Vision
Transformer (ViT) models [2] were introduced. For example,
a ViT-H/14 model with 632 million parameters shows state-
of-the-art top-1 accuracy of 88.55% on ImageNet.

There are many software platforms (such as Tensor-
Flow [36] and PyTorch [37]) enabling us to use an exist-
ing CNN model or create a new one and evaluate it on

pre-prepared data sets. CNNs are evaluated on benchmark
problems (or data sets), where image classification is the
most popular. ImageNet is considered as a difficult and highly
important benchmark, for which the ML community care-
fully monitors the progress in the Top-1 accuracy. Some
smaller CNNs (developed for, e.g., low-power devices) are
only evaluated on less complex image sets such as CIFAR-10
(10 image classes) [38], CIFAR-100 (100 classes) [38],
MNIST (10 classes) [39], Fashion-MNIST (F-MNIST,
10 classes), SVHN (10 classes) [40], and NORB [41].

Some other data sets are utilized in the papers that will be
surveyed in the next sections. Table 4 gives their abbrevia-
tion and a brief description. Further details are available in
particular papers referenced in Section IV, V, and VI.

TABLE 4. Additional benchmark problems.

D. CNN OPTIMIZATION
CNNs are typically used for error-resilient applications in
which a minor error introduced by inexact computing is
often invisible to the end-user. Hence, CNNs can be simpli-
fied to reduce hardware resources, power consumption, or
latency.

By pruning, some connections, neurons, filters, and chan-
nels can be removed [42]. By quantization, the most
suitable number of bits and data format is assigned
to selected weights, activations, and other intermediate
results in the network instead of using the common
32-bit floating-point (FP) data type [42]–[44]. Recent stud-
ies have shown that with novel quantization methodologies,
namely PACT and SAWB, and specialized number for-
mats, DLFloat16 (16 bit) and Hybrid-FP8 (8 bit) for train-
ing, and INT4 for inference, no loss in accuracy can be
reached for 4-bit inference for common CNN models on
ImageNet [45].Model compression tries to reduce the number
of different weight values to minimize the CNN memory
footprint [42], [46].

NAS algorithms that will be discussed in Sections V andVI
implicitly perform pruning. Searching for the optimal bit
widths is directly performed by, e.g., [47]–[51].
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III. HARDWARE IMPLEMENTATION OF NEURAL
NETWORKS
Accelerating the DNN training as well as inference in
specialized hardware has been a vital research topic
since 2014. While training is typically performed on
(clusters of) graphics processing units (GPUs) or Ten-
sor Processing Units (TPUs), the accelerated inference is
carried out on a variety of computing platforms ranging
from low-power processors to high-performance specialized
multi-chip systems. As the paper deals with hardware-aware
NAS, we will primarily focus on accelerators devoted to
inference. This topic is well-covered in the literature, see,
e.g., a recent book [52] or detailed fresh surveys from the
year 2020 [10], [45], [46], [53]–[55].

The CNN accelerator design is motivated by the fact that
most computations are carried out in convolutional layers
whose computation is suitable for parallelization. Moreover,
the parameters (weights) associated with convolutional fil-
ters are reused many times. For example, while 666 million
multiply-and-accumulate (MAC) operations are performed in
convolutional layers, only 58.6 million MACs are in fully
connected layers of AlexNet. In the case of ResNet-50, the
ratio of MACs conducted in convolutional to fully connected
layers is 1930× [9]. Hence, by a smart organization of the
convolutional operations, which involves supplying the rele-
vant data on time, introducing a suitable data reusing strategy,
and bit-width setting, a significant improvement in latency
and power consumption can be obtained using specialized
parallel hardware. Chen et al. suggested to directly optimize
the data reuse, which is the number of MACs that use the
same piece of data, i.e., MACs/data, to maximize the energy
efficiency [56]. For example, if all data reuse is exploited,
DRAM accesses in AlexNet can be reduced from 2 896
to 61 million [52].

A. HARDWARE PLATFORMS FOR DNNs
In addition to general-purpose multicore CPUs and GPUs,
various specialized accelerators have been developed to
implement DNNs. These accelerators are implemented
either as application-specific integrated circuits (ASICs),
in field-programmable gate arrays (FPGAs), or by extend-
ing common processors. The ASIC-based accelerators are
typically created by leading companies, e.g., Google’s series
of TPUs [57], Intel’s Movidius [58], IBM’s TrueNorth [59],
NVIDIA’s NVDLA [60] and at universities, e.g., DaDian-
Nao [61], Origami [62], Eyeriss [56], and ZASCA [55].

Google’s TPU accelerators exist in several versions [57].
TPUv1, introduced in 2016, provided a systolic array of
256 × 256.8-bit FX multipliers allowing to significantly
accelerate matrix multiplications for CNN inference (with the
peak performance 92 TOPS at 75 W). TPUv2 and TPUv3
provide increased performance and support FP operations
which makes them usable for DNN training. EdgeTPU is a
version developed for edge computing and smartphones.

A detailed survey of FPGA-based acceleration techniques
for DNNs was recently published in [10], [63]. On the other

hand, DNN accelerators based on processors and micro-
controllers are an attractive solution not only because of
their low power operation useful in the IoT domain but
also because of easier programmability and flexibility com-
pared to specialized hardware accelerators. Thanks to the
CMSIS-NN library [64] proposed by ARM for 16-bit and
8-bit quantized DNNs on Cortex-M microcontrollers; as well
as PULP-NN, an opensource library targeting RISC-V pro-
cessors, and supporting heavily quantized DNNs working
on 8-bit, 4-bit, 2-bit, or even 1- bit data [65], these proces-
sors can implement complex CNNs such as MobileNetV1.
To enable energy-efficient inference of quantized DNNs
(with up to 550GOPS/W) for IoT applications, the instruction
set was extended for RISC-V by implementing low-bit width
SIMD arithmetic instructions [66].

It is important to emphasize that the acceleration
approaches mentioned above show very different trade-offs
between two critical evaluation criteria – performance
(inferences/s) and energy efficiency (inferences/s/W). On the
AlexNet example, Table 5 indicates that GPUs provide
the highest performance while specialized ASICs lead to the
most energy-efficient implementations. Detailed evaluation
methodology for DNN accelerators was published in [67].

TABLE 5. Performance and energy-efficiency of AlexNet on various
platforms (according to [56], [68]).

B. TEMPORAL ARCHITECTURES
The temporal architecture (typical for CPUs and GPUs)
employs a set of ALUs with a fixed connection pattern and
a hierarchical memory subsystem. Because this architecture
is primarily intended for general-purpose computing, it is in
principle less energy efficient than specialized architectures
with a dedicated data flow organization. When CPU and
GPU implement DNNs, their performance can be increased
by suitable algorithmic techniques and compiler-level opti-
mizations whose goal is to reduce the number of expensive
arithmetic operations, maximize the degree of parallel pro-
cessing, and optimize the memory access pattern. Libraries
such as MKL [69] and cuDNN [70] provide optimized
algorithms for efficient computing of matrix multiplica-
tion, multi-dimensional convolution, Fast Fourier Transform,
and other valuable operations for DNNs. GPUs, as the
most popular platforms for DNNs, range from small devices
(e.g., NVIDIA Jetson Nano with 472 GFLOPS and 5-10 W)
to high-performance nodes of supercomputers (e.g., NVIDIA
V100 with 100 TFLOPS and 300 W).
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C. SPATIAL ARCHITECTURES
Spatial DNN accelerators that are usually implemented in
ASICs or FPGAs consist of an array of Processing Elements
(PE), on-chip buffers, a controller, and external DRAMmem-
ory (Fig. 5). Each PE contains a MAC circuit to multiply the
input data with weight and add the product to a partial sum.
A small local memory (register file or buffer) implemented
in each PE can store local data such as weights, activations,
and partial sums. Another memory, a global buffer, is used
to prefetch from DRAM the activations and weights associ-
ated with a part of DNN that will be processed in the next
step.

FIGURE 5. Typical organization of a DNN accelerator and its programming.

Dataflow is a general term covering the computation order,
parallelization strategy, and tiling strategy applied in the
accelerator. Tiles are chunks of data that fit the resources that
are available to process them. For example, tiling of input
feature map means that instead of loading an entire feature
map, only a few rows and columns of that feature map are
loaded and processed by the PE array. Dataflow is closely
related to the data reuse strategy. The data elements (either
weights, inputs, or partial sums) that have to be reused are
mapped into local memory in PEs and kept there (stationary)
until all relevant computations are performed with them. The
common dataflow strategies are
• Weight Stationary, in which the weights are stored in
PEs, e.g., used in [57].

• Output Stationary, in which the partial sums are stored
in PEs. e.g., [62].

• Row Stationary, in which the weights are stored in
PEs, and the operations of a row of the convolution are
mapped to the same PE, e.g., [56].

• No Local Reuse, in which only the global buffer is used,
e.g., [61].

The critical parameters of any DNN accelerator (i.e., the
runtime, throughput, and energy efficiency) depend on

a given DNN architecture and its mapping (via a suitable
dataflow organization) to available resources. The data can be
reused across time (via buffers) and space (over wires). The
tile sizes are bound by buffer sizes within the accelerator. The
total number of tiles depends on the DNN model size and
the dataflow strategy. The total number of PEs in the acceler-
ator determines the peak throughput [9].

Using cost models (such as MAESTRO [71]), the run
time, resources utilization, delay, and power can be estimated
for a given accelerator, DNN, and data set. A DNN is exe-
cuted either layer-by-layer, or the entire DNN is pipelined
across the accelerator, e.g., by means of systolic array prin-
ciples. While the former approach is easier to schedule,
it usually leads to less efficient utilization of resources.
The latter approach requires a suitable dynamic partition-
ing of resources, which is challenging to manage for some
DNN models, but the accelerator can be used more effec-
tively. Some accelerators can effectively exploit data sparsity
(many zeroes in the weights and activations) and configure
an optimal bit width for arithmetic operations to improve
performance [45], [56].

Depending on a given DNN, accelerator (specified in terms
of architecture, available resources, and dataflow options),
and constraints (such as the maximum latency), a compiler
generates the control sequence for the accelerator. Many
authors have addressed the optimal mapping and execution of
the DNN on a given accelerator, see [55], [62], [71], [72]. The
more challenging problem is to implement multiple accel-
erators on a single chip or to deploy multiple accelerators
on multiple chips [13], [73]. Note that the search for an
optimized implementation of a DNN for a given accelerator
is one of the problems addressed by hardware-aware NAS
(see Section VI).

D. APPROXIMATE IMPLEMENTATIONS OF CNNs
One of the most prominent approaches developed to reduce
the power consumption of computer systems is approximate
computing [74]. According to [75], the approximations were
introduced into CNNs at the level of data type quantiza-
tion, microarchitecture (e.g., pruning, weight sharing, and
dataflow organization), MAC circuits, and memory (utilizing
approximate memory cells, architecture, and weight com-
pression). The RAPID AI accelerator was built from the
ground up to investigate the impact of approximation tech-
niques in CNNs. The authors revealed that the most signifi-
cant gains are obtained when the cross-layer approximation
approach is adopted, involving software, architecture, and
hardware, breaking thus conventional methods focused on
optimizing each layer of abstraction independently [45]. The
NAS combined with hardware accelerator co-search has a
great potential to perfectly solve this problem.

IV. SINGLE-OBJECTIVE NAS
Developing a high-quality DNN model for a given (pre-
viously unseen) data set and creating its implementation
optimized for a target platform is a very time-consuming
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task because it is inherently based on performing many
experiments. The difficulty usually increases when the
data set size grows, and challenging constraints (such as
maximum-allowed latency or power consumption) are intro-
duced. NAS methods were invented to automate this design
process.

The whole NAS field started with the approaches in
which only one objective, the accuracy, is optimized [3], see
Fig. 6. Other objectives such as the number of parameters
or FLOPS were not explicitly considered, but they have
been often reported for resulting networks. Another goal,
not explicitly formulated within the NAS methods, was to
minimize the NAS execution time (or consumed energy or
CO2 emissions [76]). As we primarily deal with CNNs, the
next paragraphs will mainly discuss CNN-oriented single-
objective NAS.

FIGURE 6. Single-objective NAS (left) and hardware-aware NAS (right).
From the search space, the search algorithm samples a candidate DNN
architecture α, which is trained to get the weights w , and tested to get the
test accuracy Acc . The implementation cost is evaluated only for the
hardware-aware NAS.

For given training and test data sets, D = {Dtrn,Dtst },
and loss function L, the NAS problem can be formalized as a
bilevel optimization problem [77]:

α∗ = argmin LDtst (α,w∗(α))
s.t. w∗(α) = argmin LDtrn (α,w),

α ∈ �α,w ∈ �w, (6)

where the upper-level variable α defines a candidate
CNN architecture, and the lower level variable w(α) defines
the associated weights. �α and �w denote the space of CNN
architectures and the space of CNN weights, respectively.
LD(α,w) is the cross-entropy loss on the data set D for
architecture α and weights w.

The difficulty of the NAS problem lies in its complexity;
the search space is enormous, and its dimension is variable.
The search algorithm is often constructed as multi-objective
(mandatory for hardware-aware NAS) and tries to balance
the exploration and exploitation aspects. Moreover, because

candidate networks are complex objects, their evaluation,
which typically involves training, is very computationally
expensive. The following sections survey the key principles
of NAS algorithms.

A. SEARCH SPACE
A common practice is to model a candidate CNN using a
directed acyclic graph encoded as a variable-length string.
All possible strings describing valid CNNs constitute the
search space. Three strategies for building the search spaces
have dominated in recent years: (i) a macro search space
which describes the entire CNN, (ii) a micro search
space which defines the architecture of a subgraph (or several
subgraphs) which is then repeatedly reused in the CNN, and
(iii) a hierarchical search space.

In the case of the macro search space (Fig. 7a), the search
space is determined by a set of possible operations for each
node, hyperparameters of the network architecture, and a net-
work template. The template can be a simple linear sequence
of N nodes, or it can support branches and skip connec-
tions. Independent branches are at some point merged using
a suitable operator such as concatenation or sum [3], [78].
Another option is to parameterize a well-known CNN (such
as ResNet [31] or MobileNetV3 [33]) and use it as a template
(e.g., in [7], [51], [79]–[81]) for building and constraining the
search space. Some parts of CNN can be fixed by an engineer,
and their implementation is then not subject to optimization.
For example, the last fully connected layer is always present
in a CNN-based classifier, and, hence, it usually makes no
sense to search for its hyperparameters.

FIGURE 7. Construction of the NAS search space. (a) Macro: all layers
(white boxes) are searched; (b) Micro: a cell is searched for a pre-defined
CNN; (c) Example of cell’s encoding according to [87] in which each node
is defined by a five-tuple (Node ID; Operation; Parameter; Source ID 1;
Source ID 2). The Operation is either (1) convolution, (2) max. pooling,
(3) average pooling, (4) identity, (5) add, (6) concatenation, or (7) terminal
node.

In the case of the micro search space (Fig. 7b), the archi-
tecture of a subgraph (also denoted as a cell, block, or seg-
ment) or several subgraphs is sought by NAS. This technique
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effectively reduces the search space concerning the macro
search. Each subgraph consists of several layers whose hyper-
parameters and connections have to be determined by NAS.
The resulting subgraph(s) is/are then reused in the target
CNN. For example, NASNet [82] proposes two types of cells:
normal cell, which is used to extract advanced features, and
reduction cell, whose task is to reduce the spatial resolution.
Fig. 7c shows an example of a cell’s encoding using a string
of integers.

In the case of the hierarchical search space [83]–[86],
a small set of primitives, including elementary operations
like convolution, pooling, and identity is specified. Small
sub-graphs (the so-calledmotifs) that consist of these elemen-
tary operations are then recursively used to establish the entire
network. MnasNet [12] organizes target CNN into multiple
sequentially connected segments, each having its separate
repeating structure.

CNN can also be encoded indirectly, using a procedure
(a generator) which generates it in a number of construction
steps, e.g. [20], [88]. While indirect encoding can signifi-
cantly reduce the search space size and produce complex
networks it has not become popular in the current NAS.
The reason is that it is tricky to devise a suitable unbiased
generator for CNNs.

It is an open research problem of search space engineer-
ing to devise unbiased search spaces that can effectively be
explored by search algorithms and, at the same time, enable
the discovery of novel and competitive CNNs.

B. SEARCH ALGORITHM
Reinforcement learning (RL) and evolutionary algo-
rithms (EA) dominate NAS methods. We will survey their
principles; other relevant algorithms will be briefly men-
tioned. A special section is devoted to the differentiable NAS.

1) RL-BASED METHODS
In the pioneering work, Zoph and Le [3] used a recurrent
network, the so-called controller, to sequentially generate
vectors representing (hyperparameters of) candidate CNNs.
The controller sequentially produces hyperparameters such as
filter height and width, stride height and stride width, and the
number of filters for one layer and repeats. Every prediction
is carried out by a softmax classifier and then fed into the
next time step of the RNN as input. After generating the
entire CNN description, the candidate CNN is assembled,
trained, and its validation accuracy serves as the reward signal
to update the controller’s parameters (the RNN’s weights).
Reinforcement learning thus tries to maximize the reward
(validation accuracy) from the actions performed (decisions
enabling to construct a candidate CNN) by the controller. The
controller’s parameters are iteratively updated by a policy
gradient method such as REINFORCE [89]. Fig. 8 shows
how a candidate CNN (including its architecture) can be
generated. This approach or its various extensions were used
in many NAS methods; see ‘RL’ in the following tables.

FIGURE 8. Top: Illustration of generating a CNN using the RL controller.
The action selection consists of two stages: (i) the indexes of inputs
and (ii) the operator over these inputs. Down: The resulting CNN.

2) EVOLUTIONARY SEARCH
Evolutionary algorithms were used for neural network design
and optimization since the 1980s. Surveys [90], [91] pro-
vide an overview of the early methods developed not only
for the architecture design but also for the optimization of
the weights by EAs as a complement to gradient methods.
The most exciting method developed in the pre-DNN era
is the neuroevolution of augmenting topologies (NEAT) [92]
which was quite competitive on small networks. NEAT was
extended to CoDeepNEAT to produce DNNs through a
co-evolutionary approach, with good results on CIFAR-10
and the Omniglot multitask learning domain problem [84].
A survey of recent neuroevolutionary methods was published
in Nature [20].

The first study dealing with the evolution of undoubt-
edly complex CNNs was presented by Real et al. [93] who
evolved a competitive solution to the CIFAR-10 problem.
In their method, a candidate CNN is encoded as a graph
whose nodes are rank-3 tensors or activations and edges are
convolutions or identity connections. The initial population
consists of 1000 single-layer networks with no convolutions.
After their training and evaluation, parents are selected using
a tournament selection, and offspring networks are then gen-
erated by mutation. The mutation operator is either adding
or removing a layer, altering the hyperparameters of a layer,
adding skip connections, or altering training hyperparam-
eters. Whenever possible, learned weights and parameters
are inherited from the parents to their offspring, which is
called the weight sharing. These steps are repeated until a
pre-defined number of generations is not exhausted. Real’s
EA works in the macro search space. While the EA is respon-
sible for delivering the architecture of CNN, candidate CNNs
are trained using a standard gradient descent algorithm.

Figure 9a summarizes the main steps of the evolution-
ary NAS method. The initial population is seeded either
randomly or with existing models (to reduce the search
time). Selection, recombination (mutation and crossover),
and replacement are standard steps of a typical EA. As train-
ing is the most time-consuming step, various methods were
developed to simplify it, see Section V-B.
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FIGURE 9. (a) Basic steps of the evolutionary design of DNNs. (b) Binary
encoding of one stage in a pre-defined structure of CNN.

Candidate CNNs are typically encoded using strings of
integers as illustrated in Fig. 7c. A very efficient binary
encoding was proposed in GeneticNET [78]. A candidate
network is composed of N stages, and each stage (the yel-
low box in Fig. 9b) contains up to K nodes. Fig. 9b shows
that j − 1 bits are devoted for encoding of the j-th node
(K = 6 in our example). Each of these j − 1 bits determine
if there is (1) or is not (0) a connection between the j-th
node and nodes 1, . . . , j − 1. The last bit informs if the skip
connection is active. Each node can represent one of the
pre-defined layers (convolution, poling, etc.) whose selection
is encoded using one integer. The complete CNN encoding
then consists of N parts, each of them devoted to one stage.
The main advantage of this encoding is its compactness and
the possibility of using a crossover binary operator, which
proved to generate good offspring. This encoding was later
reused in NSGANet methods [6], [94]. Note that genetic
operators must be tuned for a particular encoding to produce
good offspring. For example, [93], [95] only employmutation
operators; NSGANet methods [6], [94] utilize the aforemen-
tioned crossover.

AmoebaNet [96] provided the first large-scale comparison
of EA and RL methods. Their simple EA searched over the
same space as NASNet [82] and led to faster convergence
to an accurate network when compared to RL and random
search. Similar to the basic RL-based NAS methods, the
main limitation of the EA-based NAS methods is their high
computational overhead.

3) OTHER SEARCH STRATEGIES
Sequential Model Based Optimization (SMBO) is similar
to the mutation-based EA. After generating and evaluating

several smaller CNN models, it uses mutation to create more
complex models. Their quality is predicted using a surrogate
function, typically based on RNN. The surrogate function
is updated using data collected from already evaluated net-
works. Having a large pool of candidate models, a selection
strategy is needed to navigate in the search space. In PNAS,
SMBO selects top-performing models based on predicted
accuracy [97]. Note that in the Monte Carlo Tree Search
(MCTS), a random selection is taken to choose which branch
to expand for each node in the search tree [98].
Bayesian optimization methods (e.g., [85], [99]–[101])

employ a combination of a probabilistic surrogate model
and an acquisition function to obtain suitable candidates.
The acquisition function measures the utility by accounting
for both the predicted response and the uncertainty in the
prediction. The surrogate is constructed using the Gaussian
process (GP), random forest, or similar methods. The idea is
to limit the evaluation of the objective function by spending
more time in choosing the most suitable candidates for the
next step.
Training free approaches utilize results of theoretical anal-

ysis of DNNs. For example, TE-NAS [102] sorts candidate
architectures according to a score obtained by analyzing the
spectrum of the neural tangent kernel and the number of linear
regions in the input space, which can be computed with-
out training. The authors observed that these characteristics
strongly correlate with the network’s test accuracy.

Other algorithms, such as stochastic coordinate descent
(SCD) [14], Metropolis-Hastings (M-H) [103], or Multi-
variate Information Geometric Optimization (MIGO) are
employed less frequently.

C. SUPERNET AND ONE-SHOT METHODS
The authors of ENAS [104] observed that each candidate
CNN could be seen as a subnetwork of a larger network.
Hence, they constructed a generic network so that it is over-
parameterized, i.e., it contains all possible CNN realizations.
It is also known as a supernet. Its nodes represent local com-
putations, and the edges represent the flow of information.
The nodes have their parameters, but they are used only when
a particular node is activated. These parameters are shared
among all subgraphs that can be sampled from the supernet.
This idea is illustrated in Fig. 10. While it is time-consuming
to train the supernet, obtaining a trained CNN (i.e., a sub-
network) from the supernet is computationally significantly
less expensive as it requires to call a simple sampling algo-
rithm. Sampled subnetworks require no training, or they are
fine-tuned to improve their accuracy further.

The methods which train the network just once are also
known as one-shotNASmethods. They can be applied for the
micro as well as macro search space and combined with other
optimization methods. Various extensions of this idea have
been proposed, including hardware-aware NAS methods [7],
[11], [86], [105], [106].

SinglePathNAS [107] considers all candidate convolu-
tional operations as subsets of a single ‘‘superkernel’’.
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FIGURE 10. The principle of supernet. (a) Over-parameterized network
whose nodes are local computations and the edges represent the flow of
information. (b) One subnetwork sampled from the supernet which
shares the weights (shown as red lines) with the supernet.

Rather than choosing among different paths/operations in the
supernet, the NAS problem is solved by finding which subset
of kernel weights should be used in each convolutional layer.
By sharing the convolutional kernel weights, all candidate
NAS operations are encoded into a single ‘‘superkernel’’,
i.e., with a single path, for each layer of the one-shot NAS
supernet. This approach allowed to reduce further the number
of trainable parameters and the search time.

D. CONTINUOUS SEARCH SPACE AND GRADIENT SEARCH
Previously introduced methods operate in discrete search
spaces and can be seen as black-box optimizers. They need
a huge computational effort to discover an interesting CNN.
In order to reduce computational requirements of NAS,
DARTS [108] introduces a simple continuous relaxation
scheme for the micro search space, which leads to a differ-
entiable learning objective. The architecture and its weights
can then be jointly optimized by a gradient method which is
less computationally demanding than a black box optimizer.

A subnetwork (cell) is modeled as a directed acyclic graph
consisting of N nodes with two input nodes and one out-
put node. Each node x(i) is a potential feature map and
each directed edge (i; j) represents operation o(i,j) that trans-
forms x(i). The output of the cell is calculated by a suitable
reduction operation. Still considering a discrete space, each
intermediate node is expressed as:

x(j) =
∑
i<j

o(i,j)(x(i,j)). (7)

To make the search space continuous, the categorical
choice of a particular operation is relaxed using a softmax
function:

o(i,j)(x) =
∑
o∈O

exp(γ (i,j)
o )∑

o′∈O exp(γ (i,j)
o′ )

o(x), (8)

where O = {o1, o2, . . . , ok} is a set of candidate operations
(e.g., convolution, max pooling, zero) and γ (i,j)

o represents the
weight of operation o on the edge connecting nodes i and j.

The architecture search was transformed to an optimization
process for a set of continuous variables γ (i,j)

o representing
encoding of the architecture. At the end of optimization,
a discrete architecture of the cell is obtained by replacing
each mixed operation o(i,j) with the most likely operation
o(i,j) = argmaxo∈Oγ

(i,j)
o . The idea of DARTS is illustrated

in Fig 11.

FIGURE 11. The principle of DARTS: continuous relaxation of the search
space by placing a mixture of candidate operations on each edge (left),
and selecting the resulting architecture after the joint optimization (right).
Candidate operations are given in red, blue and green.

The parameters γ = {γ (i,j)
o } of the network architecture

and network weights w are thus jointly optimized, i.e.

min
γ,w

LDtst (γ,w(γ )), (9)

or form a bilevel optimization problem:

min
γ

LDtst (γ,w
∗(γ ))

s.t. w∗(γ ) = argmin LDtrn (γ,w). (10)

Finally, parameters γ have to be discretized to obtain the
final network architecture. DARTS enabled to reduce the
search time to 4 GPU hours while delivering an accuracy
comparable with other methods at that time.

Differentiable NAS has been quite often combined with
the supernet approach. However, inconsistency in the perfor-
mance of the parent network and the derived network was
observed by many practitioners. One of the reasons is that
DARTS jointly optimizes network weights and architectural
parameters. At the same time, the subnetwork needs to opti-
mize only a subset of weights for a few selected operations.
Various approaches have been proposed to eliminate this
behavior [109], [110]. P-DARTS employed the so-called pro-
gressive search to gradually increase the depth of the network
during the search phase to avoid another problem associated
with this approach – only shallow architectures are typically
derived from the parent network [111].

E. SELECTED METHODS
Table 6 summarizes key properties of single-objective NAS
methods. NAS methods are sorted according to the year of
publication (of a regular paper even if a pre-print was pub-
lished earlier) and then alphabetically. Every NAS method is
characterized in terms of the Search Algorithm, Search Space,
and the utilization of a SuperNet. Instead of using ‘micro’
to identify a micro search space, we use terminology taken
from particular papers, i.e., ‘cell’, ‘block’, or ‘stage’, to char-
acterize searched subnetworks. For ImageNet (ImgNet) and
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TABLE 6. Single-objective NAS methods. The top-1 accuracy (Acc.) and parameters (Param.) are given for a CNN created by a particular NAS method and
showed the highest accuracy in the corresponding paper. Symbol ‘−’ denotes a non-reported value.

CIFAR-10 (C-10) data sets, we provide the best top-1 accu-
racy (and the number of parameters) presented in a partic-
ular paper, i.e., independently of the NAS method setup or
used resources. When compared with human-created CNNs
given in Table 3, NAS methods are quite competitive in
terms of accuracy; however, only if the last generation of
human-created CNNs (such as Vision Transformers) is not
considered. We also list other data sets (denoted according
to Table 4) that were employed to evaluate a particular NAS
method. No performance indicators are reported for them to
keep the table easily readable.

Please note that the objective of this survey is not to
perform a detailed quantitative comparison of NAS meth-
ods. Despite some efforts towards a correct comparison
methodology (see a discussion in Section IX), any com-
prehensive benchmarking of NAS methods (especially the
multi-objective ones) has not been reported in the literature.

V. HARDWARE-AWARE NAS METHODS
Hardware-aware NAS methods were introduced to optimize
neural networks not only for accuracy but also with respect
to the target hardware platform, where the trained network
is implemented. It was later shown by a detailed design
space exploration [121] that optimal CNN architectures for
different devices are not the same.

Typical objectives to be optimized for a given hardware
platform are latency, throughput, energy efficiency, andmem-
ory usage. Hence, in specific steps of the NAS algorithm,
all relevant objectives have to be evaluated, either by direct
measurement on real hardware or estimated using software
models (see Fig. 6). As the NAS algorithms are usually very
time demanding, many techniques have been proposed for
their acceleration, particularly for shortening the candidate
network evaluation time.

The execution time of NAS is often seen as an addi-
tional objective to be optimized (minimized). For example,
NAG [79] is a Pareto frontier-aware neural architecture gen-
erator that takes an arbitrary budget as input and produces the
Pareto optimal architecture for the target budget.

In this section, we first introduce the principles of
multi-objective optimization methods (Section V-A). Then,
in Section V-B, we briefly survey the techniques devel-
oped to reduce the time needed to evaluate candidate
designs. In Section V-C, we propose our classification of
hardware-aware NAS methods.

A. MULTI-OBJECTIVE OPTIMIZATION
By extending the single-objective NAS formulation from
Section IV, the NAS problem can be seen as amulti-objective
optimization problem, i.e. an optimization problem that
involves multiple objective functions fi, i = 1 . . .m (all to
be minimized, without loss of generality):

min. f1(α;w∗(α)), f2(α;w∗(α)), . . . , fm(α;w∗(α))

s.t. w∗(α) = argmin LDtrn (α,w), (11)

where the upper-level variable α defines a candidate neu-
ral network architecture, and the lower level variable w(α)
defines the associated weights. One of the objective functions
is typically loss on the test data.

In the multi-objective optimization, there does not usu-
ally exist one solution that minimizes all objective functions
simultaneously because the design objectives are conflicting.
Hence, rather than one (optimal) solution, the optimization
results in a set of solutions, i.e. the solutions that cannot
be improved in any of the objectives without degrading at
least one of the other objectives. Formally, a solution a is
said to (Pareto) dominate another solution b, if fi(a) ≤ fi(b)
for all i ∈ {1, 2, . . . ,m} and fj(a) < fj(b) for at least one
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index j ∈ {1, 2, . . . ,m}, and all fi have to be minimized.
A solution a+ is called a non-dominated solution, if there
does not exist another solution that dominates it. The set of
non-dominated solutions is called the Pareto front. We say
that non-dominated solutions are Pareto optimal solutions
if all possible candidate solutions are considered during the
optimization, and there are no provably better non-dominated
solutions in the search space. In practice, we are almost
always faced with a situation in which a given method pro-
duces suboptimal solutions, i.e., the Pareto front contains
the best non-dominated solutions obtained during the exper-
iments conducted with the method. As it is not known ‘‘how
far’’ the obtained solutions are from the truly Pareto optimal
solutions, a common practice is to introduce a quality metric
capable of measuring the distance between two sets of solu-
tions obtainedwith twomulti-objective optimizationmethods
(see, for example, [122]) and compare them under this metric.
For example, NSGANetV1 [94] employs the hypervolume
performance metric, which calculates the dominated area
(hypervolume, in the general case) from the set of solutions
to a reference point which is usually an estimate of the nadir
point – a vector concatenating worst objective values of the
Pareto front.

A common approach to solve the multi-objective NAS
problem adopted by the NAS community is either (i) to
transform it into a single-objective one (using suitable con-
straints, prioritization, or aggregation techniques) and solve
it with a common single-objective method or (ii) to employ
a truly multi-objective approach (the so-called aposteriori
methods) [123].

In the constraints utilizing method, only one of the objec-
tive functions is optimized while the remaining ones are
expressed as constraints hi(a) ≤ ci. A penalty function λ is
then introduced to punish any violation of constraints ci, i.e.

min
a
f (a) ·

∏
i

λ(hi(a), ci). (12)

For example, in order to constrain the latency (hi),
Tan et al. [12] defined the penalty function as

λ(hi(a), ci) =
[
hi(a)
ci

]p
, (13)

where p is treated as a hyperparameter controlling the desired
tradeoff. However, this method does not guarantee that some
hard constrains are not violated.

The prioritization means that the most crucial objective is
optimized first. When a suitable solution is obtained, the sec-
ond most crucial objective is optimized but ensuring that the
first one is not worsened. This is repeated for all the objective
functions according to their priority. The prioritization is also
taken into account when multiple objectives are evaluated for
a candidate solution a. First, the easiest-to-quantify objective
is determined. If its value is not satisfactory, the remaining
objectives are not evaluated, and a is discarded. Otherwise,
the next objective is evaluated. For example, Smithson [103]
first evaluated the number of MAC operations as it is easy

to determine it, and if the candidate passes a certain limit,
then its accuracy (whose obtaining requires time-consuming
training) is assessed.

The aggregation methods introduce a suitable aggregation
function (such as the weighted sum, weighted exponential
sum, or weighted product) for the objective functions and
optimize the composition. In the case of the linear weighted
sum, the new objective function is

f A(a) =
m∑
i=1

vi · fi(a) (14)

where vi is the weight of the i-th objective and
∑
vi = 1.

This approach suffers from several problems. First, it is not
easy to find suitable values of vi. Second, the linear weighted
sum only works for problems with convex Pareto fronts, i.e.,
solutions on non-convex segments are unreachable. Third,
similar to the constrained optimization, the method has to
be executed several times with different weight settings to
approximate the Pareto optimal front.

Truly multi-objective optimization methods iteratively
build the Pareto front in the course of optimization by com-
paring candidate solutions using the non-dominance rela-
tion, promoting reasonable solutions, and trying to cover the
expected Pareto front. This approach has significantly been
developed within the evolutionary computation community.
One of the most popular methods is NSGA-II [124]. It is
based on sorting individuals in a population according to
the dominance relation into multiple fronts. The first front
contains all non-dominated solutions. Each subsequent front
is constructed by removing all the preceding fronts from the
population and finding a new Pareto front in the remain-
ing individuals. The solutions within the individual fronts
are then sorted according to the crowding distance metric.
This metric helps to preserve the diversity of the population
along the fronts. Best individuals then serve as parents for
the new population. NSGA-II thus always produces a set
of non-dominated solutions (i.e., a Pareto front) when it is
terminated.

B. SHORTENING THE EVALUATION TIME
This section deals with techniques developed to reduce the
evaluation time of candidate neural networks.

1) ACCURACY ESTIMATION
The quality of a candidate CNN architecture is typically
obtained by training the CNN using a training data set and
then measuring the final accuracy on the test set. Common
strategies introduced to reduce the training time are decreas-
ing the number of epochs and employing a proxy training
data set (e.g., in [105]). The learning curve can also be
extrapolated to estimate the performance of training. The
extrapolation is based either on the number of iterations
(or training time), or the size of the available data set
for training. MetaQNN [112] compares the performance of
the candidate CNN after the first training epoch with the
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performance of a random predictor to check if it is helpful
to decrease the learning rate and restart training. Large-scale
Evolution [93] enables the CNN obtained from a mutation to
inherit the parent’s weights whenever possible.

Although the authors of ProxylessNAS [11] argue that
architectures optimized on proxy tasks are not guaran-
teed to be optimal on the target task, many successful
NAS methods developed after ProxylessNAS used surro-
gate models. The accuracy is predicted using neural net-
works, classification trees, regression trees, or Gaussian
Process [6], [103], [125]–[127]. In general, surrogate models
replace expensive objectives with pre-trained models that
provide desired approximation.

2) LATENCY AND OTHER HARDWARE PARAMETERS
First multi-objective hardware-aware NAS methods have
considered the number of parameters, FLOPS, and MACs
as the additional objectives to optimize because they are not
expensive to quantify for each candidate CNN. Later, when
CNNs were adopted for hardware accelerators, and it was
necessary to consider real latency and area overhead that
are expensive to quantify exactly, various proxy measures
were proposed to reduce the computational effort. We will
deal with latency in the next paragraph (as most papers on
NAS do), but other parameters can be estimated similarly.
Latency can be estimated using:

• a surrogate model, e.g., [6], [126], [128]–[131];
• a suitable hardware simulator executing a candidate
CNN, e.g. [51], [100], [132]–[135];

• a formula or model derived after analyzing the search
space of possible CNN architectures, e.g., [14], [47],
[49], [101], [136]–[138];

• a LUT-based model [105], [139], [140].

In LUT-based models, latency (and other parameters of
interest) is stored to a LUT for each possible operation
(e.g., a neuron, a convolution layer) from the space of all
CNN architectures. These LUT values are either obtained by
measurement on real hardware or estimated according to the
data sheets for a given implementation technology. The total
latency is then estimated using LUT values for the opera-
tions on the longest path from the input to the output of the
CNN model.

C. NAS FOR PARTICULAR HARDWARE
An obvious approach to optimizing the CNN architecture
for given hardware is employing only hardware-friendly
hyperparameters and operations (suitable convolution types,
arithmetic operator implementations, quantization schemes,
or memory access mechanisms). For example, based on
benchmarking 32 different operators, Hurricane [131] uses
different subsets of operator choices for three types of
hardware platforms. This way, the search space is nar-
rowed towards CNN architectures suitable for a given
hardware platform.An essential feature of the hardware-aware
NAS methods is that they do not directly optimize the

configuration of the hardware platform, i.e., there is no
additional search space that can be explored to improve the
implementation further.

1) PROPOSED CLASSIFICATION
Table 7 surveys key properties of hardware-aware NASmeth-
ods and classify them according to several criteria. If a
method is not presented under any abbreviation in the source
paper, we identify it in the table according to the first author.
Some of the criteria are identical with respect to our classifi-
cation introduced for the single-objective methods in Table 6
(i.e., Search Space, Search Algorithm, SuperNet). It can be
seen that the newest methods frequently employ the concept
of supernet, allowing them to reduce their execution time.

The search algorithms optimize the design objectives that
are listed in the Objectives column, together with the accu-
racy, which is not mentioned as it is always involved. The
Estimation Method column tells us if at all and how particular
hardware parameters are estimated (the methods are abbrevi-
ated according to Section V-B). We observe that latency (Lat)
and Energy are often estimated rather thanmeasured. Accord-
ing to [11], [67], the number of parameters (weights) or
FLOPS is not a good proxy for latency for complex CNNs.
However, when smaller CNNs are developed for tiny MCUs,
the number of parameters or FLOPS are often used for this
purpose. The reason is that CNNs are executed on a processor
with limited options for parallel processing and, hence, the
correlation between the CNN complexity and execution time
is high [99], [141], [142]. If the accuracy (Acc) is estimated,
then a NN-based predictor (surrogate) is almost always uti-
lized for this purpose [6], [103], [125], [126]. However, for
example, ChamNet [127] utilizes a Gaussian Process-based
surrogate.

While the single-objective NASmethods have been almost
exclusively oriented to GPUs, the hardware-aware NAS
methods target on all major hardware platforms, including:

• GPU, e.g. [6], [140], [143];
• FPGA, e.g. [101], [144], [145];
• ASIC, e.g. [126], [134], [135], [146];
• TPU, e.g. [133], [147];
• MCU, e.g. [99], [141], [142], [148];
• DSP, e.g. [131], [149];
• Mobile phones, e.g. [11], [12], [33], [105].

Moreover, about one-third of the NAS methods were evalu-
ated on two or more platforms.

In order to provide basic information about the perfor-
mance, we again present only the best top-1 accuracy reported
in a particular paper for ImageNet (ImgNet) and CIFAR-10
(CF-10) and list other data sets used for evaluation. Com-
pared to the single-objective NAS methods, it is even
more challenging to present a fair quantitative evaluation.
Section VIII will provide a comparison for Pixel 1 phone
as the target platform. If accuracy is provided for ImageNet
(i.e., the ImgNet column is not empty), the NASmethod aims
at solving complex problems; otherwise, it is focused on less
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TABLE 7. Hardware-aware NAS methods.

challenging problems such as CIFAR-10, or even MNIST
only.

2) SELECTED METHODS
The NAS methods surveyed in Table 7 show series of inno-
vative approaches which, since the year 2016, have enabled
the improvement of state-of-the-art results continuously. The
improvements are in: (1) providing a better trade-off between
the accuracy and latency (or other hardware parameters)
on various hardware platforms and (2) reducing the design
time and resources needed to achieve innovative solutions.
Because of the space limitation, we briefly survey only

some of the hardware-aware NAS methods in the following
paragraphs.

The first genuinely multi-objective hardware-aware NAS
is DSE [103] in which a candidate DNN is optimized using an
adapted Metropolis-Hastings (M-H) algorithm. Its accuracy
is predicted by an MLP which reads the DNN’s hyperparam-
eters. The second objective is a normalized cost evaluating the
number of MAC operations and memory accesses carried out
during inference. TheMLP predictor is very accurate because
its mean error is only 0.35%.A limitation of themethod is that
DSE’s maximum accuracy on CIFAR-10 (86%) is very low
compared to current approaches.
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DNAS [81] is a framework based on a differentiable NAS
capable of selecting the most suitable number of bits for
FX operations conducted in each block of the CNN. DNAS
creates a supernet whose layers contain several parallel edges
representing convolution operators with quantized weights
and activations with different precisions. As all layers in one
block use the same precision, the search is conducted at the
block level. If the precision is 0, the block is skipped, which
changes the size of CNNs. It is assumed that the underlying
hardware supports this type of quantization.

MNASNet [12] uses a factorized hierarchical search space
that provides CNN architectures suitable for hardware accel-
erators. The layers are grouped into blocks based on their
input resolutions and filter sizes. The RL-based search is con-
strained by maximum latency, which is directly measured on
a mobile phone. However, the method requires 40 thousand
GPUhours to produce a CNN,which is not competitive today.

In FBNet [105], the NAS algorithm first trains a stochastic
supernet using SGD to optimize the architecture distribution.
Using the LUT-based approach, a differentiable loss func-
tion is created for latency. This innovation allows one to
use gradient-based optimization to solve the NAS problem
together with optimizing latency. State-of-the-art trade-offs
between the accuracy and latency were reported on ImageNet
for several mobile phones. A limitation is that FBNet searches
on a ‘‘proxy’’ dataset (i.e., a subset of the ImageNet dataset)
and the entire supernet must be maintained in memory during
the search.

ProxylessNAS [11] is another differentiable NAS in which
an over-parameterized network that contains all candidate
paths is trained. To guarantee its fidelity, no proxy such
as reduced training data sets or shorter training periods are
allowed. Specialized architecture parameters are introduced
to learn which paths of the net are redundant. These param-
eters effectively switch off redundant parts of the network.
To handle non-differentiable objectives such as latency dur-
ing learning, network latency is modeled as a continuous
function and optimized as regularization loss.

NSGANetV2 [6] extends the NSGANet [94]. Both meth-
ods work in the search space proposed by GeneticCNN [78]
but employ a truly multi-objective evolutionary algorithm
NSGA-II. Instead of gradient-based relaxations used in
FBNet and ProxylessNAS, it builds surrogate models to pre-
dict the accuracy of candidate CNNs. It also uses a supernet
trained with a progressive shrinking algorithm and weight
sharing to reduce the training time. One nine data sets, includ-
ing ImageNet, NSGANetV2 improved the state-of-the-art
results.

In order to effectively develop CNNs for different
accelerators with different latency constraints, OFA [7]
proposes to train a once-for-all (OFA) network that sup-
ports diverse architectural settings. Its training is expensive
(1 200 GPU hours on V100 GPUs) but is amortized.
As different sub-networks are interfering with each other,
the training process of the whole OFA network is ineffi-
cient. Hence, instead of directly optimizing the OFA from

scratch, it is proposed to first train the largest CNN with
maximum depth, width, and kernel size; and then pro-
gressively fine-tune the OFA network to support smaller
sub-networks that share weights with the larger ones.
Specialized sub-networks for diverse hardware platforms
(from the cloud to the edge) and various constraints were
derived from OFA using a pre-trained predictor in constant
time.

APQ performs a joint search for architecture, pruning, and
quantization policy using an evolutionary algorithm [126]
starting with the MobileNetV2 network. The accuracy is
predicted using a quantization-aware predictor implemented
as a three-layer feed-forward NN. The input to the predictor is
the encoding of the network architecture, the pruning strategy,
and the quantization policy. The predictor is first trained
without quantization, then transfers its weights to train the
quantization-aware predictor, which largely reduces the data
collection time. The latency and energy of each layer are
pre-computed and stored in LUTs.

HTAS [158] first expands the global search space. The
reason is that more efficient architectures can be wider than
the original network structure in some layers, and it would
be impossible to find them in the limited search space. Then,
based on the latency measurements over the channel num-
bers, the hardware-friendly channel choices are selected to
construct the hardware-aware search space. A differentiable
NASwith the latency regularizer is then employed to seek the
most suitable CNN for the target CPU or GPU, including the
optimal selection of its hyperparameters.

MicroNets [141] are devoted to resource-constrained
microcontrollers. They exploit a specialized software called
TinyML, allowing ML tasks to be implemented on IoT
devices. MicroNets are optimized for MCU inference perfor-
mance using differentiable NAS with constraints on latency
and memory (both SRAM and eFlash sizes are considered).
The authors observed that that the number of operations is
a viable proxy for both latency and energy. For inference,
MCUs predominantly use 8-bit FX operations. However,
MicroNets support sub-byte quantization on 4 bits. A similar
approach, but targeting even smaller microcontrollers, was
presented in µNAS [142].

VI. NAS WITH HARDWARE CO-DESIGN
When the hardware-aware NAS is connected with a hard-
ware co-design algorithm, the CNN accelerator can be
co-optimized with the CNN architecture. The authors of [13]
observed that
‘‘the hardware-aware NAS has a much narrower search
space than the proposed co-exploration approach. Basically,
hardware-aware NAS will prune the architectures with high
accuracy but fail to meet hardware specifications on fixed
hardware design. However, by opening the hardware design
space, it is possible to find a tailor-made hardware design
for the pruned architectures to make them meet the hard-
ware specifications. Therefore, compared with the HW-aware
NAS, the co-exploration approach enlarges the search space.
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TABLE 8. NAS methods with hardware co-design.

As a result, it can make better trade-offs between accuracy
and hardware efficiency.’’

Table 8 surveys major NAS methods utilizing hardware
co-design. In addition to the columns used in Table 6 and 7,
we added some new columns that characterize these methods.
Their meaning will be defined in the next paragraphs.

Hardware platforms can be configured in multiple dimen-
sions, including the PE array size,MAC circuit configuration,
dataflow organization, tiling strategy, memory subsystem
size and organization, and preferences for high-level syn-
thesis software. In addition to the architecture search space
and parameter search space (weights), there is an additional
search space, called the hardware search space, containing
all possible hardware configurations. The Accelerator Co-
design: Search Space column shows the major hardware
parameters optimized by a given NAS method.

The space of hardware configurations can be searched
together with the space of DNN architectures using the same
search algorithm, such as in [14], [48], [49], [129], [130],
[139], [170]; see also ‘in NAS’ in the Accelerator Co-design:
Search Alg. column of Table 8. However, another option for
optimizing the hardware configurations is to use an indepen-
dent search algorithm such as dynamic programming (DP)
in [47], EA in [8], [51], gradient search in [15], or integer
linear programming (ILP) in [73] as seen in the Accelerator
Co-design: Search Alg. column of Table 8. TheQuant column
indicates that the method is also searching for a suitable
quantization scheme.

In the Multi-objective: strategy column, the ‘co-search’
means that there are two independent search algorithms, i.e.,
a co-search is conducted; one search algorithm operates in
the network architecture space and the other in the hardware
search space. The Multi-objective strategy is based either on
a Pareto front construction method (‘Pareto’), aggregation
method (‘Agg’), or applying some constraints (‘Constr’).

Compared to previous tables, new objectives are defined in
theObjectives column: Energy-Delay Product (EDP), Frame-
Per-Second (FPS), and Energy-Delay-Area product (EDA).
The meaning of Data set column is the same as in Table 7.

A. CO-SEARCH ORCHESTRATION
A straightforward approach to organizing the co-search is
to generate a CNN-accelerator pair, which is evaluated by
training the network to obtain its accuracy and measuring the
hardware parameters (Fig. 12). Based on this evaluation, the
next candidate pairs are generated until the desired solution
is not obtained. However, this general approach leads to
a time-consuming search process due to the prohibitively
huge joint space composed of the coupled yet different net-
work and accelerator spaces with extremely sparse optima.
To reduce the design time, a supernet is often constructed
(e.g., in [129], [130]) before starting the co-search and then
sampled to quickly obtain a candidate CNN and its accuracy.

FIGURE 12. NAS and hardware co-design utilizing a single search
algorithm operating in the architecture space and hardware
configuration space.

In another co-search strategy used by, e.g., in [47], [51], the
hardware optimization algorithm receives a CNN as the input
and optimizes the hardware accelerator concerning desired
objectives (Fig. 13). Suppose the accelerator optimizer pro-
duces a valid hardware configuration (i.e., all constraints are
satisfied). In that case, the original CNN can undergo full
training, and its accuracy, together with the hardware cost,
is sent back to the NAS algorithm to generate another can-
didate CNN. Otherwise, the original CNN is discarded and a
new one is generated. This strategy exploits the fact that the
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FIGURE 13. NAS and hardware co-design utilizing two search algorithms.
A candidate CNN is fully trained only if the hardware co-search algorithm
is able to find an accelerator configuration satisfying all constraints.

NAS performing network training is more computationally
expensive than hardware synthesis and optimization.

Following the idea of differentiable NAS in DARTS [108]
and hardware-aware differentiable NAS in FBNet [105]
and ProxylessNAS [11], differentiable network-accelerator
co-search framework was proposed in EDD [48], and later
in DNA [15]. Let us use DNA to explain the method.

DNA enables co-searching for the CNN architecture
together with the accelerators’ configuration (e.g., the
PE array size, the local and global buffer sizes, dataflow)
and the mapping method (e.g., loop tiling strategy and
loop size/order). DNA consists of two search algorithms:
(1) the Differentiable Accelerator Search (DAS) in a generic
accelerator design space, and (2) the Differentiable Network
Search (DNS) based on FBNet [105]. In each iteration, the
global co-search algorithm samples M networks from the
current network distribution NET (α) and obtains the optimal
accelerator for each of them using DAS. In order to con-
tinue the search in the CNN architecture space by DNS, the
hardware cost loss is needed. It is obtained as an average
hardware cost for each operator on theM optimized accelera-
tors generated from the previous step. The optimization tasks
performed by DNA can be formalized according to [15] as
follows:

min
α

LDtst (ω
∗,NET (α))+ λLhw(NET (α),HW (γ ∗))

s.t. ω∗ = argmin
ω

LDtrn (ω,NET (α)),

s.t. γ ∗ = argmin
γ

Lhw(NET (α),HW (γ )), (15)

where ω, α, and γ are the supernet weights, DNN architec-
ture parameters, and the accelerator parameters, respectively;
NET (α) and HW (γ ) denote the network and the accelerator
space parameterized by α and γ , respectively. Lhw is the
hardware-cost loss determined by both the network and its
accelerator. The accelerator is characterized by its parame-
ters γ S (s = 1, . . . , S), which is a normalized vector rep-
resenting the s-th accelerator parameter with each element

of γ S defining the probability of the corresponding choice
of its represented accelerator parameter.

B. SELECTED METHODS
In order to demonstrate how NAS and hardware co-search
can operate together, we briefly present the most interesting
methods of this category.

Lu et al. [47] introduce a joint exploration of the space of
neural architectures, FPGA implementations, and layer-wise
quantization. The RL controller samples parameters of a can-
didate CNN architecture and its possible quantization. For the
sampled network, the hardware builder searches the hardware
space to find a suitable hardware model. Each candidate
hardware model is validated against the specification (latency
constraint) during the search, and the result is sent back to
the controller. If there is a valid FPGA model, the sampled
quantized CNN is trained, and its accuracy also serves as
feedback to the controller. The hardware search space is
determined by tiling parameters and partitioning the layers
of CNN into clusters of the tile-based FPGA accelerator that
are sought by a dynamic programming method (minimizing
the number of LUTs and latency).

QNAS [51] focuses on optimizing the parameters of a
mixed-precision systolic-array-like architecture (the array
size, buffer input/weight/output size) while searching the
quantized neural architecture. It includes an EA-based
hardware architecture search and a one-shot supernet-based
quantized neural architecture search. First, a suite of neural
architectures is sampled as a benchmark to find the hardware
architecture that achieves the best performance on the bench-
mark. The hardware architecture is fixed, and the quantized
neural architecture search (QNAS) is then performed to deter-
mine the neural architecture and quantization policy.

In YOSO [130], each candidate solution in the search space
concatenates the DNN architecture and the ASIC acceler-
ator configuration. For experiments with CIFAR-10, there
are 40 hyperparameters for CNN and four accelerator param-
eters that the RL controller generates. Hardware parameters
are predicted using the Gaussian Process model to eliminate
an ordinary time-consuming simulation.

In AutoDNN [14], each candidate CNN consists of sev-
eral hardware-aware parameterizable cells called Bundles.
By means of these cells, specialized software can map any
candidate CNN generated by NAS to an FPGA accelerator
based on a fine-grained tile-based pipeline architecture whose
components are pre-designed and stored in a component
library. Latency and resources are estimated and used back in
theNAS algorithm. The application is an object detection task
targeting a PYNQ-Z1 embedded FPGA. Two design prob-
lems are solved simultaneously: the bottom-up CNN model
exploration, and the top-down FPGA accelerator generation.

In Codesign-NAS [139], RL controller selects a CNN
architecture from a CNN search space and a hardware archi-
tecture from an accelerator design space. Both are sent to
the evaluator that implements the CNN on the proposed
accelerator to find accuracy and efficiency metrics, such as
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latency, area, and power (based on pre-computed models).
The authors enumerated 4 billion model-accelerator pairs to
study the Pareto-front in a representative co-design search
space. They proposed three different search strategies to nav-
igate the co-design search space under one or two constraints.
The CNN search space is based on NASBench [174] and the
accelerator design space utilizes CHaiDNN — a library for
the acceleration of CNNs on System-on chip FPGAs.

EDD [48] is the first co-exploration approach utiliz-
ing differentiable problem formulation inspired by DARTS.
DNN hyperparameters and parameters of a simplified hard-
ware platform (i.e., the parallel and tiling factor of an
FPGA accelerator template) are integrated into one solu-
tion space so that gradient descent algorithm can be applied
to find accurate and hardware friendly CNN implementa-
tions. Parallel factors describe parallelism, indicating how
many multiplications can be done concurrently. A limita-
tion of this method is a simplified evaluation of hardware
parameters.

Another framework based on differentiable neural archi-
tecture search, DANCE [170], was developed with Eyeriss
as the backbone hardware platform. An RL controller gen-
erates parameters describing the CNN architecture (based on
ProxylessNAS) as well as the hardware parameters such as
the number of PEs, buffer size, and dataflow pattern. At the
heart of DANCE is the modeling of the accelerator evaluation
software using a neural network (the evaluator) that can be
used as a differentiable loss function. DANCE thus introduces
a novel differentiable evaluator, which takes the architecture
parameters from the RL controller, searches for the optimal
hardware accelerator design, and evaluates its cost metrics.
The evaluator is a pre-trained neural network frozen during
search and used only to connect the architecture to the hard-
ware cost metrics.

HotNAS [49] works in two steps: (1) it uses Monte Carlo
test to select several backbone architectures from a model
ZOO of pre-trained models (the so-called hot models) that
meet a latency constraint; (2) an RNN-based reinforcement
learning optimizer tunes hyperparameters of neural architec-
ture and hardware design simultaneously. After setting the
parameters of the FPGA accelerator, latency can be esti-
mated using a simple latency model. HotNAS combines three
compression techniques (pattern pruning, channel pruning,
and quantization) with the neural architecture search (filter
expansion) and hardware optimization.

Liang et al. [136] deals with FPGA accelerators of
CNNs in which irregular connections in the sparse con-
volutional layers have to effectively be handled. To this
end, a weight-oriented dataflow is proposed that exploits
element-matrix multiplication as the critical operation. The
corresponding accelerator features a tile lookup table and a
channel multiplexer. To connect this accelerator with NAS,
an analytical model is developed to estimate the latency
and resources in the FPGA. NAS searches hardware design
parameters (parallelization and buffering factors) and possi-
ble CNNmodels under resource constraints. The search space

is developed using MobileNet’s inverted residual block as the
basic building block of the supernet.

Focusing on Google’s EdgeTPU, NAHAS [129] performs
a joint search in the space of CNN architectures and hard-
ware accelerator configurations, where hardware resources
and latency are constraints. The architecture search space is
based on a new fused inverted bottleneck layer with tunable
parameters. The accelerator search space is defined by seven
parameters (e.g., the PE array size, the number of SIMD
units, register file capacity). An in-house simulator is used
to estimate latency and other hardware-related parameters.

NAAS [8] holistically searches the neural network archi-
tecture, accelerator architecture, and unlike other methods
(e.g., [13], [73]), compiler mapping. The accelerator search
space is defined by the number of processing elements, local
memory size, global buffer size, memory bandwidth, and con-
nectivity parameters. NAAS employs EA to optimize these
parameters as well as the compiler mapping (the execution
order and the tiling size). It introduces a special encoding,
called importance-based encoding, for the accelerator space
and the compiler mapping strategies to avoid enumerating all
possible situations and representing them by indexes. First,
NAAS generates a pool of accelerator candidates. For each
accelerator candidate, a network architecture is sampled from
a pre-trained OFA network [7] that satisfies the pre-defined
accuracy requirement. Since each subnet of OFA network is
well trained, the accuracy evaluation is fast. Finally, the com-
piler mapping strategy is sought for the network candidate
on the corresponding accelerator candidate. A comparison of
CNNs generated by NAAS and QNAS for an ASIC acceler-
ator will be presented in Section VIII.

VII. OTHER APPROACHES IN NAS AND HARDWARE
CO-OPTIMIZATION
This section is devoted to NAS working with specialized
hardware, which includes multiple accelerators and uncon-
ventional accelerators. Relevant NAS methods are given as a
part of Table 8.

A. MULTIPLE NETWORKS AND MULTIPLE ACCELERATORS
In this category, three application scenarios are considered:
(i) a single CNN is executed on several pipelined accelerators
to maximize the performance, (ii) a single CNN is executed
on one accelerator, but the CNN is optimized for a group
of accelerators to ensure good portability, and (iii) m CNNs
are optimized for m tasks executed on k sub-accelerators
available on a hybrid accelerator.

(i) Since the timing performance on a single FPGA is lim-
ited by its constrained resources, multiple FPGAs are often
organized in a pipelined fashion to provide high throughput
for image and video processing applications. This problem
was addressed by FNAS [172], and later HWSW-CoExp [13]
which supports multiple FPGAs to implement one CNN. The
design problem is formulated as follows. Given a dataset,
a pool of FPGAs, and a throughput specification, the objec-
tive of to find a CNN (parameters of all layers, the partition
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of the layer set and assignment of pipelined stages to the set
of FPGAs) such that the accuracy of the resulting network is
maximized, the pipeline FPGA system can meet the required
throughput, and the average utilization of all FPGAs is maxi-
mized. The co-exploration algorithm iteratively performs two
actions: fast and slow exploration. In the fast exploration,
a CNN architecture is predicted for which the design space
is explored to generate a pipelined FPGA system meeting
the throughput requirement. There is the same number of
RNN controllers as the number of pipeline stages. This level
explores the hardware design space without training child
networks. In the slow exploration, the child network obtained
from the previous step is trained. After that, a reward based
on both the yielded accuracy and pipeline efficiency is gen-
erated, which is used to update the RNN controller.

(ii) Multi-HW [128] proposes another scenario –
multi-hardware models, where a single CNN is optimized
for multiple hardware but executed on one of them. The
challenge is that hardware platforms differ in many aspects,
including their data flows, supported operations, and laten-
cies. A multi-hardware search space is defined as a set of
CNN architectures that belongs to the intersection of sup-
ported architectures of hardware platforms. The search space
is constructed with modified MobileNetV3 architecture as
the template, and the search method is based on TuNAS [80].
To accelerate the evaluation step, latency is obtained from
pre-trained linear cost models for target hardware. The reward
function for the RL controller considers the worst and aver-
age latency across all the target hardware platforms. It was
reported that multi-hardware models could provide state-of-
the-art performance across multiple hardware in both average
and worse case scenarios.

(iii) In the context of multitask workflow, which is typical
for some ASIC accelerators on edge, the goal is to optimizem
CNNs, each of them executing a different task, using k sub-
accelerators. These sub-accelerators differ in the dataflow
style, and they are connected using NoC. In ASICNAS [73],
the RL controller simultaneously generates hyperparameters
of CNNs (m segments) together with the parameters of hard-
ware resource allocation for different accelerator templates
(k segments). CNNs are specified by CNN type and hyper-
parameters, while the accelerators are specified by the accel-
erator type, the number of PEs, and bandwidth. The goal is
to map network layers to a pool of available sub-accelerators
and determine their execution orders on each sub-accelerator.
Mapping and scheduling are solved by ILP combined with
a heuristic approach. Circuit parameters are estimated using
MAESTRO and serve as feedback to the RL controller.

B. UNCONVENTIONAL HARDWARE
Emerging technologies are investigated to find solutions that
can improve the critical parameters of computer systems,
in particular, performance, storage capacity, and energy effi-
ciency. Some parts of CNN accelerators were implemented
using such technologies. Recently, these accelerators were
connected with NAS algorithms to find best-performing

CNN-accelerator pairs. A typical feature of these methods is
that they employ very specific simulators of the underlying
hardware.

For example, PABO [173] uses NAS connected with
a memristive crossbar-based CNN accelerator, where the
CNN is mapped across the on-chip crossbar storage spa-
tially. Note that the memristive devices have a high stor-
age density, but the write cost is relatively high. PABO
was later extended, and its efficiency was demonstrated on
more benchmarks in [175]. NAS4RRAM is a NAS method
for optimizing CNNs and Resistive Random Access Mem-
ory (RRAM)-based accelerators [132]. NACIM [50] jointly
explores device, circuit, and architecture design space and
also takes device variation into account to find the most
robust neural architectures, coupled with the most efficient
hardware design for an in-memory computing ASIC. The
joint search space involves decision parameters determining
the neural architecture, quantization, data flow, circuit design
strategy, and low-level device selection (ReRAM, FeFET,
STTMRAM).

VIII. EVALUATION OF NAS METHODS
NAS methods are evaluated according to the quality of pro-
duced DNNs and the resources needed to generate them.
Note that the NAS methods are multi-objective and have
to be compared under all relevant objectives. Hence, fair
benchmarking of an extensive collection of NAS methods
(particularly the hardware-aware NAS methods) remains an
open research problem. The difficulty is that toomany aspects
have to be considered during the comparison, and their deep
cross-analysis is expensive to perform. The most relevant
factors that have to be considered are:

• stochastic nature of search algorithms whose perfor-
mance depends on many parameters and algorithmic
settings;

• (multiple) objectives to be optimized;
• constraints handling;
• quantization options in DNNs;
• the computing time devoted to the search, training, and
post-optimization;

• available computational resources;
• architecture and parameters of target hardware in which
the resulting CNNs have to be deployed;

• the quality of estimation methods used for accuracy,
latency, energy, and other objectives;

• hardware synthesis and optimization algorithms;
• re-using of pre-designed networks and other knowledge;
• implementation aspects involving the quality of software
and hardware libraries used, compilers, and paralleliza-
tion strategies.

Using the data available in the literature, we can only
compare those NAS methods whose evaluation was con-
ducted under comparable conditions and for the same tar-
get hardware. Fig. 14 compares CNNs obtained using
NAS methods that consider the so-called mobile setting
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FIGURE 14. The top-1 accuracy, the number of MACs, and latency on
Pixel 1 phone for CNNs obtained using selected NAS methods.
An unknown latency is depicted using a grey color. The circle’s
area is proportional to the total design time (on a scale from
150 to 40 000 GPU hours).

(up to 600·106 MACs per CNN inference). The criteria are
the top-1 accuracy on ImageNet, the number of MACs,
latency on Pixel 1 phone, and the total design time of the
NAS method. As these data are available only for a few
methods (OFA [7], ProxylessNAS [11], MNASNet [12],
MobileNetV2 [32], MobileNetV3 [33], AutoSlim [176], and
NetAdaptV2 [166]), we also included NSGANetV2 [6],
DARTS [108], SPOS [163], FBNet [105], and NASNet [82]
for which the latency on Pixel1 is not reported, but the
design time is measured using the same methodology. Note
that NASNet and DARTS do not optimize for latency. The
total design time (in GPU hours) covers the search, training,
and supernet training (for one deployment). It rangers from
150 (MobileNetV2) to 48 000 (NASNet) GPU hours. For
other deployments (e.g., for another hardware), the design
cost can partly be amortized. With a latency of 51 ms,
the CNN created by NetAdaptV2 is the fastest network on
Pixel 1 phone; its top-1 accuracy is high (77%), and the
design time is less than 400 GPU hours. Under the mobile
setting, NAS methods such as OFA and NSGANetV2 pro-
vide better trade-offs than human-crafted CNNs reported in
Table 3. Fig. 14 also illustrates that if more resources are
available, these methods can provide CNNs showing higher
accuracy.

Another example deals with NAS utilizing hardware
co-design. Fig. 15 shows the impact of using various NAS
approaches in optimizing the accuracy and EDP of Ima-
geNet classifiers based on ResNet-50 and implemented
with resources similar to Eyeriss. The original implemen-
tation (black point) of ResNet-50 (no NAS employed) is
improved by QNAS [51] (green point), which searches the

FIGURE 15. Normalized EDP and top-1 accuracy (on ImageNet) for CNNs
running on an ASIC that were obtained by NAS methods (according
to [8]): NAAS co-optimizing HW, compiler mapping and NN architecture
(blue); NAAS co-optimizing HW and compiler mapping (orange); QNAS
(green); No NAS conducted (black).

network architecture and the accelerator sizing. Additional
improvement is provided by NAAS performing the hard-
ware and compiler mapping co-search (orange point). The
best trade-offs are reported for NAAS utilizing the hard-
ware, compiler mapping, and CNN architecture co-search
(blue points). These results (adopted from [8]) demon-
strate that exploiting more design spaces can lead to better
CNN implementations.

In order to introduce a setup enabling designers to compare
NAS methods and obtain reproducible results, almost half
a million fully-trained CNNs sampled from a well defined
compact search space were included in public data sets such
as NAS-Bench-101 [174] and NAS-Bench-201 [177]. They
can be used to compare new search algorithms intended for
NAS methods that utilize the same search space. Instead of
training each candidate CNN, the accuracy can be obtained
by querying the pre-computed data set.

Considering the hardware-aware NAS methods, HW-
NAS-Bench was introduced in 2021 [121]. In addition to
the accuracy, it contains estimated hardware performance
(e.g., energy cost and latency) of all the networks in the
search spaces of both NAS-Bench-201 and FBNet, for
six hardware platforms, including commercial edge devices
FPGAs, and ASICs. For example, the HW-NAS-Bench pro-
vides the test accuracy vs. hardware cost of all the archi-
tectures in NAS-Bench-201 considering the ImageNet16-120
data set. It thus enabled the identification of the optimal
CNN architecture-hardware pairs under a clearly defined
setup. We expect other detailed studies to appear shortly,
dealing with large-scale comparisons of multi-objective
NAS methods. They should reveal the most suitable search
algorithms and provide hints for building even better NAS
methods. They should also focus on analyzing the rela-
tion between the quality or resulting CNNs/accelerators and
the design time (or CO2 emissions) needed for obtaining
them [76].
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IX. CONCLUDING REMARKS
We surveyed the key elements of recent NAS methods that –
to various extents – consider hardware implementation of
the resulting CNN. We classified these NAS methods into
three major classes: single-objective NAS (no hardware is
considered), hardware-aware NAS, and NAS with hard-
ware co-optimization. Within each class we further catego-
rized each method according several criteria as shown in
Table 6, 7, and 8. We also provided additional details about
selected methods that are essential in each class.

We showed that NASmethods improve design productivity
and enable the designer to automatically obtain competitive
CNNs for various hardware platforms and data sets. The
original NAS approach [3] was significantly accelerated by
using pre-trained supernets, adopting surrogate models, and
incorporating the differentiable architecture search. Intro-
ducing the hardware search space has led to more efficient
implementations of CNNs on particular hardware platforms.
However, several search algorithms working in the space of
weights, neural architectures, and hardware configurations
have to be coordinated, making the entire method compli-
cated. We proposed the first classification of NAS methods
utilizing the hardware co-design.

As (hardware-aware) NAS methods are multi-objective,
their fair assessment consists of evaluating multiple parame-
ters of resulting implementations of NNs and the design cost
(time). It thus leads to an expensive construction and compar-
ison of multidimensional Pareto fronts (one Pareto front for
one NAS method), which is often hard to perform because
of incomplete information about some NAS methods.
To support a fair benchmarking methodology and accelerate
the development of new NAS methods, the open-source data
sets containing many pre-trained and evaluated CNNs from a
well-defined search space were introduced in the literature.

We can conclude that NAS methods have significantly
been improved (in terms of search performance and the qual-
ity of resulting DNNs) since their first utilization by the
ML community in 2016. Because hardware acceleration of
DNNs is crucial for many application domains and DNNs are
frequently applied in entirely new contexts, the importance
of fully automated hardware-aware NAS as well as the NAS
utilizing hardware co-design will grow in the following years.
A barrier potentially slowing down their further expansion is
the ever-increasing pressure to reduce the enormous energy
requirements (and CO2 emissions) of ML methods [76].

We pointed out in Section VII-B that DNNs are now imple-
mented using emerging technologies. In the future, they can
be deployed on more exotic platforms (such as nanoparticle
networks configured using evolutionary algorithms [178])
that could provide richer and deeper interaction of machine
learning and configurable physical materio and lead to more
compact and energy-efficient solutions.
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