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ABSTRACT Previous camera calibration methods often use a checkerboard to capture images and estimate
the camera parameters from the correspondences between images and the checkerboard. The corner points in
the checkerboard images are used as useful features for correspondence matching. Therefore, it is essential
to precisely find the corner points in the checkerboard images. In many previous works, the corner points
are extracted assuming that the checkerboard images are not distorted by its lens. Instead, image blurring
and Gaussian noise on the images are usually considered, but other cases are not dealt with. However, the
captured checkerboard images are often corrupted by lens distortions and compression artifacts, which leads
to performance degradation of corner point extraction. Moreover, the corner points are extracted individually
in the previous methods without considering their geometric relations. To better handle the corner point
extraction problem under lens distortions, in our corner point extraction optimization, the distorted locations
of the pixels on checkerboard images are corrected with the camera parameters, and the structural constraints
for checkerboard image grids are then applied under the line-to-line mapping. Also, to robustly find the
blurred edges between corner points due to JPEG compression, an edge surface model is newly proposed
that models the transitions with over- and under-shoots around the blurred edges. Extensive experimental
results show that our method significantly outperforms the state-of-the-art method with average 88.3% and
54.3% reduction in RMSE for corner point reprojection and camera parameter estimation, respectively under
compression and lens distortions for synthetic and real data.

INDEX TERMS Corner point extraction, structural information, camera calibration, lens distortion, com-
pression distortion.

I. INTRODUCTION
Calibration is the task of estimating the projection parame-
ters of a camera. Accurate camera parameter estimation is
essential in the fields where 3D information is estimated
from images, such as 3D reconstruction, virtual reality, and
autonomous driving. For accurate results in the fields, precise
camera calibration is required. So, many studies have been
made for the camera calibration [1]–[4].

The camera calibration techniques generally relate known
target information to the camera parameters to find 2D-to-3D
mapping which is a common issue in the fields of computer
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vision. Two-dimensional boards are conventional tools for
the camera calibration. The 2D boards are used not only to
calibrate optical cameras but also to calibrate Lidar cam-
eras which obtain depth information [5], [6]. The pattern on
the boards usually consists only of black and white colors.
Feature points are easily extracted on boundaries of black
and white areas from the board images. By matching the
feature points on the images to the board in the real world,
the camera parameters are estimated [9]. There are vari-
ous patterns for the camera calibration such as a circular
pattern, a checkerboard pattern, a deltille [24] pattern and
a time-coded pattern [12]. Among them, the checkerboard
pattern is the most widely used. The corner points of the
checkerboard images are usually extracted for the feature
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points. There are various methods of extracting the corner
points for the camera calibration [19]–[32].

For an accurate camera calibration result, lens distortion of
the camera should be taken into account. The lens distortion
is one of the optical aberrations by the camera lens [14], [15].
As a result of this distortion phenomenon, the projection by
the camera is not a line-to-line mapping, but a line-to-curve
mapping. The complex non-linear mapping does not occur in
a distortion-free camera. There are difficulties in producing a
completely distortion-free lens. To reduce the lens distortion,
a compound lens may be designed or an aspherical lens
(whose surface profile is not a portion of a sphere) [16] are
required. Placing those lenses inside a camera often requires
a large space to increase the volume of the camera. There-
fore, the lens distortion is inevitable for small-sized cameras
without such compound lenses or aspherical lenses. Also,
since the degree of distortion depends on the focal length
changes [17], it is very difficult to design a distortion-free
lens for a wide range of changes in focal length. Therefore,
most cameras often suffer from the lens distortion.

Despite many efforts, the studies on finding the corner
points have mostly been made for images without consid-
ering compression distortion. JPEG [11] is widely used for
digital cameras, which relies on 8×8 Discrete Cosine Trans-
form (DCT) and quantization on the DCT coefficients. The
quantization causes distortion which leads to over- and under-
shoot (called Gibbs phenomenon) along the edges of the
checkerboard image. This makes it difficult to find the corner
points of the checkerboard image precisely, thus leading to
unreliable camera calibration.

In this paper, we propose a novel and elaborate corner point
extractionmethod that incorporates the structural information
under both lens distortion and compression artifacts, which
leads to outperforming the previous corner point extraction
methods with significant margins.

II. RELATED WORK
Harris corner detector method [19] is the most widely known
method where the gradient values of the pixels are used
to determine whether the pixels belong to edges, corners,
or flat areas. However, it did not provide subpixel-level coor-
dinates of the corner points. So, some methods extended the
Harris corner detector method to estimate the subpixel-level
corner points [20], [21]. Harris detector finds the corner
points integer-pixel levels where the patches with the corner
points tend to have large eigenvalues of Hessian matrices
of their pixels. Han et al. [21] extended Harris detector to
find sub-pixel level corner points by fitting Gaussian func-
tions centered on the estimated integer-level corner points.
Sánchez et al. [20] used a secondary polynomial function
instead of Gaussian functions to find sub-pixel level corner
points.

Geiger’s method [22] [23] has been widely adopted in
corner point extraction tools such as those in OpenCVTM [7]
and MATLABTM [8]. By using the fact that the difference
vectors of two pixels on the edges are perpendicular to the

gradients of the edges, the corner points by Geiger’s method
are determined as the points that minimize the square sum
of the inner products of the difference vectors between their
neighbor pixels and corner point candidates and the gradients
at the neighbor pixels. Although Geiger’s method is simple
and fast for corner point extraction, the gradient values are
sensitive to noise.

Saddle points in checkerboard images can be extracted as
the corner points [24], [31], [32]. For the saddle points, the
pixels near the corner points are fitted to a polynomial func-
tion. The polynomial surface fitting is suitable only for very
small areas near the corner points, not in the region where the
brightness values are steady. That is, the polynomial fitting
error becomes dramatically larger as the size of the fitting
surface area increases. However, with smaller fitting surface
areas, the surface fitting becomes sensitive to the noise of the
pixels in the areas.

Zhao et al. [26] utilized the property that the distributions
of brightness values around the corner points are symmetri-
cal. In Zhao’s method, the weights of pixels are set based on
how much symmetrical the distribution of their neighboring
pixels is. The weighted averages of the pixels are the corner
points in Zhao’s method. The method works well when the
distributions of the weights are of very sharp shapes centered
at the corner points, so the weights of pixels near the corner
points often have larger values, which makes it vulnerable to
blurring near the corner points.

Duda and Frese [28] utilized the property of lines through
the corner points. In the method, the line segments of an
equal length centered at a pixel location in a checkerboard
image are set, and the maximum and the minimum among
the sums of pixel values along the line segments are found.
The difference between the two extreme values is maximized
when the pixel passed by the line segments is a corner point
because the line segment through the only bright areas and
the line segment through the only dark areas meet at the
corner point. A difference map of the two extreme values
at neighboring pixel locations is near the corner point. The
local maximum of the map is calculated as a corner point in
subpixel-level via Gaussian peak fitting.When generating the
difference map near the corner point, the pixels in the flat
area away from the corner point are mostly used, rather than
those near the corner point. So, the accuracy of the result may
be degraded by using the pixels away from the corner point.
It can also be a disadvantage that the map is composed of the
maximum difference values of two extreme values which are
sensitive to disturbances in pixel values.

Yang et al. [25] fitted the edges of the checkerboard
images to a surface model and extracted the intersections of
the edge surfaces as the corner points. The edge fitting was
performed under the assumption that the edges were straight.
The performance of the method might be degraded when the
edges are curved by lens distortions.

If the corner points are obtained using structural informa-
tion from the edges, they can be more robustly estimated.
There are some methods to utilize the edges for the camera
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calibration. Liu et al. [30] proposed a corner point extraction
algorithm that utilized the curvature of curved edges by
extending Geiger’s method. In Chen et al.’s method [27],
the curved edges in checkerboard images distorted by the
lens are extracted, and the resulting corner points are deter-
mined as the intersection points of the extracted curved edges.
Zhou et al. [29] proposed a method that extracted feature
points on the edges, rather than the corner points, for camera
calibration. In Zhou’s method, the feature points on the edges
are extracted from local regions near the edges. However, the
methods [27], [30], and [29] handle the edges independently
and do not consider the structural information of the grid
formed by the edges, especially for corner point extraction.

The previous methods have extracted the corner points on
the checkerboard images individually or have utilized the
relations between the corner points and the edges partially.
However, for better camera calibration, the corner points in
the checkerboard images should be extractedmore accurately.
So, the structural property of the corner points should be
considered. Unlike the previous methods, we consider the
structural information such as the grid structure formed by
the edges to robustly estimate corner points even under the
lens distortions as well as compress distortions.

III. SUMMARY
In this paper, our contributions for corner point extraction are
summarized as follows:

• We firstly propose a corner point extraction method
that utilizes the structural information with the geomet-
ric property of the edges formed by the structures of
the projected grids in the checkerboard images. The
corner points on the checkerboard images should be
intersection points of the edges, and the edges should
meet at vanishing points. The cross-ratios between each
checkerboard image and the checkerboard should be
preserved after camera projection [10]. When extracting
the corner points and the edges in the checkerboard
images, these conditions must be satisfied. So, all the
corner points and edges in a single checkerboard image
should be expressed by parameters of the camera projec-
tion, rather than being treated independently.

• For corner point extraction, the lens distortions are taken
into account in conjunction with the structural con-
straints. Camera projection under the lens distortions
results in a line-to-curve mapping, which causes the cor-
ner point extraction to be more complicated. With esti-
mated parameters for the lens distortions, we correct the
distorted checkerboard images and apply the structural
constraints under the line-to-line mapping. We estimate
the camera projection parameters which determine the
edges and the corner points, and the distortion parame-
ters to make the line-to-line mapping work well.

• We propose a novel edge surface model to robustly
find the corner points of the edges corrupted by
JPEG compression. Since, by the JPEG compression,

high-frequency components of the checkerboard images
are discarded due to quantization of their DCT coeffi-
cients, the corner points and the edges of the checker-
board images are damaged due to the blurriness
(transition) with over/under-shoot along the edges,
calledGibbs phenomenon. Our edge surfacemodel takes
into account Gibbs phenomenon in precisely finding
the edges, thus leading to accurate estimation of corner
points.

IV. CAMERA MODEL
We used a cameramodel with the lens distortion. The pin hole
model [10] is described as follows:xy
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 (1)

D = {k1, k2, t1, t2} where K is an internal camera calibration
matrix with a focal length f , the numbers of pixels per unit
distance in image coordinate (sx , sy), a principal point (px , py),
and a skew term α. R and T are external parameters which
are a rotation matrix and a translation vector, respectively.
(X ,Y ,Z ) is the location of a 3D point, and (x, y) is the
location of a 2D point projected from the 3D point to an image
plane.

Lens distortion is a kind of optical aberration, and a
straight object is bent in an image due to the distortion. There
are two main distortions: radial and tangential distortions
[14], [15]. The radial distortion is caused by the refraction
of the lens. The tangential distortion occurs when the image
plane and the lens are not in parallel. A camera model with
the lens distortions [33] is given as:

x̂d = x̂(1+ k1r2 + k2r4)+ 2 t1̂x̂y+ t2(r2 + 2̂x2)

ŷd = ŷ(1+ k1r2 + k2r4)+ 2 t2̂x̂y+ t1(r2 + 2̂y2) (2)

where r2 = x̂2 + ŷ2 and (̂x, ŷ) is a coordinate on a 2D plane
in the 3D real world, which is projected from a 3D point via[̂
x ŷ 1

]T
=
[
R|T

] [
X Y Z 1

]T . (̂xd , ŷd ) is a coordinate on a
distorted 2D plane in the 3D real world by the lens distortion
with a set of distortion coefficients D = {k1, k2, t1, t2} where
k1, k2 indicate the coefficients of radial distortion, and t1,
t2 are the coefficients of tangential distortion. Finally the
coordinate (xd , yd ) in a distorted image is defined by trans-
forming (̂xd , ŷd ) as:[

xd yd 1
]T
= K

[̂
xd ŷd 1

]T (3)

We also consider a distortion model for fish-eye lens cam-
eras which are designed to create ultra-wide-angle views [18].
The fish-eye lens distortion model [7] is described as:

θ = tan−1(r)

θd = θ(1+ ρ1θ2 + ρ2θ4 + ρ3θ6 + ρ4θ8)

x̂d = (θd/r)x̂, ŷd = (θd/r)ŷ (4)
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where r2 = x̂2 + ŷ2 and (x̂, ŷ) is a coordinate on a 2D
plane in the 3D real world, which is projected from a 3D

point via
[̂
x ŷ 1

]T
=
[
R|T

] [
X Y Z 1

]T . (xd , yd ) is a coor-
dinate on a distorted 2D plane in the 3D real world by the
fish-eye lens distortion with a set of distortion coefficients
Dfe = {ρ1, ρ2, ρ3, ρ4}.

V. PROPOSED METHOD FOR PRECISE
CORNER-POINT ESTIMATION
Fig. 1 shows the block diagram of our corner point
extraction-based camera calibration. For each checkerboard
image, its corner points are extracted via the corner point
extraction block that utilizes the structural information of
the checkerboard grid under the lens and compression dis-
tortions. Based on the estimated corner points of all the
checkerboard images, the camera calibration is performed
via the Camera Parameter Estimation block using Zhang’s
method [9]. In Zhang’s method, the corner points on a
checkerboard are projected to the checkerboard images by
the estimated camera parameters. The camera parameters are
found in the sense that a cost function is minimized. The
cost function is defined as the square sum of the distances
between the estimated corner points and the projected points.
Next, we explain our proposed edge surface model under the
JPEG compression distortion, the structural information, and
the lens distortion for precise corner point extraction.

FIGURE 1. A scheme of our corner point extraction for camera
calibration. The CB stands for a checkerboard. We first estimate K i , Di , H i
of each image and extract its corner points of a checkerboard image via
the projection. The parameters, K i , Di are not for the camera calibration,
but only corner-point extraction. H i is a homography and A is a set of
steepness factors of the edge surface model of (6).

A. AN EDGE SURFACE MODEL
The corner points are the most basic features of checkerboard
images for camera calibration. Many studies have performed
camera calibration based on corner points [9], [22], [24],
[30]–[32]. However, image blur makes it difficult to find
corner points accurately. To remedy this, Yang et al. [25]
used an error function model [13] to handle the Gaussian
blurred surfaces along the edges of the checkerboard images.
Chen et al. [27] applied a morphological filter and extracted
subpixel-level coordinates of edges for polynomial fitting,
thus finding the intersections of the edges as corner points.

However, the checkerboard images are corrupted from JPEG
compression by which the surfaces around the edges tend
to have transitions with over- and under-shoots thus lead-
ing to imprecise findings of edges and corner points. This
compression distortion is mostly originated from the quan-
tization of DCT coefficients. Fig. 2 shows an example of

FIGURE 2. Gibbs phenomenon along an edge (blue line γ in (a)) in a
checkerboard image due to JPEG compression: (a) A cropped region with
JPEG compression artifacts; (b) A 3D mesh plot of the pixels in the
cropped region; (c) A 1-D profile (cross-section) of the 3-D mesh plot in
(b) with over- and under-shoots for which a blue solid curve fits the pixel
values across the edge. The pixels between the two dashed red lines in
(a) are the pixels for the edge surface model fitting. Note that the pixels
values in the bright areas and the dark areas are normalized to 1 and −1
respectively. So, the normalized pixel values of over- and under-shoot
pixels are above 1 and below −1, respectively.
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over- and under-shoot of pixel values across an edge of the
checkerboard image. Such pixel variations around the edge
in Fig. 2 make it difficult to find the edge and its corner
points accurately. In this paper, we first consider the JPEG
compression distortion as well as lens distortions for edges in
the corner point extraction problem.

In order to robustly find the corner points under JPEG
distortion, we design a novel edge surfacemodel to be applied
for the vicinity zone (Zv) of each edge as shown in Fig. 2.
We first perform normalization of the pixel values in Zv to
estimate the parameter values of our edge surface model.
The normalization procedure is as follows: (i) As shown
in Fig. 3, the pixels with small fluctuations of the values
in each bright area (a blue-dotted rounded box), which are
located in a distance from the edges, are modeled as a surface
by a second-order polynomial, as denoted by FW (x, y). The
distance is defined to get pixels on flat areas whose values
are little damaged by the compression. Since the edge widths
in our checkerboard images are often smaller than 5 pixels,
we set the distance value to 5. Similarly, the pixels with
small fluctuations in a dark area (a red-dotted rounded box)
are modeled also as a surface using another second-order
polynomial, as denoted by FB(x, y); (ii) Once we get the two
surface models (FW (x, y), FB(x, y)), we normalize the pixel
values of the pixels in Zv by expanding FW (x, y) and FB(x, y)
into Zv where (x, y) ∈ Zv and applying them as follows:

G(p = [x, y]T ) =
2V (p)− FW (p)− FB(p)

FW (p)− FB(p)
(5)

where p = [x, y]T is a pixel location in Zv, and V (p) is the
pixel value at p. It can be noted in Eq. (5) that, if V (p) =
FW (p), V (p) is normalized to 1 while it is normalized to −1
if V (p) = FB(p). Then, the normalized over- and under-shoot

FIGURE 3. Fitting 2nd-order polynomials for pixel normalization in bright
and dark areas that are indicated by the dotted rounded boxes. The
yellow area indicates the Zv of an edge, and the pixel values of the pixels
on the Zv are normalized according to Eq. (5) for the parameter
estimation of the edge surface model. These polynomials are used to
normalize the pixel values inside the Zv of the edge (yellow area).

pixel values are larger than 1 and smaller than −1, respec-
tively, which are the red dots in an 1-D profile of the normal-
ized pixels as shown in Fig. 2c.
Our edge surface model under the JPEG compression dis-

tortion is defined in Zv as:

φ(a, d = [pT 1]γ ) = S(ad + sin(ad))/π (6)

where S is an amplitude of over/under-shoot, a is a steepness
factor of the edge surface on the edge surface model, d is
a distance in pixel unit between a coordinate of pixel p =
[x, y]T and line γ = [γx , γy, γc]T where γxx + γyy + γc =
0 and γ 2

x + γ
2
y = 1. As shown in Fig. 2, the over- and

under-shoot values are located at d = π/a and −π/a,
respectively, as in (6) and edge surface model φ is defined
between d = −π/a and +π/a. The pixels (outside Zv)
from line γ in distances of |d | > π/a are discarded for the
parameter estimation of edge surface model. The estimation
of edge surface model parameters (a, γ ) can be found within
our corner point extraction optimization according to (9) in
the following subsection. The values of S are the mean values
of absolute over-/under-shoot values. Note that the gradient
values of the edge surface model near d = 0 are almost
constant along the edge. As the |d | increases, the magnitudes
of the gradient values of the edge surfacemodel decrease so as
to fit the model to the over/under-shoot. In our experiments,
we also compare the edge surfacemodel in Eq. (6) to a simple
version with a plane which is given by

φ(a, d = [pT 1]γ ) = ad (7)

where Zv is defined as |d | < π/a.
For an NX × NY checkerboard grid, we have total Nesm(=

NX (NY − 1)+ NY (NX − 1)) edge surface models since there
is one edge surface model for the edge between two corner
points. For a vertical line of the checkerboard, there are Nv(=
NY − 1) edge surface models on Nv edges corresponding
to the vertical line. If there is no lens distortion, the edge
surface models corresponding to a vertical line share a single
γ because the edges are generated by projections of the single
vertical line in checkerboard. The edge surface models with
the other vertical lines are the same. This constraint is also
applied equally to the edge surface models corresponding to
the horizontal lines of the checkerboard.

B. STRUCTURAL INFORMATION FOR EDGE SURFACE
MODEL PARAMETER ESTIMATION
In our method, corner points are found not independently
but jointly by utilizing structural information of the checker-
board grid. The independent findings of corner points are
vulnerable to local damages due to compression distortions,
which causes degradation of camera calibration performance.
Instead, the structural information can be effectively used to
robustly find the corner points where the entire corner points
and edges are jointly found over a whole checkerboard image,
which can overcome the local distortions.

The structural information we are dealing with is orig-
inated from the grid of the checkerboard. Actually, with
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the lens distortion, we have to deal with complex nonlinear
relations for the structural constraints: (i) The corner points
on the checkerboard images should be the intersection points
of the edges; (ii) the edges should meet at vanishing points;
and (iii) The cross-ratios between each checkerboard image
and the checkerboard should be preserved after camera pro-
jection. We first consider a distortion-free camera to simplify
the corner point extraction problem and expand it for the
camera with the lens distortions in the next subsection.

The corner points in the checkerboard images should be
intersection points of the γ ’s in (6). So, rather than finding
the corner points directly from the checkerboard images, the
γ ’s are obtained from the checkerboard images, and the inter-
sections of the γ ’s are set as the corner points. The structural
constraints of the γ ’s include that the γ ’s meet at vanishing
points, and the cross-ratios between each checkerboard image
and the checkerboard are preserved. These constraints on γ ’s
are from the fact that the γ ’s on each checkerboard image are
projected from the grid lines of the checkerboard by a single
homography. So, to satisfy the constraints, all the γ ’s in each
checkerboard image are expressed as

γ n = H−T ln (8)

where ln is the n-th line in the checkerboard, n = 1, . . . ,NX+
NY , and H ∈ R3×3 is a homography [10] with 8 parameters.
From the edge surface model in (6) and the γ ’s in (8), the
corner points can be found via the following optimization of
the corner point extraction as

(H i,Ai = {ain,m})

= argmin
H,A

NL∑
n=1

Mn∑
m=1

∑
p∈J in,m

∥∥∥φin,m(ain,m, [pT 1]γ i
n)−G

i(p)
∥∥∥2
2

subject to γ i
n = H−T ln (9)

where n is an index of the lines on the checkerboard including
vertical and horizontal lines, m is an index of the edges along
the n-th line where an edge is defined as a line segment
between two corner points on a same line, NL (=NX +NY ) is
the total number of lines on a checkerboard, andMn (=NX −
1 or NY − 1) is the number of the edge surface models along
the n-th line. φin,m(·) and a

i
n,m indicate the m-th edge surface

model and its steepness factor, respectively, along the n-th
line in the i-th checkerboard image. J in,m is a set of pixels in Zv
(See Fig. 3) andGi(p) is the normalized pixel value by Eq. (5)
at pixel location p in the i-th checkerboard image. It should be
noted that the S value of each edge surface model is computed
after the pixels within a predefined distance (±1.5 pixels)
around an edge are assigned to J in,m before solving the corner
point extraction optimization problem in (9). The S value
for each edge surface model is determined as the mean
value of absolute over- and under-shoot pixel values for J in,m
(See Fig. 2c).

In conclusion, from (9), the corner point extraction opti-
mization forces all the γ ’s and the corner points to be pre-
cisely estimated by obeying the structural constraints.

C. CONSIDERATION OF LENS DISTORTIONS
Without any lens distortion, the line-to-line projection can be
done by a homography in (8) at camera projection. However,
under lens distortion, (8) is no longer valid. So, the distorted
locations of the pixels by the lens distortions need to be cor-
rected before applying the homography in (8). When estimat-
ingH andA = {an,m}, we have to find the camera parameters
K and the distortion coefficients D, both of which are related
to the lens distortions [33]. After the distorted pixel locations
are corrected, the curved edges become straight lines, and the
straight lines are projected from the checkerboard grid by H .
The desired parameters for corner points can be estimated
via the optimization based on Levenberg–Marquardt (LM)
method [34], [35] as

(K i,Di,H i,Ai = {ain,m})

= argmin
K,D,
H,A

NL∑
n=1

Mn∑
m=1

∑
p∈J in,m

∥∥∥φin,m(ain,m, [pTc 1]γ i
n)−G

i
c(pc)

∥∥∥2
2

subject to γ i
n = H−T ln (10)

where pc is a corrected location of p by K i and Di for the
i-th checkerboard image. Gic(pc) is a normalized pixel value
at pc of the corrected i-th checkerboard image. The others are
the same as those in (9). Through the optimization in (10),
K i, Di, H i and Ai are estimated. The cost function of our
method converges well in the optimization. So the damping
factor used in the LM method is empirically set to be small,
λ = 10−20, with its associated constant, ν = 20.

For the optimization, we need to estimate the internal
parameter K , a set of distortion coefficientsD, a homography
H , and a set of steepness factors A. The initial values of
the homography are estimated by matching the edge pixels
on the checkerboard images with the known lines of the
checkerboard. Please note that the distortion is ignored in this
case. The estimated homography is not accurate, but good
enough for the initial guess. The principle point of K is set
to be the center of images. The skew term α in (1) is set to
zero. Then the remaining parameters in (1) are fsx and fsy
which are the products of the focal lengths and the number per
unit distance. Also, we assume sx = sy = s. In order to find
f ·s, we use the following relation among the internal/external
parameters and the homography as:

H = ηK
[
r1 r2 T

]
(11)

For the equation above, there are 8 unknowns (a scale
factor η, f · s in K , θx , θy, θz in R = [r1 r2 r3], and
tx , ty, tz in T ), but we have 9 equations. Note that r1 is a
3× 1 vector whose elements are functions of θx and θy, and
r2 is a 3×1 vector whose elements are functions of θx , θy, and
θz [36]. So, we can determine the internal parameter f ·swhich
is the only needed variable to compute the initial values. The
initial distortion coefficients for D = {k1, k2, t1, t2}. in (2)
and Dfe = {ρ1, ρ2, ρ3, ρ4} in (4) are all set to zeros. Each of
the steepness factors A = {ain,m} in (10) initially tries with
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0.5 and −0.5 for which the one that results in a lower cost
value is used as its initial value.

Based on these estimated camera parameters from (10),
we can find the corner points on the i-th checkerboard image
by projecting the corner points on the checkerboard (See
Fig. 4). With the corner points of all checkerboard images,
we finally estimate the camera internal parameters K , the
lens distortion coefficients D, and the external parameters,
{Ri}, {T i} using Zhang’s method [9] as shown in Fig. 1.

FIGURE 4. Our proposed process of camera parameter estimation with K ,
D, and H for corner-point extraction. L is a set of lines on the
checkerboard. E refers to the cost function (10).

VI. EXPERIMENTAL RESULTS
Experiments are conducted with synthetic and real data.
The eight previous methods are compared with ours, which
include Geiger et al.’s [22], Ma et al.’s [23] Ha et al.’s [24],
Yang et al.’s [25], Zhao et al.’s [26], Chen et al.’s [27],
Duda and Frese’s [28], and Zhou et al.’s [29] methods.
In Zhou’s [29] method, the points along the edges are
extracted for camera calibration. We used a built-in function
in MATLABTM for Geiger’s method, and an open-source
code of Ha’s method. The codes for the other methods are
implemented by ourselves.

A. EXPERIMENTS WITH SYNTHETIC DATA
We conducted two experiments with the synthetic data. One
is an ablation test to see the effectiveness of each contribution
in our method for corner point extraction performance and the
camera calibration. The other one is the comparison with the
previous methods. For the comparison test, cameras with and
without a fish-eye lens are utilized.

The dimension of a square of the checkerboard is
40mm×40mm, and the number of the corner points is 56
(= 7×8). The checkerboard is located approximately 800mm
away from the camera. The ground truth parameters of the
non fish-eye lens camera are fsx = 1,280, fsy = 1,260, α = 1,
px = 510, py = 355, k1 = −0.15, k2 = −0.01, t1 = −0.015,
and t2 = 0.01. For the fish-eye lens camera, ρ1 = −2.4, ρ2 =
−0.18, ρ3 = −0.12, and ρ4 = −0.036. The internal param-
eters of the fish-eye lens camera are the same as the internal
parameters of the non fish-eye lens camera. The image size
is 1,000× 700. A total of 100 checkerboard images was used

TABLE 1. Four model variants for effectiveness tests with edge surface
model and structural information.

TABLE 2. Performance comparisons in RMSE of four model variants for
estimated corner points, reprojection of checkerboard corner points and
estimated camera parameters.

where 20 checkerboard images were randomly selected for
the cameras calibration by repeating the camera calibration
40 times.

To evaluate the accuracy of the estimated corner points, the
root mean square errors (RMSE) are measured in pixel units
as

EC =

√
1
NC

∑NC

i=1
‖ci − c

gt
i ‖

2
2 (12)

where NC is the total number of the corner points of all
checkerboard images, ci and cgti are the i-th estimated and
ground-truth corner points, respectively.

By the camera calibration, we estimateK ,D, {Ri} and {T i}.
To evaluate the accuracy of the parameters, the error of the
reprojected corner points are measured in pixel unit as

EP=

√√√√√ 1
NINP

NI∑
i=1

NP∑
j=1

‖fP(P j,K,D,Ri,T i)−P
gt
i,j‖

2
2 (13)

where P j is the j-th corner points on the checkerboard in the
real world, Pgti,j is ground truth coordinate of the j-th corner
points on the i-th checkerboard image, NI is the number
of images for the camera calibration, NP is the number of
corner points on the checkerboard, and fP returns coordinate
of projections of P j by K,D,Ri, and T i according to Eq. (2).

The K , and D are the results of the camera calibration
which are the camera’s unique characteristic values. So, to see
the performance of each camera calibration method, these
parameters should be evaluated. The errors of the estimated
K’s, and D’s are measured in pixel unit as

EK =

√√√√ 1
NX

NX∑
i=1

‖fK (X i,K,D)− fK (X i,Kgt ,Dgt )‖22 (14)

where fK (X,K,D) returns 2D coordinates of a projection of
3D points, {X}, in a region of interest (ROI) by K , and D
according to Eq. (2) with R = I and T = 0. When we
evaluate Zhou’s method with the others, only these evaluation
method is utilized because the corner points are not extracted
in Zhou’s method.
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TABLE 3. RMSE performance for corner points estimation (EC ).

TABLE 4. RMSE and standard deviation (std) for reprojections of checkerboard corner points (EP ).

1) ABLATION STUDY ON PROPOSED METHOD
Our contributions include 1) the edge surface model to handle
the JPEG compression distortion for corner point extraction
and 2) the utilization of structural information to deal with
the lens distortion. To see the effectiveness of the two con-
tributions, we inspect the four variants (A, B, C and D) of
our methods as shown in Table 1. The two variants (A and C)
use the plane model in Eq. (7) instead of the edge surface
model in Eq. (6). The other two variants (A and B) do not
rely on the structural information. They assume that the edges
are straight, and each edge surface is individually estimated
from the pixels around each edge. So, the intersection lines
of the surfaces are searched and the intersections of the lines
are extracted as the corner points. Note that the variant D is
our full model with the two contributions that are optimized
in Eq. (10). The quality factor (Q) of JPEG compression is
set to 40 for experiments. The camera for the experiments is
the non fish-eye lens camera.

Table 2 show the performances of the four variants.
As shown in Table 2, the variants C and D show signifi-
cantly lower EC , EP, and EK values compared to the other
two variants A and B that do not incorporate the structural
information for corner point extraction. This implies that our
proposed usage of structural information plays a significant
role in precise corner point extraction. In comparison between
two variants A (C) and B (D), the variant B (D) has lower
EC , EP, and EK values than the variant A (C). From this, our
edge surface model works positively to further improve the
corner point extraction performance. Among those variants,
the variant D is our final proposed method (Proposed-ESM).

TABLE 5. RMSE performance for projected points by K ’s, and D’s (EK ).

ESM stands for the edge surface model. We will compare it
with the previous methods in the next subsection. The variant
C (Proposed-Plane) is also used for the comparison test. The
model parameters of ‘Proposed-ESM’ and ‘Proposed-Plane’
are found according to our optimization in Eq. (10).

2) PERFORMANCE COMPARISON WITH
PREVIOUS METHODS
In comparison with the previous methods, to see the robust-
ness of our method to the compression distortion, we used
various Q values of JPEG compression and various lens
distortion coefficients. Note that the lower Q values result in
more compression distortions with smaller visual quality. The
camera for the experiments is the non fish-eye lens camera.

Table 3 compares the performances of corner point
extraction methods for various Q values. In Table 3, our
methods, ‘Proposed-Plane’ and ‘Proposed-ESM’ indicate a
simple model with the plane in Eq. (7) and the edge surface
model in Eq. (6), respectively. As shown in Table 3, our
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TABLE 6. RMSE accuracy for the estimated camera parameters.

FIGURE 5. Scatter plots of reprojection errors for the estimated corner points.

proposed methods yield significantly lower RMSE values for
all Q values with at least one order in magnitude, compared
to the other methods. Table 4 shows errors of reprojection
of checkerboard corner points. Since the reprojected corner
points of all the methods satisfy the structural information,
less errors tend to occur than those in Table 3. The proposed
methods also appear less than the other methods. Fig. 5
shows the scatter plots of reprojection errors for the estimated
corner points by the eight corner point extraction methods for
Q = 40. As shown, our proposed method with edge surface
model clearly outperforms all the other methods with the
smallest error. Also, a simplified version of our method,
which uses a plane model instead of edge surface model,
also significantly outperforms all the previous methods. The
dispersions of the reprojected corner points in Fig. 5 are
measured as the standard deviation values in Table 4. Table 5
shows the performance of camera calibration for various
methods. As shown, both of our methods, ‘Proposed-plane’
and ‘Proposed-ESM’ outperform all the previous methods
with large margins for all Q values. The superiority of our
‘Proposed-ESM’ method comes from the utilization of struc-
tural information for corner point extraction and the edge
surface model to cope with the compression distortion. For

smaller Q values, the ‘Proposed-ESM’ more significantly
outperforms the ‘Proposed-Plane’ because the ‘Proposed-
Plane’ suffers from over- and under-shoot problems of pixels
in Zv due to more severe JPEG distortions. Fig. 6 shows the
accuracy maps of camera calibration based on the estimated
K’s and D’s and Table 6 shows the numerical RMSE errors
of the estimated camera parameters for Q = 40. As shown,
our methods clearly outperform all the previous methods for
camera calibration with help of more precise corner point
extraction performance.

Tables 7, 8 and 9 show the performances of the corner point
estimation methods for Q= 40 under various lens distortions
with k1 = −0.15n, k2 = −0.01n, t1 = −0.015n and
t2 = 0.01n for n = 1, 2, 3 and 4. As shown, our methods
show the superiority in corner point extraction, thus leading
to more accurate camera calibration performances compared
to the other methods in all cases. It is worthwhile to note
that Yang’s method exhibited the highest RMSE although it
incorporates an error function surface model into the corner
point extraction problem. This is because it does not take into
the lens distortions for the resulting curved edges.

Table 10 shows the performances of the corner point esti-
mation for the synthetic images obtained for the fish-eye lens
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FIGURE 6. Accuracy maps for camera calibration based on estimated K ’s and D’s by the methods under comparison. The
2D points in the range of x = 250∼750 and y = 175∼525 in a synthesis image are back-projected to 3D space by ground
truth K and D, and the 3D points are projected to the synthesis image plane by the estimated K ’s and D’s. After that, the
absolute position errors are calculated as an accuracy plane.

camera. The Q value is set to 40 for the test. The fish-eye lens
often causes to generate large lens distortions with wide angle
views. Even for this situation, it can be seen in Table 10 that
our method outperforms all the other methods in RMSE.
As shown, Chen’s method shows the worst performance
because their method is based on polynomial curve fitting
to the edges of checkerboard images and is not sufficient to
model the curved edges caused by the fish-eye lens.

Our method shows fast convergence with about 25 iter-
ations, and takes To process each checkerboard image of
1,000× 700 resolution, our method takes about 3.05 seconds
in MATLABTM running on a PC platform with Intel CoreTM

i7 CPU of 3.50 GHz and 16.0GB RAM. It is about 5 times
longer compared to Ma’s method. This complexity overhead
comes from the fact that, in each iteration of the optimization,
our method updates K and D, and corrects the locations of
edge pixels with the parameters.

B. EXPERIMENTS WITH REAL DATA
Experiments with real data are often difficult to evaluate
estimated parameters because the true parameter values are
not available. To overcome this difficulty, we evaluate the
camera parameters by reconstructing a cuboid with four
checkerboards on its sides (Fig. 7b). The number of corner

TABLE 7. RMSE performance for corner points estimation (EC ).

points in the checkerboard for calibration (Fig. 7a) is 110
(= 10 × 11), and the dimension of a checkerboard square
is 38mm×38mm. From a single cuboid image with two
checkerboards (Fig. 7b), we can reconstruct two facets of
the cuboid image (Fig. 7c) based on the estimated cam-
era parameters. For the cuboid images, we have taken four
images for the cuboid in approximately 1.2m distance away
from the camera. The angles and rotations of the cuboid are
somewhat restricted to have similar areas for the two faces of
the cuboid, as shown in Fig. 7b. So, angles and rotations were
determined such that each of the four cuboid images includes
two facets of the cuboid and the boundary between the two
facets, as shown in Fig. 7b.
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TABLE 8. RMSE performance for reprojection of checkerboard corner
points (EP ).

TABLE 9. RMSE performance for projected points by K ’s, and D’s (EK ).

TABLE 10. Performance comparisons in RMSE of the fish-eye lens
camera.

TABLE 11. RMS reconstruction errors of a 3D cuboid (in millimeter).

Evaluation can be performed in terms of distances
in RMSE between corner points after reconstruction.
A CamelTM ’sWC100 camera is used. The size of the image is
1,920 × 1.080. A total of 50 checkerboard images was used
where 20 checkerboard images were randomly selected for
each camera calibration by repeating the camera calibrations
40 times.

Table 11 shows the reconstruction performances in terms
of RMSE in millimeter units. Our methods outperform all the

FIGURE 7. Examples of a checkerboard image and a cuboid image for
experiments: (a) a checkerboard image; (b) a cuboid image that was
captured to have two checkerboard faces of similar areas and their
boundary positioned in the middle for a 3D cuboid reconstruction; (c) two
reconstructed faces in 3D space for the cuboid image in (b); (d) the
overlays of the two reconstructed faces on top of the cuboid image in (b).

other methods by yielding more accurate camera parameter
estimations that lead to more accurate cuboid reconstruction.

VII. CONCLUSION
Wefirst proposed a novel corner point estimation for accurate
camera calibration by jointly considering both compression
and lens distortions.We incorporate an elaborate edge surface
model to handle the over- and under-shoots of pixel values
along the edges of checkerboard images due to compression
distortion. Furthermore, the structural information of the cor-
ner points and the edges from the checkerboard grid is utilized
to precisely find the corner points. Extensive experimental
results have verified that our method outperformed all previ-
ous methods with significantly large margins, especially for
corner point estimation on synthetic data. This has led tomore
accurate camera calibration.

As future work, it might be worthwhile to explore our edge
surface model for different image data such as multispectral
color images having blurred corners from compression.

REFERENCES
[1] C. Zhang, T. Huang, and Q. Zhao, ‘‘A new model of RGB-D camera cali-

bration based on 3D control field,’’ Sensors, vol. 19, p. 5082, Nov. 2019.
[2] Z. Gao, Y. Gao, Y. Su, Y. Liu, Z. Fang, Y. Wang, and Q. Zhang, ‘‘Stereo

camera calibration for large field of view digital image correlation using
zoom lens,’’Measurement, vol. 185, Aug. 2021, Art. no. 109999.

[3] G. H. An, S. Lee, M. W. Seo, K. Yun, W. S. Cheong, and S. J. Kang,
‘‘Charuco board-based omnidirectional camera calibration method,’’ Elec-
tronics, vol. 7, p. 421, Dec. 2018.

[4] B. Fu, Y. Wang, X. Ding, Y. Jiao, L. Tang, and R. Xiong, ‘‘LiDAR-camera
calibration under arbitrary configurations: Observability and methods,’’
IEEE Trans. Instrum. Meas., vol. 69, no. 6, pp. 3089–3102, Jun. 2020.

[5] Q. Liao, Z. Chen, Y. Liu, Z. Wang, and M. Liu, ‘‘Extrinsic calibration
of LiDAR and camera with polygon,’’ in Proc. IEEE Int. Conf. Robot.
Biomimetics (ROBIO), Dec. 2018, pp. 200–205.

VOLUME 9, 2021 151047



S. Kang et al.: Structural-Information-Based Robust Corner Point Extraction for Camera Calibration

[6] J.-K. Huang and J. W. Grizzle, ‘‘Improvements to target-based 3D LiDAR
to camera calibration,’’ IEEE Access, vol. 8, pp. 134101–134110, 2020.

[7] OpenCV Library. Accessed: Sep. 2021. [Online]. Available:
https://opencv.org/

[8] J. Y. Bouguet. Camera Calibration Toolbox for
MATLAB. Accessed: Sep. 2021. [Online]. Available:
https://www.vision.caltech.edu/bouguetj/calib_doc/

[9] Z. Zhang, ‘‘A flexible new technique for camera calibration,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 22, no. 11, pp. 1330–1334, Nov. 2000.

[10] R. Hartley and A. Zisserman, ‘‘Camera geometry and single view geom-
etry,’’ in Multiple View Geometry in Computer Vision. Cambridge, U.K.:
Cambridge Univ. Press, 2004, pp. 151–236.

[11] G. K. Wallace, ‘‘The JPEG still picture compression standard,’’ Commun.
ACM, vol. 34, no. 4, pp. 30–44, Apr. 1991.

[12] M. Große, M. Schaffer, B. Harendt, and R. M. Kowarschik, ‘‘Camera
calibration using time-coded planar patterns,’’ Opt. Eng., vol. 51, no. 8,
Aug. 2012, Art. no. 083604.

[13] G. Boese, ‘‘An a priori estimate for the truncation error of a continued
fraction expansion to the Gaussian error function,’’ Computing, vol. 29,
no. 2, pp. 135–152, Jun. 1982.

[14] D. C. Brown, ‘‘Close-range camera calibration,’’ Photogramm. Eng.,
vol. 37, no. 8, pp. 855–866, Jan. 1971.

[15] J. Sasián, ‘‘The wave aberration function,’’ in Introduction to Aberrations
in Optical Imaging System. Cambridge, U.K.: Cambridge Univ. Press,
2012, pp. 67–75, ch. 5.

[16] Z. Zhuang, X. Dallaire, J. Parent, P. Roulet, and S. Thibault, ‘‘Geometrical-
based quasi-aspheric surface description and design method for minia-
ture, low-distortion, wide-angle camera lens,’’ Appl. Opt., vol. 59, no. 27,
pp. 8408–8417, Sep. 2020.

[17] S. S. Jeong, S. K. Woo, and J. Heo, ‘‘Empirical modeling of lens distortion
in change of focal length,’’ J. Korean SoC. Surv., Geodesy, Photogramm.
Cartogr., vol. 26, no. 1, pp. 93–100, Feb. 2008.

[18] C. Hughes, M. Glavin, E. Jones, and P. Denny, ‘‘Review of geometric
distortion compensation in fish-eye cameras,’’ in Proc. IET Irish Signals
Syst. Conf. (ISSC), Jun. 2008, pp. 162–167.

[19] C. G. Harris and M. Stephens, ‘‘A combined corner and edge detector,’’
Alvey Vis. Conf., vol. 15, no. 50, Aug. 1988, pp. 147–151.

[20] J. Sánchez, N. Monzón, and A. S. De La Nuez, ‘‘An analysis and
implementation of the Harris corner detector,’’ Image Process. Line,
vol. 8, pp. 305–328, Oct. 2018.

[21] Y. Han, P. Chen, and T. Meng, ‘‘Harris corner detection algorithm at sub-
pixel level and its application,’’ in Proc. Int. Conf. Comput. Sci. Eng., 2015,
pp. 133–137.

[22] A. Geiger, F. Moosmann, Ö. Car, and B. Schuster, ‘‘Automatic camera
and range sensor calibration using a single shot,’’ in Proc. IEEE Int. Conf.
Robot. Automat., May 2012, pp. 3936–3943.

[23] C. Ma, F. Meng, Y. Guo, Y. Li, and Z. Zhnag, ‘‘An improved method of
corner point extraction used in grating projection phase measurement,’’ Int.
SoC. Opt. Photon., vol. 11567, Nov. 2020, Art. no. 1156738.

[24] H. Ha, M. Perdoch, H. Alismail, I. S. Kweon, and Y. Sheikh, ‘‘Deltille
grids for geometric camera calibration,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Oct. 2017, pp. 5344–5352.

[25] T. Yang, Q. Zhao, X. Wang, and Q. Zhou, ‘‘Sub-pixel chessboard corner
localization for camera calibration and pose estimation,’’ Appl. Sci., vol. 8,
no. 11, p. 2118. Nov. 2018.

[26] Q. Zhao, Z. Chen, T. Yang, and Y. Zhao, ‘‘Detection of sub-pixel chess-
board corners based on gray symmetry factor,’’ in Proc. 9th Int. Symp.
Precis. Eng. Meas. Instrum., Mar. 2015, p. 94464.

[27] Y. Chen, F. Huang, F. Shi, B. Liu, and H. Yu, ‘‘Plane chessboard-based
calibration method for a LWIR ultra-wide-angle camera,’’ Appl. Opt.,
vol. 58, pp. 744–751, Feb. 2019.

[28] A. Duda and U. Frese, ‘‘Accurate detection and localization of checker-
board corners for calibration,’’ in Proc. Brit. Mach. Vis. Conf., Newcastle,
U.K., Sep. 2018, p. 126.

[29] F. Zhou, Y. Cui, H. Gao, andY.Wang, ‘‘Line-based camera calibration with
lens distortion correction from a single image,’’ Opt. Lasers Eng., vol. 51,
no. 12, pp. 1332–1343, Dec. 2013.

[30] J. Liu, Z. Yang, H. Huo, and T. Fang, ‘‘Camera calibration method with
checkerboard pattern under complicated illumination,’’ J. Electron. Imag.,
vol. 27, no. 4, Jul. 2018, Art. no. 0430380.

[31] S. Placht, P. Fursattel, E. A. Mengue, H. Hofmann, C. Schaller, M. Balda,
and E.Angelopoulou, ‘‘ROCHADE:Robust checkerboard advanced detec-
tion for camera calibration,’’ in Proc. Eur. Conf. Comput. Vis., vol. 8692,
Sep. 2014, pp. 766–779.

[32] L. Lucchese and S. K. Mitra, ‘‘Using saddle points for subpixel feature
detection in camera calibration targets,’’ in Proc. Asia–Pacific Conf. Cir-
cuits Syst., Oct. 2002, pp. 191–195.

[33] J. Heikkila and O. Silven, ‘‘A four-step camera calibration procedure with
implicit image correction,’’ in Proc. IEEEComput. Soc. Conf. Comput. Vis.
Pattern Recognit., Jun. 1997, pp. 1106–1112.

[34] K. Levenberg, ‘‘A method for the solution of certain non-linear problems
in least squares,’’Quart. Appl. Math., vol. 2, no. 2, pp. 164–185, Jul. 1944.

[35] D. W. Marquardt, ‘‘An algorithm for least-squares estimation of nonlin-
ear parameters,’’ J. SoC. Ind. Appl. Math., vol. 11, no. 2, pp. 431–441,
Jun. 1963.

[36] J. Diebel, ‘‘Representing attitude: Euler angles, unit quaternions, and
rotation vectors,’’Matrix, vol. 58, nos. 15–16, pp. 1–35, Oct. 2006.

SEONGHYEON KANG (Student Member, IEEE)
received the B.S. and M.S. degrees in mechanical
engineering from the Korea Advanced Institute of
Science and Technology, Daejeon, South Korea, in
2011 and 2013, respectively, where he is currently
pursuing the Ph.D. degree in electrical engineer-
ing. His research interests include 3-D reconstruc-
tion, 3-D depth, and camera calibration.

SEONG DAE KIM (Life Senior Member, IEEE)
received the B.S. degree in electronics engi-
neering from Seoul National University, Seoul,
South Korea, in 1977, the M.S. degree in electrical
engineering from the Korea Advanced Institute
of Science and Technology, Seoul, in 1979, and
the Dr.-Ing. degree in electrical engineering from
ENSEEIHT, INPT, Toulouse, France, in 1983.
He has been a Professor with the Department of
Electrical Engineering, Korea Advanced Institute

of Science and Technology, Daejeon, South Korea, since 1984. His research
interests include 3-D reconstruction, computer vision, pattern recognition,
image coding, and image processing.

MUNCHURL KIM (Senior Member, IEEE)
received the B.E. degree in electronics from
Kyungpook National University, Daegu,
South Korea, in 1989, and the M.E. and Ph.D.
degrees in electrical and computer engineering
from the University of Florida, Gainesville, in
1992 and 1996, respectively. He joined the Elec-
tronics and Telecommunications Research Insti-
tute, Daejeon, South Korea, as a Senior Research
Staff Member, where he led the Realistic Broad-

casting Media Research Team. In 2001, he joined the School of Engineer-
ing, Information and Communications University (ICU), Daejeon, as an
Assistant Professor. Since 2009, he has been with the School of Electrical
Engineering, Korea Advanced Institute of Science and Technology (KAIST),
Daejeon, where he is currently a Full Professor. He has published 180
(165) international (domestic) journal and conference papers. He holds
several essential HEVE patents and about 200 registered domestic and
international patents in the areas of image restoration and video coding.
His research interests include image restoration with deep learning, video
coding, and image understanding. He received a commendation from the
Korean President in the 54th National Innovation Day 2019 and was awarded
the Grand Prize for Research Excellence in Commemoration of the 50th
Anniversary of Founding for KAIST. He had an invited keynote speech
on evolution of conventional and deep video compression technologies at
the 2020 Multimedia Modeling Conference. His team was awarded the
Runner-Up in Challenge on the Video Temporal Super-Resolution track in
Advances in Image Manipulation (AIM)Workshop and challenges on image
and video manipulation at ECCV 2020, and received the Winner Award on
PIRMChallenge on Perceptual Image Enhancement—Track A: Image Super
Resolution at ECCV 2018.

151048 VOLUME 9, 2021


