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ABSTRACT In this paper, we explore the problem of removing atmospheric turbulence to obtain better
images of remote sidereal star systems. The imaging process is remodeled as a transmit–receive wireless
communication paradigm in a novel approach for correcting space- and time-varying blur in stellar images.
In particular, the effect of starlight passing through atmospheric turbulence is modeled as multipath fading
communication channels. The problem is then transformed into channel equalization in space and time
domains to produce a sharp stellar image. This approach involves first estimating the center of a blurred
stellar image. Next, linear regression obtains an equivalent two-dimensional channel response through
decomposition of the blurred image into the weighted sum of the diffraction-limited patterns in the spatial
domain. Finally, an alignment algorithm is implemented for synthesis, and a final output is generated.
Experiments were performed with real field-captured images; the results revealed that this approach could
be used to effectively correct image blur and obtain diffraction-limited stellar images.

INDEX TERMS Atmospheric turbulence, full-width at half maximum (FWHM), linear regression, point
spread function (PSF).

I. INTRODUCTION
Atmospheric turbulence poses a challenge for long-distance
imaging. Imaging through the atmosphere can be substan-
tially affected by turbulence, in which air temperature, den-
sity, and index of refraction vary [1]– [3]. The initial plane
of the wavefront can become distorted, and the value of
the refractive index changes along a ray at different points
on the wavefront. This phenomenon causes image quality
degradation and has been a problem for deep space optical
communication [4], remote sensing [5], [6], astronomical
observation [1], [2], [7], and natural imaging [8], [9] since
the 1950s. Recorded images may be marred by geometric
distortion, space- and time-varying blur, or loss of resolution
and sensitivity [3], [9].

Such problems with atmospheric turbulence can be
avoided by using space-based imaging systems, such as
the Hubble space telescope (HST). However, these systems
are costly ($2 billion) and, in the case of telescopes larger
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than the HST, infeasible [3], [10]. Space-based telescopes
cost approximately $100,000 per minute of use; thus, any
effort to improve image quality constitutes a relatively inex-
pensive solution [11]. Some solutions have been proposed
for reducing the effects of atmospheric turbulence on the
image resolution and sensitivity of imaging systems. Adap-
tive optics (AO) is a hardware-based approach [1]– [3].
AO systems improve image quality by sensing the waveform
deformation of a reference star near a target object and then
deforming one or more deformable mirrors to compensate
for poor image focus. A valuable measure of AO system
effectiveness is the Strehl ratio, which is defined as the ratio
of the intensity of a point source to that produced by a
perfectly diffraction-limited telescope of the same aperture
and throughput [3]. AnAO system has amaximum theoretical
Strehl ratio of 1.0 and can achieve a ratio of 0.5 in practice [3].
Another parameter for quantifying the impact of atmospheric
turbulence on image quality is the full width at half max-
imum (FWHM) of a point source [3], [12]. The degree of
dispersion of the light spot is referred to as astronomical
seeing and is typically in the range of a few arcseconds [13].
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Another commonly used approach for imaging through
atmospheric turbulence is so-called lucky imaging [14]– [16].
In this approach, fusion methods are applied to selected short
exposures in which the instantaneous wavefront distortion
over the telescope aperture is negligible. The probability of
obtaining a usable short-exposure image can be approximated
as Prob ∼= exp[−0.1557(d/r0)2] for d/r0 ≥ 3.5 [17],
where d is the telescope aperture diameter and r0 is the Fried
coherence length of the distorted waveform defined in [18].
However, this probability decreases rapidly with d . For exam-
ple, for an acceptable good-image probability of 10−6, a max-
imum increase in diameter of 10r0 is permissible [17]. Under
favorable astronomical seeing conditions, lucky imaging can
capture near-diffraction-limited images, whereas under poor
astronomical seeing conditions, the FWHM can be improved
up to fourfold [15].

The use of signal processing techniques to remove atmo-
spheric turbulence has been a popular approach for obtaining
high quality images for decades (e.g., [7], [9], [11], [19], [20],
and [21] and the references therein). An observed image R(x)
on a two-dimensional (2D) focal plane of spatial coordinate
x can be modeled as follows [9], [20]:

R(x) = (T ⊗ φ ⊗ hx) (x)+W (x), (1)

where ⊗ is a 2D convolutional operator; T and W are per-
fect images unaffected by the atmosphere and by sensor
noise, respectively; hx is a space-varying and time-varying
(turbulence-induced) point spread function (PSF) at the focal
plane location x; φ is a space-invariant diffraction-limited
PSF determined by the shape of the telescope aperture,
wavelength, and focal ratio of the telescope; hx and φ are
patch-wise models; and R, T , andW are frame-wise models.
The ultimate goal of these methods is to restore the perfect
image T . T is typically obtained by deconvolving R with
the composite PSF φ ⊗ hx. However, this problem is not
well-posed (in that the inverse matrix does not exist) and is
chaotic (a small change inW causes a significant variation in
inversion). Moreover, this approach breaks the physical law
of diffraction because the recovered image is not affected by
the physical dimensions of the telescope optics. We may even
conclude that a smartphone camera could obtain the same
image T as an observatory telescope. Clearly, this conclusion
is incorrect. Image quality is typically evaluated by assessing
whether the recovered image is sharper than the unprocessed
image. However, within the astronomical community, this
approach is considered ineffective for removing atmospheric
turbulence. Although some images processed through decon-
volution appear visually shaper than the original images,
these methods often induce artifacts in the processed image
and provide limited useful scientific information [7], [22].
Thus, astronomers usually adopt hardware-based solutions
such as the HST or AO systems to overcome poor astronom-
ical seeing.

Aiming to obtain a diffraction-limited image (i.e., an image
limited in resolution only by diffraction laws), we attempted
to restore T⊗φ to improve imaging by removing atmospheric

turbulence. Our solution was to remodel (1) as a commu-
nication channel equalization problem and propose a new
framework that could be considered a software-based version
of AO; we then apply this framework to restore high-quality
images of a remote sidereal star and of the multiple star
system Epsilon Lyrae captured with atmospheric turbulence.
The reconstructed stellar images were evaluated regarding
the diffraction limit of telescope optics and the ground truth
images. We also compared our results with the method
of online blind deconvolution in [21] (OBD), which also
attempted to recover T . Specifically, we propose a commu-
nication engineering model for the detection of star signals in
space through atmosphere.

Our previous work presented at the 2016 Asia Pacific
Wireless Communications Symposium [12] introduced tech-
niques for estimating the degree of atmospheric turbulence
in terms of a target star’s FWHM through digital signal
processing. Both theoretical Gauss and Kolmogorov PSFs of
field-captured stellar images were compared, and the results
indicated that the Kolmogorov PSFmethod had better fit with
the field images. In our research presented at the 2018 Inter-
national Symposium on Personal, Indoor and Mobile Radio
Communications [23], we studied the parallels between wire-
less communication and astronomical observation. Extend-
ing [23], we present a theoretical basis for obtaining the
equivalent channel response of a target star as well as a
framework for image restoration.We defined a rotation-based
autocorrelation function for classifying a target star into a
single-star or multiple-star system. Finally, we validated the
approach with two experiments (one on Beta Leonis and the
other on Epsilon Lyrae). These results, presented in this paper,
are all novel.

Our contributions to solving the problems associated with
the removal of atmospheric turbulence to better detect cosmic
signals are summarized below.

A. INTRODUCTION OF CHANNEL EQUALIZATION
TECHNIQUES FOR THE DETECTION OF A REMOTE
STELLAR IMAGE
We achieve this goal by transforming cosmic signal detec-
tion models into a communication engineering model. In the
model, a remote sidereal star is regarded as a 2D delta signal,
and the receiver consists of a ground-based telescope situated
in front of a camera sensor. The atmospheric turbulence
between the star and receiver is represented as multipath
fading channels that perturb the ideal 2D delta signal into a
stellar speckle. The undistorted cosmic signal is detected as
long as the channel is equalized. This model is detailed in
Section II.

B. DEVELOPMENT OF A 2D CHANNEL EQUALIZER TO
RECONSTRUCT A STELLAR IMAGE
A blurred stellar speckle is decomposed into a weighted sum
of basis functions, which are condensed into one function
with an appropriate intensity. The derivations are presented
in Section III, and the equalizer’s performance in terms of
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FIGURE 1. Parallels between wireless communication (top) and cosmic
signal detection (bottom) with atmospheric turbulence [23].

the FWHM is provided in Section IV. The conclusions are
presented in Section V.

II. COMMUNICATION ENGINEERING MODELING
The parallels between starlight reception and wireless com-
munication are illustrated in Fig. 1. Consider a remote side-
real star that is almost infinitely far from the Earth. This
target star is regarded as the impulse signal, and its wavefront
(cophase waveform) is essentially planar. The top part of
Fig. 1 depicts a digital communication over multipath chan-
nels, and the bottom part depicts an astronomical observation.
The light spot on a camera sensor accumulates of overlap-
ping diffraction patterns with varying amplitudes and spatial
coordinates. This accumulation is affected by atmospheric
turbulence with cells of various sizes and refractive index
values. The telescope and its camera sensor behind it are a
receiver in this generalized wireless communication system.
The telescope diameter is d , and its focal plane is situated
behind the lens at a distance f . Because the camera sensor
outputs numerous discrete pixels, the receiving parts are
equivalent to a digital baseband receiver. A camera mounted
on the equator could monitor Earth’s rotation such that no
relative motion can be observed between the camera and
the target sidereal star. We assume that the focus of the
image is accurate and that no loss of optical features occurs.
Image blur is caused by atmospheric turbulence and telescope
diffraction. In our approach, the light from a star is regarded
as the transmitter, and the atmosphere is regarded asmultipath
fading channels. The receiver is the optical telescope on the
ground, which captures blurred stellar images through the
atmosphere. The blurred image from the camera sensor can
be equalized through a 2D channel to produce a sharp image.

A. PERFECT DIFFRACTION AND BLURRED PATTERNS
The telescopic image of a point source is its diffraction
pattern caused by the shape of the telescope lens aperture.
The undistorted diffraction pattern of a point of starlight
passing through a circular telescope lens is depicted in
Fig. 2(a). As the telescope aperture increases, the central

FIGURE 2. Examples of a 2D impulse signal detected through
atmospheric turbulence channels [13].

light spot (Airy disk) and its surrounding diffraction rings
become increasingly narrow. Thus, a high spatial resolu-
tion can be achieved. However, in field experiments, the
recorded starlight is suboptimal because of the influence of
atmospheric turbulence. Figs. 2(b) and 2(c) display images
distorted by low-altitude and high-altitude atmospheric tur-
bulence, respectively. The image slowly deviates from its
average position with a deflection angle of several arcsec-
onds [13]. In both cases, the recorded images reflect the
accumulation of several undistorted diffraction patterns. The
image recorded during observation reflects the accumulation
of fast-moving undistorted diffraction patterns. The distorted
image displayed in Fig. 2(d) is the result of a point source
passing through a section of turbulent cells with large diffrac-
tion index values. This phenomenon is referred to as flashing
and indicates the accumulation of more diffraction patterns.

The relative intensity (normalized to 1.0 at the center of the
PSF) for a circular aperture is [24]

φ(|x|) =
[
2J1(k|x|)
k|x|

]2
, (2)

where |x| =
√
x2 + y2 is the radial distance in the focal

plane from (x, y) to the center of the Airy disk and k = πd
λf .

λ is the waveform of monochromatic radiation, and Jn(·) is
the first-kind Bessel function of order n. Fig. 3 presents the
normalized intensity [i.e., (2)] along the normalized distance
k|x|. The Rayleigh limit (distance from the center of the
Airy disk to the first minimum) is 3.83k|x|. According to
a numerical simulation, the FWHM for the ideal diffraction
pattern is

FWHM IDL = 3.24k|x|. (3)

The structure of the ideal PSF in (Fig. 3) indicates that
only a fraction of the total energy is confined to the Airy
disk. The encircled energy function (EEF) surrounded by a
ring of radius |x| and normalized to 1.0 when |x| approaches
infinity—can be represented as [24]

EEF(|x|) = 1− J02(k|x|)− J12(k|x|). (4)

Equation (4) is plotted in Fig. 4 and can be used to estimate
the encircled energy of a truncated ideal diffraction pattern.
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FIGURE 3. FWHM and Rayleigh limit for a perfect PSF of circular aperture.

FIGURE 4. Plot of the EEF as a function of distance k|x|.

The use of the truncated pattern as a basis function for decom-
posing diffused starlight is detailed in Section III.

B. ASTRONOMICAL CHANNEL
The frequency of variation in astronomical seeing is no more
than 15 Hz. Consequently, the telescopic image slowly devi-
ates from its average position with a deflection angle of sev-
eral arcseconds [4], [13]. Therefore, if the sidereal starlight
from an image sensor is integrated for more than 1 s, quasi-
Gaussian function can approximate the accumulated images.
Both the Gauss and Kolmogorov distribution functions are
commonly used to represent a blurred image [22]. These
functions are referred to as the Gauss and Kolmogorov PSFs
for simplicity.

The Gauss and Kolmogorov PSFs (normalized to 1.0 at the
center of the PSF) can be written as follows [22]:

fGAS (x, y) = e−
x2+y2

2σ2 , −∞ < x, y <∞ (5)

FIGURE 5. Efficiency of the receiver at various wavelengths.

and

fKOL(x, y) = e−
|x|

5
3 +|y|

5
3

σ , −∞ < x, y <∞, (6)

respectively. The FWHM for each of the two PSFs depends
on the coefficient σ and is unrelated to the absolute image
strength. A quantitative representation of the FWHM was
provided in [12].

C. STELLAR IMAGE FROM A CAMERA SENSOR
The camera sensor comprises an array of pixels of
pixel length p. Each pixel has three channels [i.e.,
red–green–blue (RGB) color channels] that can capture
starlight at different frequency bands. Thus, the camera sen-
sor can be regarded as a set of data sites scattered across a
spatial grid.

Fig. 5 presents an example of the relative sensitivity to
the three color channels of a camera sensor. Although each
color channel can sense a range of wavelengths, we let λR =
656.2 nm, λG = 550 nm, and λB = 450 nm represent the
wavelengths of the R, G, and B channels, respectively. Thus,
a diffused stellar image can be decomposed into a weighted
sum of diffraction patterns with their centers scattered around
the centroid of the target star image.

D. PROBLEM FORMULATION
Consider the problem of recovering a diffraction-limited
image T ⊗ φ from a sequence of N observed (blurry and
noisy, with no nebulosity or saturated pixels) stellar images
Rn, where n = 1, · · · ,N . By (1), we define the nth observed
image Rn(x) as

Rn(x) =
(
T ⊗ φ ⊗ hx,n

)
(x)+Wn(x), (7)

152906 VOLUME 9, 2021



D. Shiung et al.: Using Communication Channel Equalization to Remove Atmospheric Turbulence in Star Signal Detection

where hx,n andWn represent turbulence-induced PSF and the
sensor noise of the nth image, respectively. The assumptions
for the problem are as follows: (i) we have no prior or partial
information regarding the ‘‘true’’ unknown image T , (ii) the
space-time-varying PSF hx,n is unknown, (iii) the sensor
noiseWn is also unknown, (iv) the space-invariant diffraction-
limited PSF φ is known, and (v) all the images Rn, T ,Wn, and
the PSF hx,n are nonnegative.
Sections III and IV describe the processes of spatial chan-

nel equalization and performance evaluation, respectively.

III. IMPLEMENTATION OF SPATIAL CHANNEL
EQUALIZATION
First, a target star1 is selected from a stellar image for spatial
channel equalization. For notational convenience, the target
star is aligned with the focal plane’s coordinates (0, 0). How-
ever, the derivations described herein can easily be applied to
cases in which the target star is not centered at (0, 0). We also
omit the subscript n for Rn, hx,n, and Wn.
To reconstruct the original image, the blurred stellar image

must be resolved into a sum of perfectly diffracted patterns
(i.e., basis functions with centers scattered around the cen-
troid). Each basis function is a duplicate of a diffraction
pattern in the spatial domain that has been shifted by the
length of a certain number of pixels to produce a perfect
diffraction pattern. The process of perfect image reconstruc-
tion is formulated as a linear regression problem; the set of
coefficients {wl}l=1,··· ,L for Pφ(x) over the observation sites
{xm}m=1,··· ,M can approximate the target star in R(x):

R(x) ∼= Pφ(x) =
L∑
l=1

wlφl(x) =
L∑
l=1

wlφ(x− xl) (8)

constrained by

|xl | ≤ ε, l = 1, · · · ,L (9)

and

‖e‖2 = ete is minimized. (10)

L is the number of resolvable multipaths for a displacement
of deflection ε on the focal plane. The basis function φl(x) is
a shifted duplicate of the basis function φ(x) with its center
placed at xl ; that is, φl(x) = φ(x − xl). The error vector
e is defined as the difference between R(x) and Pφ(x): e =
[R(x1)−Pφ(x1), · · · ,R(xM )−Pφ(xM )]t . In general,M ≥ L.
Fig. 6 presents the algorithm for restoring the image of

the target star. First, the color stellar image is decomposed
into RGB subchannels to remove noise, and the centroid of
each subchannel is estimated. The coefficients {wl}l=1,··· ,L
for each subchannel are obtained as the channel response
for all N stellar images. The coefficients {wl}l=1,··· ,L are
determined by linear regression; the channel responses for the
sequence of stellar images are then aligned and averaged with
respect to the centroid. The averaged channel responses are

1Here, the target star may be a single-star or a multiple-star system
appearing as a single point of light.

FIGURE 6. Algorithm for restoring the target star.

used to determine if the image is of a single-star or a multiple-
star system. Finally, the images of the three subchannels are
reconstructed and synthesized to obtain a final color image.

A. LEAST SQUARES APPROXIMATION
Substituting theM observation sites into (8) yields

R(x1) = w1φ1(x1)+ · · · + wLφL(x1)+ e1,
R(x2) = w1φ1(x2)+ · · · + wLφL(x2)+ e2,

...

R(xM ) = w1φ1(xM )+ · · · + wLφL(xM )+ eM .

(11)

The system of equations in (11) can be rewritten as

Aw+ e = r, (12)

where

A =


φ1(x1) φ2(x1) · · · φL(x1)
φ1(x2) φ2(x2) · · · φL(x2)
...

...
...

φ1(xM ) φ2(xM ) · · · φL(xM )

 ,
w = [w1,w2, · · · ,wL]t , e = [e1, e2, · · · , eM ]t , and r =
[R(x1),R(x2), · · · ,R(xM )]t . To obtain the optimal solution ŵ
for the weighting vector w, the least squares rule is applied
to ‖e‖2 = ete, and ∇

(
‖e‖2

)
= 0. This yields the following

equation [25]:

∇

(
‖e‖2

)
= ∇

(
(Aw− r)t (Aw− r)

)
= ∇

(
(wtAt

− rt )(Aw− r)
)

= 2AtAw− 2Atr = 0. (13)
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The solution is

ŵ = (AtA)−1Atr (14)

if the matrix AtA is nonsingular. Because A is an M × L
matrix, whereM ≥ L, AtA is an L × L matrix.

B. PROOF OF WELL-POSEDNESS
Let Q = AtA. If Q is nonsingular, then Q−1 exists and the
equations (8)–(10) are well-posed (i.e., a solution exists and
we have a unique solution).

A consideration of positive-definite matrices aids in for-
mulating the proof. A real symmetric matrix Q is regarded
as semipositive definite if its associated quadratic form is
nonnegative—in other words, if

ctQc =
L∑
i=1

L∑
j=1

cicjQij ≥ 0 (15)

for all c = [c1, · · · , cL]t ∈ RL . R denotes the set of real
numbers, and Qij is the element of Q in the ith row and jth
column. If the quadratic form (15) is 0 only for c = 0, then
Q is positive definite. A crucial property of positive-definite
matrices is that all their eigenvalues are positive; thus, they
are nonsingular [26].

According to the definitions of A and the basis function
φ(|x|) in (2), Q is real. Furthermore,

Qt
=
(
AtA

)t
= At (At )t = AtA = Q. (16)

Thus,Q is also symmetric. Therefore,Q is positive definite
because the quadratic form defined in (15) becomes

ctQc = ctAtAc

= ct


∑M

i=1 φ
2
1 (xi) · · ·

∑M
i=1 φ1(xi)φL(xi)

...
. . .

...∑M
i=1 φL(xi)φ1(xi) · · ·

∑M
i=1 φ

2
L(xi)

c
=

M∑
i=1

[c1φ1(xi)+ · · · + cLφL(xi)]2 ≥ 0. (17)

Notably, the equality holds only for c = 0, indicating that
the solution in (14) exists and is unique for the least squares
approximation.

C. IMPLEMENTATION
Consider a rectangular camera sensor used to capture images
of a target star with atmospheric turbulence. The camera sen-
sor consists of an array of pixels with size p. In this scenario,
the centers of the basis functions coincide with the centers
of the pixels in the pixel array. Moreover, the observation
sites are located at the centers of the pixels in the pixel array;
however, the observation sites should fully cover the space
occupied by the diffused target star. In addition, the number
of basis functionsmust be sufficient to account for deflections
of starlight traveling through atmospheric turbulence.

Because the gray level recorded with the camera sensor is
discrete and because a pixel can only capture starlight within

FIGURE 7. Pixel array for representing basis functions.

a confined space, the basis function φ(x) in (2) must first
be transformed into its discrete version φ[m, n] at the mth
horizontal pixel and nth vertical pixel, where m and n are
integers. Thus, φ[m, n] is a matrix and can be represented as
follows:

φ[m, n] =
∫ (m+ 1

2 )p

(m− 1
2 )p

∫ (n+ 1
2 )p

(n− 1
2 )p

φ(x, y)dxdy, (18)

where m, n ∈ Z. The number of pixels required to represent
φ[m, n] is determined by the percentage of the power ratio
intended to be preserved with respect to the total power con-
tained in φ(x). However, for any given number of pixels, the
contained power is also a function of the physical dimensions
of the telescope, the pixel size of the camera sensor, and the
considered wavelength. The same technique used to obtain
φl(x) and R(x) is used to obtain the discrete counterparts
φl[m, n] and R[m, n], respectively.
Fig. 7 presents an example of a pixel array for representing

basis functions for d = 115 mm, f = 845.25 mm, p =
6.4236 µm, λ = 656.2 nm, and ε = 5.5p, yielding k =
6.5137×105 m−1. As indicated in (5) and (6), both the Gauss
and Kolmogorov PSFs extend to infinity and decay as x and
y approach infinity. If we take M = 252 as the number of
observation sites, then L = 152. By (4), we confirm that the
11 × 11 matrix for φ[m, n] contains approximately 97.21%
of the total energy. The basis functions are shifted replicas of
the basis function at the various locations presented in Fig. 7.
The approximation defined in (8) is then rewritten as follows:

R[m, n] ∼=
L∑
l=1

wlφl[m, n]. (19)

The performance of the spatial channel equalizer was eval-
uated by calculating the FWHM values for the imaged star at
each of the three subchannels. Both Gauss and Kolmogorov
PSFs achieved adequate fit with starlight images. However,
according to [12], the Kolmogorov PSF achieves better fit for
field-captured stellar images than the Gauss PSF does. The
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FWHM obtained from fitting with a Kolmogorov PSF can be
represented in terms of the parameter σ as follows:

FWHMKOL = 2σ (ln 2)
3
5 . (20)

Notably, σ determines the shape of the PSF and has
the same units as FWHMKOL . Thus, the problem of esti-
mating the FWHM of a single star is transformed into a
surface-fitting problem with respect to σ .

D. SINGLE-STAR VERSUS MULTIPLE-STAR SYSTEMS
A multiple-star system has two or more component stars
orbiting around their center of mass. Understanding the type
of the target star, for example, a single star or multiple
stars, is essential for reconstructing the diffraction-limit stel-
lar image. This information can be obtained by analyzing
the channel response of the target star by using (14) and
then using a rotation-based autocorrelation function for the
channel response defined as

A(θ) 1=
∑
n,m

〈ŵ〉N ,]0 ~ 〈ŵ〉N ,]θ , (21)

where θ is an integermultiple of 90◦. Note thematrix operator
〈·〉N ,]θ denotes averaging N images and then rotating coun-
terclockwise with respect to the center of mass by θ degrees.
The notation ~ indicates the element-wise in-place product
of the two matrices.

Using (21), we can classify whether a target star is a
single star or a multiple-star system. The channel response
for a single star is circularly symmetric, whereas that of
a multiple-star system is asymmetric. Fig. 8 compares the
normalized autocorrelation functions, A(θ )/A(0), for a sin-
gle star (SAO 67323) and a binary star (Epsilon Lyrae 2).
A binary star consists of two stars orbiting around their center
of mass and is of concern to astronomers due to the interesting
physical phenomena that they exhibit [27]. We can see that
the SAO 67323 image has almost identical autocorrelation for
all the three RGB subchannels due to its circularly symmet-
ric channel response. By contrast, the shape of the channel
response for the Epsilon Lyrae 2 image is more elliptical.
Thus, the normalized autocorrelation is 1 when θ = 0◦, 180◦

and is reduced when θ = 90◦ and 270◦.
Our 2D channel equalization approach is based on the

decomposition of a diffused stellar image into a linear com-
bination of perfect diffraction patterns and then aligning the
centroids of the patterns. If the target star is classified as a sin-
gle star, the reconstructed image is obtained by shifting each
response to its centroid with a strength equal to the sum of its
channel responses. If the target star is classified as a multiple-
star system, the channel response is first surface fitted by
two Gaussian distribution functions to estimate the centroids
of the two component stars. This process can be continued
to identify a third or fourth component star. In Section IV,
we provide more detailed examples demonstrating the utility
of this approach for analyzing binary stars and compare the
method with OBD.

TABLE 1. Parameters used in experiments 1 and 2.

FIGURE 8. A comparison of the autocorrelation functions for a single star
(SAO 67323) and a binary star (Epsilon Lyrae 2) in RGB subchannels (from
top to bottom).

IV. PERFORMANCE EVALUATION
We present the results of our method on two types of
actual astronomical images. All images were taken by the
authors using an off-the-shelf 4.5-inch f/7.35 APM/TMB
CNC LWII refractor and a Canon EOS 350D digital sin-
gle lens reflex (DSLR) camera on Mount He-Huan in Kun-
Yang, Taiwan. The first data set (Experiment 1) comprised
single-shot images of Beta Leonis, a blue-white star of mag-
nitude 2.23 and 36 light years from Earth. The second data set
(Experiment 2) comprised a sequence of images of Epsilon
Lyrae, a multiple star system that consists of at least two
binary stars. The northern and southern binary pairs are
named Epsilon 1 and Epsilon 2, respectively. The parameters
used are tabulated in Table 1.

A. SINGLE-STAR SYSTEM
Fig. 9 presents the original stellar image captured through
atmospheric turbulence. The camera sensor has relative sen-
sitivity in the wavelength range of 400–700 nm, as presented
in Fig. 5. The color images were linearly combined with iden-
tical weights (i.e., 1/3) for each color channel. We observed
that the original stellar image was not sharp and had large
FWHM values. We use (3) and (20) to estimate the FWHM
values of the three color channels; the results are displayed
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FIGURE 9. Original stellar image.

FIGURE 10. Corrected image.

TABLE 2. Improvement in FWHMs before and after channel equalization.

in Table 2. The FWHM values of the three color channels
ranged from 3.1827 arcsec for the B channel to 3.7708 arcsec
for the G channel. The RGB synthesized stellar image had an
FWHM value of 3.4059 arcsec.

The reconstructed stellar image is thus identical to an
image with a perfect diffraction pattern at an appropriate
intensity. After the replicas of each channel were aligned
in the spatial domain, all three channels achieved the same
FWHM of 1.2581 arcsec. The FWHM derived for the synthe-
sized stellar image was unchanged. The resulting synthesized
color image is displayed in Fig. 10. The corrected stellar
image was sharper than the original image and had a sig-
nificantly smaller FWHM. Our results are similar to those
reported for corrected images processed with AO in other
studies, such as [1]–[3]. The results after equalization are
summarized in Table 2.

FIGURE 11. Temporal evolution of 20 observed images of the binary star
system Epsilon Lyrae 1.

FIGURE 12. Comparison of the restored images of Epsilon Lyrae 1 with
our approach (top row) and with OBD (bottom row). The ground truth
images are included at the upper-right corners of (e) and (j).

FIGURE 13. Temporal evolution of 20 observed images of the binary star
system Epsilon Lyrae 2.

Table 2 also lists the theoretical limits for a scenario with
infinitesimal pixels. The R channel came closest to the theo-
retical limit, followed by the G and B channels. The synthe-
sized stellar image was 26.1% [(1.2581− 0.9977)/0.9977×
100%] wider than the theoretical limit. The FWHM could be
improved for all channels if a camera sensor with a smaller
pixel size is used.

B. MULTIPLE-STAR SYSTEM
In Experiment 2, we use images of Epsilon Lyrae to demon-
strate image recovery and analysis for a multiple-star system.
Epsilon Lyrae2 has two notable binary stars named Epsilon
Lyrae 1 and Epsilon Lyrae 2. The component stars of Epsilon
Lyrae 1 have magnitudes of 4.7 and 6.2 and are separated by
2.6 arcsec. The main components of Epsilon Lyrae 2 have
magnitudes 5.1 and 5.5 and are separated by 2.3 arcsec.
According to Table 1, the resolution of the sensor array was
p/f = 1.5675 arcsec. Furthermore, as indicated in Table 2,

2The fifth component of this system, orbiting Epsilon Lyrae 2, has a
maximum observed separation of 0.2 arcsec and is below the resolution limit
of our imaging platform.
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FIGURE 14. Comparison of the restored images of Epsilon Lyrae 2 with
our approach (top row) and with OBD (bottom row). The ground truth
images are included at the upper-right corners of (e) and (j).

the resolution limits of the optics were at least 1.2111 arcsec.
Thus, Epsilon Lyrae 1 & 2 were ideal targets for testing the
spatial resolution capabilities of our algorithm.

Fig. 11 and 13 present a series of 20 observed images
of Epsilon Lyrae 1 and 2. Comparisons of our approach
with OBD [21] for Epsilon Lyrae 1 and 2 are displayed in
Fig. 12 and 14, respectively. These images are best viewed
on a screen rather than in print. The restored images are
presented in Fig. 12(a)–(e) and Fig. 14(a)–(e); those from
OBD are displayed in Fig. 12(f)–(j) and Fig. 14(f)–(j). The
ground truth images of these two binary stars are provided in
the upper-right corners of subfigures (e) and (f). For Epsilon
Lyrae 1, our approach generates comparable or slightly
better-defined images than OBD does. Both our approach and
OBD were unable to reveal distinguishable component stars
in this case. However, by using (21) to identify the shape of
the autocorrelation function, we can conclude that the target
star is indeed a binary star and that the two component stars
have a magnitude difference of 1.25 and are separated by
2.0 arcsec. The restored images in Figs. 12 and 14 recovered
T ⊗ h, whereas that of OBD recovered T only. Thus, the pro-
posed method is useful for analyzing a multiple-star system
even if the multiple-star system is visually indistinguishable
from a single star.

Fig. 14 clearly demonstrates that both our approach and
that of OBD can both resolve the two component stars of
Epsilon Lyrae 2. However, our approach resolves the two
component stars better than OBD. The restored image also
better identifies the correct placement of the two components
than OBD does as revealed by comparison with the ground
truth image. Through numerical calculation, we verify that
the two component stars have a magnitude difference of
0.24 and are separated by 2.12 arcsec. These results demon-
strate the utility of our approach for analyzing multiple-star
systems.

V. CONCLUSION AND FUTURE WORK
We proposed and demonstrated a novel approach based on
wireless communication methods for restoring blurred stellar
images. First, the centers of the RGB channels in a blurred

image of a target star were estimated; subsequently, linear
regression was applied to estimate the RGB channel response
in the spatial domain to in turn approximate the image with
a weighted sum of independent basis functions. Finally, the
blurred image was equalized and reconstructed in the spatial
domain to obtain a sharp image. Detections of both single-star
(Beta Leonis) and multiple-star systems (Epsilon Lyrae) were
demonstrated. Numerical results revealed that the FWHM
of the reconstructed image could be significantly improved
to approach the theoretical diffraction limit. This technique
extends stellar imaging by using wireless communication
methods and is a new approach to imaging through atmo-
spheric turbulence.

Future work includes investigating equalization of star
images containing nebulosity with space-varying PSFs. This
equalization might be achieved by dividing the image into
sections with stars and with nebulosity and applying different
techniques to the sections.
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