
Received October 14, 2021, accepted November 3, 2021, date of publication November 8, 2021,
date of current version November 23, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3126757

Developing Computational Thinking Skills With
Algorithm-Driven Spreadsheeting
MÁRIA CSERNOCH 1, PIROSKA BIRÓ 1,2, AND JÁNOS MÁTH3
1Faculty of Informatics, University of Debrecen, 4032 Debrecen, Hungary
2Socio-Human Sciences and Engineering, Faculty of Economics, Sapientia Hungarian University of Transylvania, 530104 Miercurea Ciuc, Romania
3Faculty of Humanities, University of Debrecen, 4032 Debrecen, Hungary

Corresponding author: Mária Csernoch (csernoch.maria@inf.unideb.hu)

This work was supported in part by the construction under Grant EFOP-3.6.3-VEKOP-16-2017-00002, and in part by the European Union
through the European Social Fund.

This work involved human subjects or animals in its research. The authors confirm that all human/animal subject research procedures and
protocols are exempt from review board approval.

ABSTRACT The paper presents the details of a four-year project to test the effectiveness of teaching
spreadsheeting with spreadsheet programming, instead of the traditional, widely accepted surface approach
methods. The novel method applied in the project, entitled Sprego (Spreadsheet Lego), is a concept-
based problem-solving approach adapted from the didactics of other sciences and computer programming.
In the experimental group contextualized, real-world programming problems are presented in a spreadsheet
environment. A semi-unplugged data-driven analysis is carried out based on each problem, which is followed
by the building of a feasible algorithm, expressed by natural language expressions. The coding is completed
in the following step by applying a limited number of spreadsheet (Sprego) functions, multilevel, and array
formulas. The final steps of the process are discussion and debugging. On the other hand, classical, tool-
centered approaches are applied in the control groups. Our research reveals that the traditional surface
approach methods for teaching spreadsheeting do not provide long lasting, reliable knowledge which would
provide students and end-users with effective problem-solving strategies, while Sprego does. Beyond this
finding, the project proves that Sprego supports schema construction and extended abstraction, which is one
of the major hiatus points of traditional surface navigation methods. The project also reveals that developing
computational thinking skills should not be downgraded, and themisconceptions of self-taught end-users and
user-friendly applications should be reconsidered, especially their application in educational environments.
Gaining effective computer problem-solving skills and knowledge-transfer abilities is not magic, but a
time-consuming process which requires consciously developed and effective methods, and teachers who
accept the incremental nature of the sciences.

INDEX TERMS Algorithm-driven spreadsheeting, long lasting knowledge, schema construction, cognitive
load, end-user computing, computational thinking.

I. INTRODUCTION
‘‘Each problem that I solved became a rule which served
afterwards to solve other problems.’’ [1]

The major concern of the present study is whether
a thoroughly developed algorithm-driven spreadsheet
programming method could serve the development of
students’ computational thinking skills in tertiary educa-
tion. The focus is on (1) the improvement of software
engineering students’ algorithmic skills, (2) their computer

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Imran Tariq .

problem-solving abilities through knowledge-transfer activa-
tion, and (3) how Sprego programming (Spreadsheet Lego)
[2]–[4] could prepare them for further studies in informat-
ics/computer sciences, especially in data-management and
imperative and/or object-oriented programming languages.
To provide the answer, we offer the results of a four-year
study of testing and analyzing post-secondary and first
year university students of informatics on their spread-
sheet programming abilities. In the project, the effective-
ness of the widely accepted, tested, and commercialized
surface-approach methods were compared to the algorithm-
and schema-driven Sprego programming. The question was

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 153943

https://orcid.org/0000-0002-7088-7714
https://orcid.org/0000-0001-5997-2515
https://orcid.org/0000-0003-2787-8334

M. Csernoch et al.: Developing Computational Thinking Skills With Algorithm-Driven Spreadsheeting

whether students in tertiary computer science education
needed such simplified programming instructions or knowl-
edge built up in ‘‘serious’’ programming experiences would
serve them in other environments, such as spreadsheets.

It is not surprising that the two most frequently asked ques-
tions considering computer science/informatics education are
� Should we teach students to program?� and� Should all
students learn to program? �. Our local surveys – repeated
in classes and in recently organized conferences – revealed
that most students, teachers, and scholars are convinced that
these questions were presented around the time that Wing [5]
proposed her computational thinking approach in 2006. How-
ever, they have been lying around unsolved for about thirty
years [6]. Soloway and his colleagues clearly declared that
programming is ubiquitous, and it should be

– expanded to end-user computing,
– socially sanctioned intellectual advances for everyone,
– embedded in a rich cognitive context.

They also expressed the ideas that creating a computational
medium requires making programming easier to learn and
do, and requires expressiveness and usefulness. Considering
the same problems, the misconceptions circulating around
programming were brought up twenty years later, clearly
indicating that not much had changed [7]. This happened
in spite of the fact that the power of spreadsheeting was
recognized: ‘‘There is clear potential to generate significant
benefits by developing improved methodologies for many of
the very important activities performed by millions of peo-
ple who interact with spreadsheet information systems.’’ [8].
However, the ‘‘improved methodologies’’ primarily focus
either on the placement of spreadsheeting in a novel pro-
gramming interface [9]–[12] or on reducing the complexity of
spreadsheet interfaces [13]–[15]. The choice of methodology
development might be influenced by the results of [15]. The
authors of the paper found that out of four abilities and
skills – logical reasoning, spatial visualization, mnemonic,
and sequencing – only logical reasoning may be developed
by spreadsheeting. Nevertheless, we have found that it is the
tool-centered, low-mathability approaches [16] that narrow
the list not spreadsheeting, since Sprego programming has
positive effect on two more abilities, namely spatial visual-
ization and sequencing [17], [18].

Beyond this potentials, we also have to deal with the
risks of spreadsheet programming, thoroughly detailed, ana-
lyzed, [13], [20]–[29], and solved to some extent [30]–[34].
In general, the wider research community tends to focus
on the financial losses caused by poorly designed spread-
sheets rather than on the development of ‘‘real’’ spreadsheet
methodologies. In this context ‘‘real’’ stands for methodolo-
gies where the programming (coding) happens on the spread-
sheet interface by taking advantage of the built-in functions
and the well-developed graphical interface. This shortcoming
is clearly indicated by the fact that the thirty-year-oldmethod-
ological problems are still with us. At this time, we must
formulate a novel question�Why have we not been able to

carry out what was so clear thirty years ago, and ten years
ago? �. Nothing has happened, in spite of the awareness
that ‘‘For many people, the programming language of choice
is a spreadsheet. In fact, spreadsheets are probably the most
widely used end-user programming systems. The people who
use spreadsheets to program are often end-user programmers.
End-user programmers are people who often have little or
no training in programming but still do some amount of
programming. In the U.S. alone, the number of end-user
programmers is conservatively estimated at 11 million, com-
pared to only 2.75million other, professional programmers.’’,
and these numbers have increased since this estimate was
made [14], [21], [26], [31], [34], [35], [36].

Finding solutions to these problems is far beyond the
scope of the present study; yet some of the questions closely
related to its focus can be answered. The following is
a list of well-documented problems to which Sprego and
its teaching-learning methodology could provide effective
solution:
– over-mystification of the imperative and the object-

oriented languages and misinterpretation of program-
ming and coding [6], [35], [37]–[39];

– downgrading of end-user programming by IT profes-
sionals, corporate managers, and information systems
researchers. Spreadsheets are almost invisible in the
information systems and computer science research
communities 8], [11], [40]–[43], are considered bor-
ing [44], [45], and involve mindless, routine tasks [46],
and are reduced to computer driving licenses and prod-
uct knowledge [47];

– decontextualized teaching materials [48]–[51], and
interface-centered approaches to end-user activi-
ties 21], [49], [50], [28], [52]–[55] (Fig. 1);

– misleading user-friendly slogans from the leading
software companies whose effectiveness have never
been proved 56], [22], in accordance with software-
centered exams [28], [50] (with 40 hours of study
time [57]), a lack of schemata for utilizing fast think-
ing [1], [40], [58]–[65];

– computer illiterate teachers at all levels of education,
which has sadly been proved during the pandemic, miss-
ing aspects of TPCK (Technological Pedagogical Con-
tent Knowledge) [66], [67], self-nominated educators of
informatics [68], and experienced but not expert teachers
in informatics [69], [50]. Pólya [58] clearly stated that
‘‘Thus, a teacher of mathematics has a great opportunity.
If he fills his allotted time with drilling his students in
routine operations he kills their interest, hampers their
intellectual development, and misuses his opportunity.
But if he challenges the curiosity of his students by
setting them problems proportionate to their knowledge,
and helps them to solve their problems with stimulating
questions, he may give them a taste for, and some means
of, independent thinking.’’ The same is true, but left
unattended in teaching informatics in general, and in
end-user computing in particular;

153944 VOLUME 9, 2021

M. Csernoch et al.: Developing Computational Thinking Skills With Algorithm-Driven Spreadsheeting

– illiterate end-users [19], [28], [40], [52], [70]–[72] and
unreliable self-evaluations – considering the level of
digital competence [22], [73]. Wolfram [51] went even
further by claiming that ‘‘The finery of writing odd
maths symbols doesn’t seem to me to be the essence of
maths. . . .With no effective, general education in com-
putational thinking, most people can easily be misled,
and they are.’’ The same is true in end-user computing.
Following the instructions of computer-cooking course-
books and tests (Fig. 1), navigating on graphic interfaces
at lightning speed does not develop computer problem-
solving abilities;

– accepting the myth of the digital native and the
multi-tasker generations proposed by Prensky [74] has
been clearly rejected recently, and been proved to be
only a myth [75], [76].

FIGURE 1. Examples of decontextualized tasks from testing and teaching
materials.

At present, informatics as a school subject is reclaim-
ing the infamous title of being the most hated topic from
maths: ‘‘. . .mathematics has the dubious honor of being the
least popular subject in the curriculum. . .Future teachers pass
through the elementary schools learning to detest mathemat-
ics. . .They return to the elementary school to teach a new
generation to detest it.’’ [58]. Beyond being hated, informatics
seems as secluded as mathematics [51].

It is clear that we are in need of fundamental changes,
as stated by so many educators. The present paper clearly
demonstrates that neither primary nor secondary school stu-
dents can handle end-user problems from a programming
point of view. Furthermore, software engineering students
of informatics in tertiary education face the same problem.
The research detailed in the paper reveals that the high-
mathability [16], [77], [78] Sprego programming [2]–[4]
would serve both end-users and professional software engi-
neers in the development of computational thinking skills and
knowledge-transfer activation.

A. SURFACE-CENTERED VS. ALGORITHM-DRIVEN
END-USER APPROACHES
For the placement of the different teaching-learning
approaches in informatics, the typology of computer
problem-solving approaches would serve us. The typol-
ogy defines two hypernym categories – deep and surface
approaches –, and within them two and three hyponyms,
respectively – concept-based and computer algorithmic and
debugging-based; algorithm-based, information-based and
trial-and-error wizard-based [79]–[81], [50]. The hyper-
nym categories are in complete accordance with the
problem-solving systems of various sciences (Table 1):

– mathability – high vs. low [16]
– evidence utilization – innovation-led-evidence vs.

evidence-led-innovation [51], [82]
– higher order thinking skill (HOTS) – [concept-based]

problem-solving vs. scientific approach [65]
– minimalist learning theory (MLT) – active-user vs. end-

user [83], [84].

TABLE 1. Systems of problem-solving approaches in various sciences.

In general, deep approach methods are problem-driven,
while surface approaches focus on tools.

Considering the three hyponyms of the surface approach
methods, we must make a distinction between the
algorithm-based and the other two methods – information-
based and trial-and-error wizard-based – due to the thinking
mode [62] which is activated in the process of problem-
solving. In the information- and the trial-and-error wizard-
based methods slow thinking is activated, which has been
proved error-prone [40], [62]. On the other hand, the
algorithm-based methods activate reliable and effective
fast thinking [62] by using and calling schemata built up
with computer algorithmic- and debugging-based methods
[58]–[61], [63], [64].

B. SURFACE-CENTERED SPREADSHEETING
The essence of the surface approach methods is that they tend
to present details on the interfaces, wizards, or helps; they
place emphasis on non-spreadsheeting (e.g., typing, text for-
matting) or minor issues, mismatch knowledge-transfer and
program-specific items, but leave real problem-solving unat-
tended [13], [14], [15], [51], [85]. The problems of surface
approach methods in relation to computers was expressed

VOLUME 9, 2021 153945

M. Csernoch et al.: Developing Computational Thinking Skills With Algorithm-Driven Spreadsheeting

as early as 1981 [86], but only a few listened: ‘‘It is some-
times thought that, with the availability of the hand-calculator
and its big brother, the computer, the use of mathematics is
reduced to pushing buttons and feeding in canned programs.
This view would be quite false.’’ Wolfram [51] goes one step
further and claims that ‘‘When a major newmachinery comes
along – as computers have – it’s rather disorientating.’’ With
the recently published and readily available digital tools, this
fear has become reality. End-users, including teachers, cannot
realize that ‘‘It is the drudgery that has been eliminated from
mathematics by these modern devices and not the need for
thought. We assuredly still need to recognize when a problem
is suitable – and ripe – for mathematical treatment, and we
need to plan a strategy for tackling the problem.’’ [86] and
‘‘Machinery has mostly replaced human brawn not human
brain.’’ [51].

However, warnings are overridden by the marketing voices
of software companies, by teachers’ lack of belief in the incre-
mental nature of science, expressed in the Meaning System
Model [87], and by the sunk cost fallacy [62].

Traditional spreadsheet-educational materials, on the one
hand, do not present real-world problems (Fig. 1). Fur-
thermore, these surface approach methods do not consider
any proven problem-solving methods which work effectively
either in STEM or computer programming [56], [88]–[90].
One further undesired effect of surface approach methods is
that they lead to false conclusions by claiming that end-user
activities are boring [44], [45] routine [46], and are only
suitable for low-level secretaries, and as such, should be
banished from computer education.

C. SPREADSHEET PROGRAMMING
Spreadsheet programs are officially meant to serve end-users,
but it is thoroughly documented that they are Integrated
Development Environments (IDE) [8], and as such spread-
sheet programming is an example of exaptation [91]. (Exap-
tation is typically used to describe a change in the function
of a feature during the evolution process, and is not only
applicable in biological evolution but also in technological
innovation.) It is also claimed by Hatamleh & Tilesch [91]
that ‘‘Currently there is an abundance of intellectual property
that can be repurposed or used in areas and functions outside
of their original intended application.’’, and it has been
found that spreadsheet programming is one of them [2]–[4],
[8]–[12], [17], [18], [21], [30], [33]–[35], [41]–[43],
[53], [55], [96], [97]–[101], [109], [110].

One of the greatest advantages of spreadsheet program-
ming is the simplicity of syntax. Several of themajor concerns
of teaching programmingwith imperative and object-oriented
languages are not present in spreadsheet environments [10],
[80], [92], [93]. On the other hand, a well-established con-
cept of function and practice arrives from mathematics [51],
[82], [94], [95], which is enough for spreadsheet program-
ming [92]. By making the syntax simple, there is more room
for solving real-world problems [51], [82], [95], handling
real data, building algorithms, and discussing and debugging

outputs. In general, making students interested in both han-
dling data and programming [10], [51], [53], [55], [80], [82],
[95]–[101].

II. SPREGO
A. THE ESSENCE OF SPREGO
In a nutshell, Sprego (Spreadsheet Lego) [2]–[4] primarily
follows the concept-based problem-solving method of Pólya
[58] supported by further studies and theories, such as the
cognitive load theory [63], [64], the psychology of teaching
mathematics [102], the theory of thinking fast and slow [62],
and the meaning system model [87].

In the following, the exaptation from end-user spreadsheet-
ing to Sprego programming is summarized (without repeating
the theoretical background detailed above).

– the adaptation and combination of the above mentioned
theories to teach spreadsheeting and spreadsheet pro-
gramming aiming at active-users;

– developing programming and knowledge-transfer-
centered tasks based on real-world data sources. In this
way the widely accepted decontextualized classwork
(Fig. 1) can be replaced with interesting and motivating
contents;

– introducing concept-based methods focusing on prob-
lems and their algorithms, instead of tools. This is
carried out by (1) avoiding data-typing and meaning-
less data sources, (2) reducing the number of functions
to a dozen (with possible extensions) (Table 2) and
avoiding function wizards, (3) whenever it is possi-
ble omitting formula-copying. By leaving behind these
surface-handling methods, there is the opportunity for
building up firm schemata for activating fast thinking in
solving future tasks;

– inventing and introducing unplugged and semi-
unplugged teaching materials and tools for better
understanding and making classes more enjoyable
[103]–[108].

– using array formulas [109], [110]. One advantage of
array formulas is that one of the most frequently
occurring errors originating in formula-copying can be
reduced [26], [40], [111]. Array formulas also serve the
introduction of the concept of n-dimensional vectors and
operations on these vectors, knowledge which can be
transferred to programming and database management.

TABLE 2. The basic set of sprego functions [2].

153946 VOLUME 9, 2021

M. Csernoch et al.: Developing Computational Thinking Skills With Algorithm-Driven Spreadsheeting

The aims of this method, beyond teaching spreadsheeting
effectively, are:

– preparing students for higher and ‘‘serious’’ informatics
– programming, database management,

– developing their computational thinking skills and
abilities,

– strengtheningmathematical notions through spreadsheet
problem-solving and practice,

– solving real-world problems,
– giving students the chance to see beyond interfaces and

pure surface-navigation,
– revealing the incremental nature of the sciences.

Our previous teaching and research experiences and
tests have already proved the effectiveness of Sprego
[17], [18], [73], [112]–[116] compared to surface approach
methods. These studies have been carried out primarily in
primary and secondary education and with relatively small
samples in tertiary education. In the present paper, we would
like to emphasize that Sprego may be introduced at all levels
where teachers are open to algorithm-driven spreadsheet
teaching, and are able to completely leave behind the surface
approach methods. The latter condition is extremely impor-
tant, because we also found proof that mixing the surface
and the deep approach methods causes more harm than
good [116]. Our previous papers and books [2]–[4], [77], [78]
provide the details of the methods, and can be adapted to any
spreadsheeting environment.

B. DESCRIPTION OF METHODOLOGY
According to the principles of Sprego, strictly real-world data
sources are presented in the form of 1NF (first normal form)
tables during both lectures and seminars. The contents of
tables are in accordance with age, background knowledge,
and students’ interests (e.g., local food places, game boards,
geographical contents, movies, youtubers, sports).

Due to the limited time available for the subject, pre-
prepared tables have been uploaded to a website accessible
for the class.

The first step of the teaching-learning process is the thor-
ough analysis of the actual table. In this phase, the number of
data fields, records, and data types are discussed and decided.

Being aware of the nature of the data table, (1) problems
are presented by the teacher – later on by the students.
(2) The problem is discussed and analyzed, all the charac-
teristics and connections describing the correspondent data
are collected, written on the blackboard (teacher) and copied
in exercise books, notepads, etc. (students). (3) Next, the
algorithm of the problem is discussed and built along with
the input and out values and their data types. Using natural
language expressions, the algorithm is written on the black-
board and various unplugged tools by both the teacher and the
students. The most frequently used unplugged tools to take
notes and demonstrate multilevel functions are matryoshka
dolls (original or 3D-printed), origami boat sets and toy barrel
sets. (4) The next stage is coding. In the coding process,

as detailed above, a limited number of spreadsheet functions
– Sprego functions, Table 2 – are applied to reduce the cog-
nitive load of the ≈500 built-in spreadsheet functions [117].
Furthermore, whenever it is possible, array formulas are cre-
ated [2], [109], [110] to reduce copying errors [20], [26] and
making formulas as secure as possible. (5) The final step
of the problem-solving process is discussion and debugging.
Here it must be emphasize here that this step is as important
in spreadsheet programming as it is in other programming
languages. Furthermore, being aware of the relatively high
number of errors in spreadsheet documents, utmost care
must be taken to discuss and debug spreadsheeting issues
[13], [20]–[29].

Using unplugged tools along with role-play in tertiary
education might seem childish. However, it has been found
that first year students are as keen on play-along as K-12
students. In addition, the interviews following these experi-
ences proved that these occasions helped students understand
algorithms, including those whose codes they have already
known by heart.

III. STUDY
A. SCHEDULING
The research took place over a four-year period, collecting
data in three pre-tests (PRET), and in three delayed post-tests
(DPOSTT). In both cases, approximately twenty minutes
were given to complete the paper-based tests.

Both the experimental (G1) and the control groups (G2)
were made up of students starting their studies in tertiary
computer science education. According to the national cur-
riculum, all the participating students studied spreadsheet-
ing in elementary and high school. Most of them took the
maturation exams in informatics, which include spreadsheet-
ing [118], [119]. On average, our first year university students
completed these exams with excellent results, and no signifi-
cant differences were found between the experimental and the
control groups. Officially, students arrived at the university
well prepared in spreadsheeting.

The pre-tests were carried out in the very first week of
the first semester of the students in their tertiary education.
At this time the students’ brought in knowledge was tested.
The delayed post-tests were administered at least one year
after the treatment, depending on the students’ availability.
The students who were tested in the delayed post-tests were
still studying at the faculty.

The intervention took place in a two-week period, as part
of the subject entitled Introduction to Informatics, which
involved two-hour lectures and two-hour computer lab ses-
sions every week, adding up to eight hours. This is an
extremely short time, but both students and faculty members
considered teaching spreadsheeting a waste of time.

The number of students participating in the test is pre-
sented in Table 3. Between the pre-tests and the delayed
post-tests there was no further spreadsheet teaching and doc-
umented spreadsheeting in either the experimental or the

VOLUME 9, 2021 153947

M. Csernoch et al.: Developing Computational Thinking Skills With Algorithm-Driven Spreadsheeting

TABLE 3. The number of students participating in the pre-test (PRET) and
the delayed post-test (DPOSTT).

control groups. The reason for this is that spreadsheeting and
spreadsheet programming is still not considered ‘‘serious’’
informatics, consequently it is absent from all the activities
of the students. However, it is documented that both groups
studied at least two semesters of high-level programming lan-
guages, covering at least three imperative and object-oriented
languages.

Furthermore, students were not informed in advance of
the tests, consequently they did not have the opportunity
to prepare for testing. We can assume that they solved the
tasks based on their knowledge derived from their last official
encounter with spreadsheeting.

B. METHOD OF TESTING
Students were required to complete the tasks on the test
papers, without any help, neither from their fellow students
nor computer programs (helps, wizards, miscellaneous online
sources). The reason for this ‘‘old-fashioned’’ testing method
was to track how students create spreadsheet formulas, and
we also wanted to identify the algorithms behind their solu-
tions. These aims of the study cannot be carried out in spread-
sheet environments due to the autocorrecting of syntactical
errors, the loss of uncompleted formulas, and the loss of
unsaved files.

C. SAMPLE
The number of students participating in the pre- and the
delayed post-tests were determined by their availability. The
pre-tests were administered in the first week of the students’
tertiary studies, when there were quite a number of students
attending the classes. One or more years later, however, the
students’ willingness to attend classes declined, and the high
rate of dropout made them unavailable. In both G1 and G2
groups about half of the students filled in both tests (Table 3).

D. TREATMENT IN THE EXPERIMENTAL GROUP
In the experimental groups, both in the lectures and the
seminars, the ‘jug and mug’ education – where students
come to class and listen to the teacher without interruption,
without any dialogue or interaction even when prompted
to do so –, were replaced by inquiry-based learning [58].
The effectiveness of this method has been proved in vari-
ous sciences, primarily in mathematics [51] and program-
ming [121], [122]. Consequently, considering it in the context
of teaching spreadsheet programming seemed reasonable.

The keywords associatedwith this intervention are present-
ing real-word contents, analyzing data, building algorithm(s),

the simplicity of coding – calling up simple, general-purpose
functions (Table 2) and building composite functions –, dis-
cussing and debugging step-by-step [75], [123].

During the experimental period, using various data
sources, we start with problems handling texts, forming
yes/no questions for both text/number output and conditional
formatting, and handling error-values. Based on this knowl-
edge, the next algorithm is solving conditional counting,
summing, averaging, minimum and maximum. The essence
of these problems is a three-step algorithm (1) a yes/no
question for formulating the condition, (2) marking the TRUE
answers with a selected value – 1 for counting, in other cases,
values from the table –, and (3) carrying out the indicated
operation. Advancing from the simplest conditional counting
to the more and more demanding conditional problems, the
same algorithm is applied. The next algorithm handled is
the linear search, where a two-step algorithm is applied:
(1) finding the record-index of the searched value, and (2) cal-
culating and writing out the required value from the identified
record.

Regardless of the algorithm in question, the same method
is applied. In the introductory period, the focus is on the
building of the schema, which is a deep approach method
requiring slow thinking [60]–[64]. In the advanced period,
the calling up of the built-up schema/schemata is carried out,
which is a surface approach method requiring fast thinking
[60]–[64].

The problems are solved with array formulas for (1) avoid-
ing errors originated in the copying of the formulas, (2) delay-
ing the introduction of the extremely demanding concepts of
relative and absolute reference for as long as possible, and
(3) preparing students for further studies in computer sciences
(e.g., database management, programming).

The entire problem-solving procedure is carried out with
the coaching method, where the teacher’s role is best
described as that of a moderator, who intervenes only to
improve functioning (not infrequently with unplugged tools)
and to avoid the development of misconceptions [13]. The
problems are thoroughly analyzed, the algorithms built, the
coding carried out, and outputs discussed [76]. One further
characteristics of the method is the special coding process,
where composite functions are built, in accordance with the
limited number of functions (Table 2). In the coding process,
the innermost step is carried out first, the output discussed,
and then this output is presented as an argument or operand
for the following step. This process is repeated until the final
output is written out. Solutions are built up step-by-step in
complete accordance with Pólya [58]: ‘‘A great discovery
solves a great problem but there is a grain of discovery in
the solution of any problem. Your problem may be modest;
but if it challenges your curiosity and brings into play your
inventive faculties, and if you solve it by your own means,
you may experience the tension and enjoy the triumph of
discovery. Such experiences at a susceptible age may create
a taste for mental work and leave their imprint on mind and
character for a lifetime.’’.

153948 VOLUME 9, 2021

M. Csernoch et al.: Developing Computational Thinking Skills With Algorithm-Driven Spreadsheeting

In addition to classwork, students were encouraged to
complete homework tasks involving similar problems, and
their effort was rewarded with extra points. They were also
motivated to present real-world problems of their own in
classes.

E. TREATMENT IN THE CONTROL GROUP
In the control groups the well-established surface approach
method was applied, with which the students were familiar
from their previous studies in elementary and high school.

IV. RESEARCH QUESTION
Our previous studies proved that teaching spreadsheet-
ing with traditional surface approach methods does not
develop long lasting knowledge [17], [18], [73], [112]–[116].
We found proof that students, as end-users, can pass the
interface-centered exams with good or excellent results, but
forget almost everything in a couple of weeks, between the
maturation exams and the first week of their tertiary studies.

It was also found in our previously conducted studies in
primary and secondary education that teaching spreadsheet
with Sprego programming:

– is significantly more effective compared to the tradi-
tional surface-approach methods,

– long-lasting knowledge in the form of schemata can
be built up and called on to activate fast thinking in
problem-solving,

– surface approach methods applied in advance of Sprego
programming are serious distractors.

The primary question of the present research is whether
or not studying spreadsheeting with a deep approach method
would result in long lasting knowledge similar to formal
achievements. In a scenario in which students are over-
confident because of the results of their maturation exams
[118]–[120] and burnt-out due to mindless and meaningless
surface approach methods in primary and secondary school,
teachers encounter students who are completely uninterested
in spreadsheeting. Furthermore, the question of time was
our concern, i.e. whether the two-week period available in
the curriculum would be enough to cover all the algorithms
planned, or students would needmore time even in aminimal-
syntax IDE.

V. HYPOTHESES
(1) Sprego programming is more effective than traditional
surface approach methods in teaching spreadsheeting in ter-
tiary education.

(2) Sprego programming supports schema construction,
and reliable knowledge is stored in long-term memory.

(3) Sprego programming attracts students and has a moti-
vating effect even on those who are uninterested in the tool-
centered approaches.

(4) Teaching spreadsheet programming, similarly to other
programming languages, requires direct, strong instructional
guidance.

VI. PROBLEMS OF THE TEST
A. THE TASKS
The primary aim of the tasks was to measure how students
would be able recognize the algorithms and the schemata of
the problems presented. To achieve this the following tools
and tasks were provided.
– A data table of 5 fields and 235 records. Due to the length

of the table, only a section of the table was presented,
with the field names (row 1) and eleven records (rows
2–8 and rows 233–236) (Fig. 2).

– A variable in cell G2, whose value is unknown. (Fig. 2).
– Six tasks. Five tasks were to be answered with spread-

sheet formulas and one with a native language sentence
(a classical decoding task) (Fig. 3).

FIGURE 2. ‘‘The countries of the World’’ table, provided as the data
source to solve the tasks presented in the tests.

FIGURE 3. The instruction and the tasks of the tests.

B. SOLUTIONS: TASK B
Task B has one solution, leaving out of consideration how
the output vector is created: array formula or copying. Both
solutions were accepted if the presence of the vector was
clearly indicated.

Task B contains three knowledge-transfer items:
– division (1),
– population divided by area (knowledge transferred from

another subject) (1), and
– population presented in thousands (information retrieved

from the sample table) (1).
There is only one spreadsheeting item (1) – how to cre-

ate a vector output. The array formula (AF) solution is the
{=1000∗E2:E236/D2:D236} formula.
Four items were assigned to the task (the numbers of items

are indicated in parentheses).

VOLUME 9, 2021 153949

M. Csernoch et al.: Developing Computational Thinking Skills With Algorithm-Driven Spreadsheeting

C. SOLUTIONS: TASK A
Task A is a linear search problem which officially has two
solutions.
– In spreadsheet programming the shorter solution is

when one output is assumed. In this case, the =
INDEX(C2:C236,MATCH(MAX(D2:D236),D2:D236,
0)) composite function can be used.

– The longer solution is when there is no presumption
regarding the number of possible outputs. Here the
{=IF(MAX(D2:D236) = D2:D236,C2:C236)} array
formula would provide the output vector. When the
answer to the yes/no question is TRUE, the IF() func-
tion returns the name of the capital city (the marker
is the capital city in this case). When the answer is
FALSE, the IF function returns the default FALSE value.
This solution shares the algorithm with Tasks C, D,
and E).

However, considering these two solutions, there is no dif-
ference between the algorithms and the construction of codes.
Only the applied functions are different.

Fifteen items were assigned to the task:
– the names of the functions (3)
– the positions of the functions (3)
– which one is encapsulated in which one
– the values and their argument positions for
– finding the largest area (1)
– finding the record-index of the largest area (6)
– writing out the capital city/cities (2)
Considering the capacity of long-term memory, in Task A,

we must call attention to the falsely assumed use of
HLOOKUP() and VLOOKUP() BIF functions, which cannot
be applied in this instance, given the structure of the table.
HLOOKUP() is ruled out because the data fields are arranged
in columns, VLOOKUP() because the output field – Capital –
is on the left side of the search field – Area. These restrictions
– and many more [2] – make the BIF functions mentioned
extremely difficult to use, because they require access to
unnecessary and hard-to-recall information from long-term
memory.

D. SOLUTIONS: TASK C, D, AND E
Tasks C, D, and E are different from A and B in the sense
that they can be solved both with built-in-functions (BIF)
(Table 5 and Table 6) and algorithm-driven array formulas
(AF) (Table 4). The BIF solution is much preferable accord-
ing to spreadsheet providers, course-books, and instructors
blindly following the new trends of the software compa-
nies. On the other hand, the AF solutions require only one
schema stored in long-term memory and two general pur-
pose functions. In the case of the BIF functions, there are
problem-specific functions with different syntactical rules
and with confusing orders of arguments which can be used
to solve the three similar problems.

The number of items in the array formulas were assigned
to the solution by considering

TABLE 4. The AF solutions of Tasks C, D, and E. With the AF formulas the
same algorithm can be used to solve all three problems.

TABLE 5. One-conditional BIF functions to solve Tasks C, D, and E.

TABLE 6. Multi-conditional BIF functions to solve Tasks C, D, and E.

– the name of the functions (2)
– the positions of the functions (2)
– which one is encapsulated in which one
– values – the constant and the vectors involved (3)
– their argument positions (2)
– syntax (1)
The three tasks are solved with the same algorithm, so the

number of items is the same. In Task C there is one extra point
for handling the string constant.

The comparison of the three tasks reveals that considering
the level of generalization Task C is the lowest, followed by
E, and the most general is D.

Even though the three tasks are solved with the same
algorithm, the number of items with the BIF functions varies
depending on the followings:
– the operation: counting vs. summing or averaging,
– the container of the values: constant or variable,
– the logical operator: equality or inequality,
– concatenation: in the case of inequality with variable.

The items assigned to Tasks C, D, and E are 6, 10, and 8,
respectively.

We must call attention to the different order of the argu-
ments in one- and multi-conditional functions, which further
deepens the confusion (for comparison see Table 5 and 6).
However, the difference in the order of the arguments does
not change the number of items assigned to the solutions.

Additional solutions can also be considered (e.g., Database
functions). These solutions were accepted and evaluated
according to the items detailed above.

E. SOLUTIONS: TASK F
The answer to Task F is: The number of European countries
whose name starts with A. In accordance with the answer
3 items were assigned to the task:

153950 VOLUME 9, 2021

M. Csernoch et al.: Developing Computational Thinking Skills With Algorithm-Driven Spreadsheeting

– number of something (1)
– European (1)
– starts with A (1)
We must call attention to the structure of the test, which

was intended to help students. If students were able to recog-
nize the same algorithm of Tasks C–F, they would realize that
Task F provides the syntax to the solution of the conditional
calculations in Tasks C–E.

VII. METHODS
The data were processed with the help of Microsoft Excel
and SPSS (Statistical Package for the Social Sciences). The
students’ results were recorded in Excel tables, year-by-year,
according to the items detailed above. Most of the analyses
of the descriptive statistics were carried out and the primary
diagrams were also mapped with the help of the spreadsheet
program.

After the pre-processing of the data, they were transferred
to SPSS to conduct inferential statistics.

Beside descriptive statistics (average, deviation, variance,
minimum, maximum), other statistical methods, probes were
used to test the data in consideration of our hypotheses.

The following tests were used:
– Pearson Chi-squared test,
– Whitney U test,
– one-sample t-test for two independent samples,
– LEM – loglinear model,
– one-way ANOVA,
– two-way ANOVA.

VIII. RESULTS
A. RESULTS: TASK B
Considering Task B, a significant difference was found in the
PRET test between the two groups, in which the results for
group G1 are higher than those of G2 (Fig. 4). As mentioned

FIGURE 4. The results of Task B in tests PRET and DPOSTT.

above, the groups were assigned to the teachers randomly and
there was no significant difference between their maturation
exam results [73], [118], [119].

Since our concern is how the difference between the stu-
dents in the experimental and the control groups developed
from the pre-test to the delayed post-test – i.e. understanding
what is stored in long-term memory –, we were testing the
significance of the interaction. In this respect, a significant
difference was found between the two groups (p= 0.012, Par-
tial Eta Squared= 0.007). Fig. 4 clearly shows the changes in
knowledge in the two groups.While groupG1 achieved better
results, the results of G2 students declined. As mentioned
above, among the tasks, Task B involves the least ‘spread-
sheeting’ in the sense that it requires knowledge-transfer and
spreadsheet items in a ratio of 3:1, which means that teaching
spreadsheeting deals with only one quarter of the required
knowledge items.

B. RESULTS: TASK A
Task A is the least successful task of the test. Its major char-
acteristic is that it requires the application of the algorithm of
the linear search and the spreadsheet coding tools to create the
formula. As mentioned above, the table and the order of the
data fields rule out calling up the BIF functions; consequently,
the students were required to build a multilevel solution,
either with one formula or with substitute cells referring to
previous outputs (Table 7, Fig. 5).

TABLE 7. Task A: the number of students who did not do anything
(Ignored), who applied one of the incorrect BIF functions – VLOOKUP() or
HLOOKUP() –, and who tried the correct IF() function.

Similar to Task B, the results of group G1 were higher
than those of G2 in the pre-test. The significance of the inter-
action was checked, and we found a significant difference
(p = 0.001, Partial Eta Squared = 0.013) between the two
groups in the delayed post-test.

The results of group G1 show a moderate increase, while
those of group G2 show a strong decline (Fig. 5). In both
groups, there was only one item where a significant increase
was detectable – providing the argument of the MAX() func-
tion (p= 0.016). The other items were the following: position
of INDEX(): p = 0.056; output vector: p = 0.02; position of
MATCH(): p < 0.001; search value: p = 0.009; position of
search value: p = 0.002; MAX(): p < 0.001; search vector:
p = 0.025; position of search vector: p = 0.008; column
number: p = 0.007.
The difference between the two groups was that while

in group G2 this was the only item which was higher in

VOLUME 9, 2021 153951

M. Csernoch et al.: Developing Computational Thinking Skills With Algorithm-Driven Spreadsheeting

FIGURE 5. The results of Task A in tests PRET and DPOSTT.

DPOSTT than in PRET, in group G1 more than half of the
items were higher in DPOSTT. We can conclude that the
eight-hour-long block of the interaction was enough in group
G1 to maintain fundamental knowledge, while in G2 students
forgot almost everything. This result shows, on the one hand,
that eight classes are not enough to teach programming, while
on the other hand, our high-mathability spreadsheet program-
ming approach, even in this short period of time, is more
effective than low-mathability surface approach methods.

C. RESULTS: TASK C, D, AND E
As mentioned above, when solving Tasks C, D, and E there
are two fundamentally different approaches which can be
taken into consideration. One method is to solve these tasks
with problem specific BIF functions, accompanied by several
difficulties and incoherencies [2]. The other option is to build
up the algorithm of the problems – a conditional calculation
– and then carry out the coding with simple, general purpose
functions.

The comparison of the interaction in Tasks C, D, and E con-
sidering groups G1 and G2 showed a significance difference
between the two groups (p = 0.054, Partial Eta Squared =
0,004; p < 0.001, Partial Eta Squared = 0.038; p < 0.001,
Partial Eta Squared = 0.032 respectively) (Figure 10). How-
ever, the results of the conditional calculating tasks revealed
a different pattern compared to Tasks A and B.

Since Task C is the easiest among the three tasks sharing
the same algorithm, it is no surprise that its result is the
highest (Fig. 6, 7, and 8). Even in PRET, group G1 achieved
a relatively high result. As the tasks become more and more
general the results are lower and lower. This means that even
if they understand the algorithm, students need more time to
practice in order to increase the level of abstraction, to be
able to build up a schema which can be recalled in similar
situations.

The results further demonstrate that students studying with
the spreadsheet programming method have a much higher

FIGURE 6. The results of Task C in tests PRET and DPOSTT.

FIGURE 7. The results of Task E in tests PRET and DPOSTT.

abstraction level and, furthermore, a much more reliable fast
thinking ability to call up schemata from long-term memory.

D. RESULTS: TASKS F
Task F is a classical decoding task, where a code is presented,
and the students must answer it with a natural language
sentence. This task does not require any special spreadsheet
knowledge; it can be solved by recalling knowledge-transfer
items from mathematics and programming, namely, how
functions and composite functions work, how parentheses
rule the order of execution, and how embedded conditions
work (Fig. 9). The pattern is similar to that which is observed
in Tasks C, D, and E: the results of group G1 significantly
increased from PRET to DPOSTT (C: p = 0.01; D: p <

0.001; E: p < 0.001; F: p < 0.001), while in group G2 there
was hardly any change. Between the groups the difference in

153952 VOLUME 9, 2021

M. Csernoch et al.: Developing Computational Thinking Skills With Algorithm-Driven Spreadsheeting

FIGURE 8. The results of Task D in tests PRET and DPOSTT.

FIGURE 9. The results of Task F in tests PRET and DPOSTT.

the interaction is also significant (C: not significant; D: not
significant; E: p = 0.01; F: p < 0.001).
Since Task F is an open question task there was space

left, and the students used it, to make comments on the
task. A notable number of students self-confidently declared
that the formula was not correct. (When we tested teachers,
the percentage of those who claimed that the formula was
incorrect was even higher). Another phenomenonwhichmust
be mentioned in this context is the level of understanding
according to SOLO categories [112], [124]–[126]. During
the three semesters which passed between the pre- and the
delayed post-test, the students studied programming for at
least two semesters. In group G2 the number of students who
were stuck at uni-structural level increased from PRET to
DPOSTT, while in G1 this undesired phenomenon was not
present.

The comparison of Tasks C, D, and E, on the one hand,
clearly reveals the differences between the development of
groups G1 and G2. On the other hand, it is also obvious
that the level of abstraction which the three tasks require
are different, and students cannot reach the highest SOLO
category – extended abstract – in the eight classes of teaching.

IX. SELECTION OF PROBLEM-SOLVING APPROACHES
The next research question was how the traditional and
the Sprego methods affect the selection of problem-solving
approaches. At this stage of the analysis, only those students
were taken into account who participated in both PRET and
DPOST; 302 and 551 students, respectively. Three groups of
the students were formed both in the experimental and the
control group, based on the selected method (BIF or AF) and
those who did not do the task (Ignored, I).

A. APPROACHES: TASK C
According to the algorithm, there is no difference between
the three tasks; however, built-in spreadsheet functions make
it complicated. Among them, Task C is the most common and
simplest conditional calculation: counting with equality and
a string constant. The number of students who selected BIF,
AF, and I (Ignored) solutions for answering Task C (Table 8).

TABLE 8. Task C: selection of methods in PRET and DPOSTT.

The chi-square test proved (p = 0.04) that there is a con-
nection between the PRET and DPOSTT solutions to Task
C in group G1. The essence of the connection is that those
who selected BIF in PRET did the same in DPOSTT with a
greater probability than they selected AF or I. It is also proved
that those who started with an array formula do not switch to
built-in functions in DPOSTT. In group G2 a similar pattern
can be revealed (p < 0.001); however, there is a greater
probability that those who started with BIF stay with BIF.

We tested the difference between PRET and DPOSTT
with a marginal homogeneity test. The number of students
ignoring Task C does not change significantly from PRET to
DPOSTT, neither in G1 (95 and 97 in PRET and DPOSTT)
nor in G2 (259 and 279 in PRET and DPOSTT).

The selection of approach reveals a different pattern in the
two tests. In group G1, the number of students solving the
problems with BIF significantly decreased, while those who
used AF increased (p < 0.001). In group G2 there is also a
significant difference in the method selected; however, this is
due to an increase in those ignoring the task (p < 0.001).

B. APPROACHES: TASK E
The second ranked task in terms of in complexity among
the conditional calculations is counting with inequality

VOLUME 9, 2021 153953

M. Csernoch et al.: Developing Computational Thinking Skills With Algorithm-Driven Spreadsheeting

and variable. This task is at a two-step higher level of abstrac-
tion than Task C: equality is changed to inequality in the
condition, and the string constant of Task C is replaced by
a variable.

The number of students who ignored the task increased
compared to Task C, in both groups. The selection of BIF or
AF shows a different pattern compared to Task C. The number
of AF solutions increased in both groups, which indicates that
even in PRET students intuitively select the algorithm-driven
solution when the abstraction level is increased (Table 9).

TABLE 9. Task E: selection of methods in PRET and DPOSTT.

In DPOSTT, in terms of the number of tasks ignored there
is huge difference between the two groups. In the experi-
mental group the figure dropped from 184 to 137, while in
the control group there was no change (413 vs. 400). The
number of those selecting BIF decreased in both groups (G1:
55 vs 9, G2: 56 vs. 24). For AF, an increase was detected
(G1: 63 vs. 156, G2: 82 vs. 127). However, the increase in
the experimental group is much more noticeable than in the
control group.

C. APPROACHES: TASK D
The most complex among the conditional calculations is
calculating average with inequality and variable. In Task D
a similar pattern was revealed as in Task E (Table 9 and 10).

TABLE 10. Task D: selection of methods in PRET and DPOSTT.

In PRET the number of tasks ignored does not change
compared to Task E, in spite of the increase in the level of
abstraction. However, considering the choice between BIF
and AG an even greater preference for the AF solution over
BIF can be detected.

In DPOSTT, the students from group G1 almost unani-
mously selected the algorithm-driven solution at the high-
est abstraction levels. In group G2 a similar pattern can be
revealed but on a lower scale. The explanation for this change
even in group G2 can be found in their background studies,
which included at least two semesters of programming.

X. TYPES OF INTERACTIONS
Considering the type of interaction which distinguishes the
two groups, it is obvious that the algorithm-driven spread-
sheeting is significantly more effective than the traditional

FIGURE 10. The results of Task C, D, and E in tests PRET and DPOSTT.

surface approach methods (Fig. 10). The algorithm-driven
solution supports building up knowledge and schemata in
long-termmemory, which can be utilized in similar problems.

These results were further tested with Log-Linear Mod-
elling (LEM), where three variables were considered: pre-test
(PRET), delayed post-test (DPOSTT) with values BIF, AF, I,
and the groups (G), experimental (G1) and control (G2). The
question was what kind of relations can be revealed between
the three variables. It was found that the model of PRET ×
G, DPOSTT × G, PRET × DPOSTT fits the data.
The connection parameters of PRET × DPOSTT reveal

that in Task C those who used the BIF solutions in PRET
tend to use the BIF solutions in DPOSTT. Those who used
AF in PRET use AF or ignore the task in DPOSTT more
frequently than would a random selection. A similar pattern
was revealed when considering those students who ignored
the task in PRET: selected AF or ignored the task, however
this choice of selection is less attractive [15], [127], [128]
(Table 11).

TABLE 11. The results of LEM in Task C when comparing PRET and
DPOSTT, considering the selection of approaches.

The connection parameters of PRET× G reveal that at the
beginning of the experiment more students in group G1 tend
to solve the problems than in group G2 (Table 12).

After the APPROACH intervention, the parameters of the
DPOSTT × G connection in the delayed post-test show that
more students applied the AF solutions in the experiment
group than in the control group (Table 13). This result shows
the effectiveness of the Sprego interaction.

153954 VOLUME 9, 2021

M. Csernoch et al.: Developing Computational Thinking Skills With Algorithm-Driven Spreadsheeting

TABLE 12. The results of LEM in Task C in PRET, considering the selection
of approaches.

TABLE 13. The results of LEM in Task C in DPOSTT, considering the
selection of approaches.

TABLE 14. The results of LEM in Task E when comparing PRET and
DPOSTT, considering the selection of approaches.

TABLE 15. The results of LEM in Task E in PRET, considering the selection
of approaches.

TABLE 16. The results of LEM in Task E in DPOSTT, considering the
selection of approaches.

The parameters show that the selection of the method is
more possibly the same in the tests than a random choice
would be (Table 14).

In PRET most of the students ignored the task in both
the experiment and the control groups (the parameters of
PRET are −0.37, −0.43, 0.8 for the solutions of BIF, AF,
I, respectively). However, the students in group G1 tried to
solve it more frequently, preferring the BIF solution to the
AF (Table 15).

The pattern follows the pattern of task C: after the Sprego
intervention, the parameters of the DPOSTT× G connection
in the delayed post-test show that more students applied the
AF solutions in the experimental group than in the control
group. This result also shows the effectiveness of the Sprego
interaction (Table 16).

In PRET, it is also shown that there is an extremely low
number of students who tried the BIF solution in the case of
task D, whose abstraction level is the highest among the three
tasks with the same algorithm (the parameters of PRET are

TABLE 17. The results of LEM in Tasks D in PRET, considering the
selection of approaches.

−1.26, 0.22, 1.04 for the solutions of BIF, AF, I, respectively).
Furthermore, it was found that more students ignored the task
in both the experiment and the control groups. The students
in group G1 preferred the AF solutions more frequently than
did those in group G2, while in group G2 the most preferred
choice was to ignore the task.

Test DPOSTT reveals that selection of BIF is reduced
compared to AF and I taken together (the parameters of
DPOSTT are −2.24, 0.92, 1.32 for the solutions of BIF, AF,
I, respectively) (Table 17).

Considering the method selected to solve Task D in
DPOSTT, it was found that in group G1 the relative fre-
quency of AF, while in G2 the relative frequency of Ignored,
increased (Table 18).

TABLE 18. The results of LEM in Task D in DPOSTT, considering the
selection of approaches.

XI. DISCUSSION
A comparison of the conditional calculation tests with the
different levels of abstraction allows us to draw the following
conclusions.

In the experimental group, the number of students ignoring
Task C (lowest level of abstraction) does not change sig-
nificantly from PRET (95) to DPOSTT (97). Furthermore,
in Task C the number of tasks ignored is the lowest (Task
E: PRET, DPOSTT: 184, 137, Task D: PRET, DPOSTT:
178, 144), and there is no significant between PRET and
DPOSTT (C: not significant; D: p = 0.019; E: p = 0.001).
These findings prove that the interaction in the experimen-
tal group resulted in significant changes in cases in which
schemata were not formed in previous studies. More impor-
tantly, Sprego programming attracts students (Hypothesis 3).
On the other hand, the chi-square test indicates the tendency
to the sunk cost fallacy, meaning that students cannot let go
of the ‘‘good old’’ method, even though it has been proved
less effective. This finding implies that students recognized
the algorithm which connects the three tasks, but showed
some reluctance in applying it in the simplest task. The LEN
parameters show that the method selected is more possibly
the same in the tests than a random choice would be.

In group G2, the number of students who ignored the
tasks reveals a somewhat different pattern. No significant
difference was found between the number of tasks ignored
in the three tasks (PRET: 259, 413, 389, DPOSTT: 279,

VOLUME 9, 2021 153955

M. Csernoch et al.: Developing Computational Thinking Skills With Algorithm-Driven Spreadsheeting

400, 378 in Tasks C, E, D, respectively). They remained as
resistant to spreadsheeting as before.

We can also conclude that the differences between the
results of the two tests are not influenced by those students
who ignored the tasks, but by the performance of those who
worked on the problems. In general, it was found that Sprego
is also more effective than the traditional approaches in ter-
tiary education, just as it is in primary and secondary schools
(Hypothesis 1).

The comparison of the method selected in both groups
revealed that as the tasks become more abstract, students tend
to use the algorithm-driven approach, or simply ignore the
task; problem specific built-in functions do not play a role in
their answers.

It is also clear that the algorithm-driven Sprego program-
ming with its methodology provided the students with such
firm background knowledge, in spite of the extremely short
period of time available for teaching, that they switched from
the surface approach methods (which they had studied for
years) to the new one. This means that students studying in
group G1 were able to build up schemata which were called
upon in the delayed post-test (more than one year after the
intervention), which proves Hypothesis 2. The results also
indicate that the switch from the old methodology to the new
has merit, since their results significantly increased despite
the long gap between the pre- and the delayed post-tests.

XII. CONCLUSION
In the present paper we analyzed the effectiveness of teach-
ing spreadsheeting with Sprego programming (Spreadsheet
Lego) compared to traditional, widely accepted user-friendly,
but low-mathability methods.

The results clearly demonstrate that the traditional tool-
centered methods do not build up long-lasting knowledge
and do not help students develop their problem-solving abil-
ities. On the other hand, Sprego proved more effective both
in problem-solving and extending abstraction. Beyond this,
SPREGO methodology provides students with long lasting
knowledge, which is a great advantage of the method com-
pared to traditional surface-navigation approaches.

This result shows that the directed inquiry-based method-
ology applied in the experimental group, in spite of the
low number of contact lessons, was enough to build up
the algorithm of the conditional calculation. However, using
the same methodology, the time was not enough to build
up the algorithm of the linear search. In the experimental
group, a slight increase is detectable, while in the control
group there is a steep decrease. We can conclude that the
method was also more effective in the case of this algorithm,
but building up numerous algorithm(s) in this short period is
impossible. Algorithms require more time (Hypothesis 4) and
direct, strong instructional guidance.

In the population density task, the missing knowledge-
transfer items deriving from background studies caused a
problem, and there was no time to fill in this gap. This task
clearly exemplifies that real-world problem-solving should

be transferred to other disciplines, where computers are used
as tools, and are not the aim of the teaching-learning process.

However, we must keep in mind that developing funda-
mental skills, including computational thinking skills and
abilities, is a time-consuming process. Based on the results
of the project, it was also found that the eight-hour period
assigned to the subject by the curriculum is not sufficient to
cover the subject of spreadsheeting and functional program-
ming. This finding leads to further consequences in terms
of creating curricula on the subject of data management and
programming, as well as integrating them.

Based on the results of previous research and the results
of our project described in the present paper, it is clear that
some of the misconceptions circulating in computer science
education have held back students’ chances of developing
their computational thinking skills and their effectiveness in
real-world computer problem-solving. Our results prove that
there are methods and approaches which can supersede the
less effective methods and aid our students, and Sprego is
among them.

REFERENCES
[1] R. Descartes and J. Lessing Rosenwald Collection. Discours de la Meth-

ode Pour Bien Conduire sa Raison, & Chercher la Verité Dans Les Sci-
ences. Plus La Dioptriqve. Les Meteores. Et La Geometrie. Qui Sont des
Essais de CeteMethode. A Leyde, De l’imprimerie de I. Maire. Accessed:
Jan. 30, 2021. [Online]. Available: https://www.loc.gov/item/32034972/

[2] M. Csernoch, ‘‘Programming with spreadsheet functions: Sprego,’’
in Hungarian, Programozás Táblázatkezelő Függvényekkel—Sprego,
Műszaki Könyvkiadó, Budapest, Hungary, 2014.

[3] M. Csernoch and P. Biró. (2015). Sprego Programming. Spreadsheets
in Education (eJSiE). Accessed: Jan. 30, 2021. [Online]. Available:
https://sie.scholasticahq.com/article/4638-sprego-programming

[4] M. Csernoch and P. Biró, ‘‘Sprego programming,’’ LAP Lambert Aca-
demic Publishing, OmniScriptum, Gmbh & Co. KG, Saarbrücken,
Germany, Tech. Rep., 2015.

[5] J. M. Wing, ‘‘Computational thinking,’’ Commun. ACM, vol. 49, no. 3,
pp. 33–35, 2006, doi: 10.1145/1118178.1118215.

[6] E. Soloway, ‘‘Should we teach students to program?’’ Commun. ACM,
vol. 36, no. 10, pp. 21–24, Oct. 1993, doi: 10.1145/163430.164061.

[7] M. Ben-Ari, ‘‘Non-myths about programming,’’ in Proc. 6th
Int. Workshop Comput. Educ. Res. (ICER), 2010, pp. 1–2, doi:
10.1145/1839594.1839595.

[8] T. A. Grossman, V. Mehrotra, and Ö. Özlük, ‘‘Lessons from mission-
critical spreadsheets,’’ Commun. Assoc. Inf. Syst., vol. 20, no. 1,
pp. 1009–1042, 2007.

[9] J. K. Ousterhout, ‘‘Scripting: Higher level programming for the
21st century,’’ Computer, vol. 31, no. 3, pp. 23–30, Mar. 1998, doi:
10.1109/2.660187.

[10] M. Burnett, J. Atwood, R. Walpole Djang, J. Reichwein, H. Gottfried,
and S. Yang, ‘‘Forms/3: A first-order visual language to explore the
boundaries of the spreadsheet paradigm,’’ J. Funct. Program., vol. 11,
no. 2, pp. 155–206, Mar. 2001, doi: 10.1017/S0956796800003828.

[11] A. G. Yoder and D. L. Cohn, ‘‘Real spreadsheets for real programmers,’’
in Proc. IEEE Int. Conf. Comput. Lang. (ICCL), May 1994, pp. 20–30,
doi: 10.1109/ICCL.1994.288396.

[12] D. Wakeling, ‘‘Spreadsheet functional programming,’’ J. Funct.
Program., vol. 17, no. 1, pp. 131–143, Jan. 2007, doi:
10.1017/S0956796806006186.

[13] ICAEW THOUGHT LEADERSHIP 2016. Spreadsheet Competency
Framework. A Structure for Classifying Spreadsheet Ability in
Finance Professionals. Accessed: Jan. 28, 2021. [Online]. Available:
https://www.icaew.com/-/media/corporate/files/technical/information-
technology/it-faculty/spreadsheet-competency-framework.ashx

[14] C. Chambers and C. Scaffidi, ‘‘Struggling to excel: A field study
of challenges faced by spreadsheet users,’’ in Proc. IEEE Symp.
Vis. Lang. Hum.-Centric Comput., Sep. 2010, pp. 187–194, doi:
10.1109/VLHCC.2010.33.

153956 VOLUME 9, 2021

http://dx.doi.org/10.1145/1118178.1118215
http://dx.doi.org/10.1145/163430.164061
http://dx.doi.org/10.1145/1839594.1839595
http://dx.doi.org/10.1109/2.660187
http://dx.doi.org/10.1017/S0956796800003828
http://dx.doi.org/10.1109/ICCL.1994.288396
http://dx.doi.org/10.1017/S0956796806006186
http://dx.doi.org/10.1109/VLHCC.2010.33

M. Csernoch et al.: Developing Computational Thinking Skills With Algorithm-Driven Spreadsheeting

[15] S. E. Kruck, J. J. Maher, and R. Barkhi, ‘‘Framework for cognitive
skill acquisition and spreadsheet training,’’ J. Organizational End User
Comput., vol. 15, no. 1, pp. 20–37, Jan. 2003.

[16] P. Baranyi and A. Gilanyi, ‘‘Mathability: Emulating and enhancing
human mathematical capabilities,’’ in Proc. IEEE 4th Int. Conf. Cog-
nit. Infocommunications (CogInfoCom), Dec. 2013, pp. 555–558, doi:
10.1109/CogInfoCom.2013.6719309.

[17] G. Csapó, M. Csernoch, and K. Abari, ‘‘Sprego: Case study on the effec-
tiveness of teaching spreadsheet management with schema construction,’’
Educ. Inf. Technol., vol. 25, no. 3, pp. 1585–1605, May 2020.

[18] G. Csapó, K. Sebestyén, M. Csernoch, and K. Abari, ‘‘Case study: Devel-
oping long-term knowledge with sprego,’’ Educ. Inf. Technol., vol. 26,
no. 1, pp. 965–982, Jan. 2021, doi: 10.1007/s10639-020-10295-0.

[19] Eusprig 2021. Horror Stories. European Spreadsheet Risks
Interest Group. Accessed: Jan. 30, 2021. [Online]. Available:
https://www.eusprig.org/horror-stories.htm

[20] R. R. Panko, ‘‘What we know about spreadsheet errors,’’ J. Organiza-
tional End User Comput., vol. 10, no. 2, pp. 15–21, Apr. 1998, doi:
10.4018/joeuc.1998040102.

[21] R. Abraham, M. Burnett, and M. Erwig, ‘‘Spreadsheet programming,’’ in
Wiley Encyclopedia of Computer Science and Engineering. Hoboken, NJ,
USA: Wiley, 2009, doi: 10.1002/9780470050118.ecse415.

[22] ICAEWTHOUGHT LEADERSHIP. (2018). Twenty Principles for Good
Spreadsheet Practice. Third Edition. Accessed: Jan. 28, 2021. [Online].
Available: https://www.icaew.com/-/media/corporate/files/technical/
technology/excel-community/20-principles-of-good-spreadsheet-
practice-2018.ashx

[23] T. Antoniu, P. A. Steckler, S. Krishnamurthi, E. Neuwirth, and
M. Felleisen, ‘‘Validating the unit correctness of spreadsheet programs,’’
in Proc. 26th Int. Conf. Softw. Eng., May 2004, pp. 439–448, doi:
10.1109/ICSE.2004.1317466.

[24] R. R. Panko and R. P. Halverson, ‘‘Spreadsheets on trial: A survey of
research on spreadsheet risks,’’ in Proc. 29th Hawaii Int. Conf. Syst. Sci.
(HICSS), 1996, pp. 326–335, doi: 10.1109/HICSS.1996.495416.

[25] F. Hermans, M. Pinzger, and A. van Deursen, ‘‘Detecting code smells
in spreadsheet formulas,’’ in Proc. 28th IEEE Int. Conf. Softw. Main-
tenance (ICSM), Sep. 2012, pp. 409–418, doi: 10.1109/ICSM.2012.
6405300.

[26] F. Hermans, B. Sedee, M. Pinzger, and A. van Deursen, ‘‘Data
clone detection and visualization in spreadsheets,’’ in Proc. 35th
Int. Conf. Softw. Eng. (ICSE), May 2013, pp. 292–301, doi:
10.1109/ICSE.2013.6606575.

[27] A. Azam, K. A. Alam, and A. Umair, ‘‘Spreadsheet smells: A system-
atic mapping study,’’ in Proc. Int. Conf. Frontiers Inf. Technol. (FIT),
Dec. 2019, pp. 345–3455, doi: 10.1109/FIT47737.2019.00071.

[28] N. Garrett, ‘‘Textbooks for responsible data analysis in excel,’’
J. Educ. Bus., vol. 90, no. 4, pp. 169–174, May 2015, doi:
10.1080/08832323.2015.1007908.

[29] F. Hermans and E. Murphy-Hill, ‘‘Enron’s spreadsheets and related
emails: A dataset and analysis,’’ in Proc. IEEE/ACM 37th IEEE
Int. Conf. Softw. Eng., May 2015, pp. 7–16, doi: 10.1109/ICSE.
2015.129.

[30] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet, and
C.Wallace, ‘‘End-user software engineering with assertions in the spread-
sheet paradigm,’’ in Proc. 25th Int. Conf. Softw. Eng., 2003, pp. 93–103,
doi: 10.1109/ICSE.2003.1201191.

[31] S. Badame and D. Dig, ‘‘Refactoring meets spreadsheet formulas,’’ in
Proc. 28th IEEE Int. Conf. Softw. Maintenance (ICSM), Sep. 2012,
pp. 399–409, doi: 10.1109/ICSM.2012.6405299.

[32] J. Cunha, J. Saraiva, and J. Visser, ‘‘Discovery-based edit
assistance for spreadsheets,’’ in Proc. IEEE Symp. Vis. Lang.
Human-Centric Comput. (VL/HCC), Sep. 2009, pp. 233–237, doi:
10.1109/VLHCC.2009.5295255.

[33] M. Burnett, A. Agrawal, and P. van Zee, ‘‘Exception handling in
the spreadsheet paradigm,’’ IEEE Trans. Softw. Eng., vol. 26, no. 10,
pp. 923–942, Oct. 2000, doi: 10.1109/32.879817.

[34] G. Miller and F. Hermans, ‘‘Gradual structuring in the
spreadsheet paradigm,’’ in Proc. IEEE Symp. Vis. Lang. Hum.-
Centric Comput. (VL/HCC), Sep. 2016, pp. 240–241, doi:
10.1109/VLHCC.2016.7739696.

[35] F. Hermans, B. Jansen, S. Roy, E. Aivaloglou, A. Swidan, and
D. Hoepelman, ‘‘Spreadsheets are code: An overview of software engi-
neering approaches applied to spreadsheets,’’ in Proc. IEEE 23rd Int.
Conf. Softw. Anal., Evol., Reengineering (SANER), Mar. 2016, pp. 56–65,
doi: 10.1109/SANER.2016.86.

[36] C. Scaffidi, M. Shaw, and B. Myers, ‘‘Estimating the numbers of
end users and end user programmers,’’ in Proc. IEEE Symp. Vis.
Lang. Hum.-Centric Comput. (VL/HCC), Sep. 2005, pp. 207–214, doi:
10.1109/VLHCC.2005.34.

[37] G. Futschek, ‘‘Algorithmic thinking: The key for understanding computer
science,’’ Informatics Education—The Bridge between Using and Under-
standing Computers. Berlin, Germany: Springer, 2006, pp. 159–168, doi:
10.1007/11915355_15.

[38] S. Y. Lye and J. H. L. Koh, ‘‘Review on teaching and learning of computa-
tional thinking through programming: What is next for K-12?’’ Comput.
Hum. Behav., vol. 41, pp. 51–61, Dec. 2014.

[39] V. Aleksić and M. Ivanović, ‘‘Introductory programming subject in Euro-
pean higher education,’’ Informat. Educ., vol. 15, no. 2, pp. 163–182,
Oct. 2016.

[40] R. R. Panko, ‘‘The cognitive science of spreadsheet errors: Why thinking
is bad,’’ in Proc. 46th Hawaii Int. Conf. Syst. Sci., Maui, HI, USA,
Jan. 2013, pp. 4013–4022.

[41] D. Kadijevich, ‘‘Learning about spreadsheet,’’ in Improving Computer
Science Education, D. Kadijevich, C. Angeli, and C. Schulte, Eds.
New York, NY, USA: : Routledge, 2013. pp. 19–33.

[42] M. Campbell-Kelly, ‘‘Number crunching without programming: The evo-
lution of spreadsheet usability,’’ IEEE Ann. History Comput., vol. 29,
no. 3, pp. 6–19, Jul. 2007, doi: 10.1109/MAHC.2007.4338438.

[43] K.-C. Yeh, Y. Xie, and F. Ke, ‘‘Teaching computational thinking to non-
computing majors using spreadsheet functions,’’ in Proc. Frontiers Educ.
Conf. (FIE), Oct. 2011, pp. 1–5, doi: 10.1109/FIE.2011.6142980.

[44] M. Gove. (Jan. 13, 2012). Michael Gove speech at the BETT
Show 2012. Accessed: Jan. 30, 2021. [Online]. Available:
https://www.gov.U.K./government/speeches/michael-govespeech-at-
the-bett-show-2012

[45] M. Gove. (Jan. 22, 2014). Michael Gove Speaks About Computing
and Education Technology. Accessed: Jan. 30, 2021. [Online]. Avail-
able: https://www.gov.U.K./government/speeches/michael-gove-speaks-
aboutcomputing-and-education-technology

[46] T. Bell and H. Newton, ‘‘Unplugging computer science,’’ in Improv-
ing Computer Science Education, D. M. Kadijevich, C. Angeli, and
C. Schulte, Eds. Oxfordshire, U.K.: Routledge, 2013.

[47] K. Freiermuth, J. Hromkovič, and B. Steffen, ‘‘Creating and testing
textbooks for secondary schools,’’ in Informatics Education—Supporting
Computational Thinking (Lecture Notes in Computer Science). Berlin,
Germany: Springer, 2008, pp. 216–228, doi: 10.1007/978-3-540-69924-
8_20.

[48] C. Angeli, ‘‘Teaching spreadsheets: A TPCK perspective,’’ in Improv-
ing Computer Science Education, D. M. Kadijevich, C. Angeli, and
C. Schulte, Eds. Oxfordshire, U.K.: Routledge, 2013.

[49] P. Papp and M. Csernoch. Spreadsheeting is Problem Solving?.
Hungarian: A Táblázatkezelés is Problémamegoldás? Infó Éra 2018.
Accessed: Jan. 30, 2021. [Online]. Available: https://people.inf.
elte.hu/szlavi/InfoDidact18/Infodidact2018.pdf?fbclid=IwAR38Vk3h2
w_81Iv61C76V6xkErpLdxX4Ubc96P4VuR4EXYmIFW0b5-Jj0Z4

[50] M. Csernoch, ‘‘Thinking fast and slow in computer problem solving,’’
J. Softw. Eng. Appl., vol. 10, no. 1, pp. 11–40, 2017.

[51] The Math(s) Fix: An Education Blueprint for the AI Age, C. Wolfram,
Wolfram Media, Inc, MB, Canada, 2020.

[52] T. Rattenbury, J. M. Hellerstein, J. Heer, S. Kandel, and C. Carreras, Prin-
ciples of Data Wrangling: Practical Techniques for Data Preparation.
Newton, MA, USA: O’Reilly Media, 2017.

[53] F. Hermans. (Sep. 13, 2019). Strange Loop 2019—How to Teach Pro-
gramming (andOther Things)?. SaraMcCombs. Accessed: Jan. 30, 2021.
[Online]. Available: https://about.sourcegraph.com/strange-loop/strange-
loop-2019-how-to-teach-programming-and-other-things/

[54] A. Swidan and F. Hermans, ‘‘The effect of reading code aloud on com-
prehension,’’ in Proc. ACM Conf. Global Comput. Educ., May 2019,
pp. 178–184, doi: 10.1145/3300115.3309504.

[55] A. Sarkar, J. W. Borghouts, A. Iyer, S. Khullar, C. Canton,
F. Hermans, A. D. Gordon, and J. Williams, ‘‘Spreadsheet use and
programming experience: An exploratory survey,’’ in Proc. Extended
Abstr. CHI Conf. Hum. Factors Comput. Syst., Apr. 2020, pp. 1–9, doi:
10.1145/3334480.3382807.

[56] R. Lister, ‘‘After the gold rush: Toward sustainable scholarship in com-
puting,’’ in Proc. 10th Conf. Australas. Comput. Educ. (ACE), vol. 78,
2008, pp. 3–17.

[57] ECDL 2020. ECDL U.K. Course Syllabus. European Computer Driving
License in EU and US. Accessed: Jan. 30, 2021. [Online]. Available:
https://www.ecdluk.co.U.K./documents/ECDL%20Syllabus.pdf

VOLUME 9, 2021 153957

http://dx.doi.org/10.1109/CogInfoCom.2013.6719309
http://dx.doi.org/10.1007/s10639-020-10295-0
http://dx.doi.org/10.4018/joeuc.1998040102
http://dx.doi.org/10.1002/9780470050118.ecse415
http://dx.doi.org/10.1109/ICSE.2004.1317466
http://dx.doi.org/10.1109/HICSS.1996.495416
http://dx.doi.org/10.1109/ICSM.2012.6405300
http://dx.doi.org/10.1109/ICSM.2012.6405300
http://dx.doi.org/10.1109/ICSE.2013.6606575
http://dx.doi.org/10.1109/FIT47737.2019.00071
http://dx.doi.org/10.1080/08832323.2015.1007908
http://dx.doi.org/10.1109/ICSE.2015.129
http://dx.doi.org/10.1109/ICSE.2015.129
http://dx.doi.org/10.1109/ICSE.2003.1201191
http://dx.doi.org/10.1109/ICSM.2012.6405299
http://dx.doi.org/10.1109/VLHCC.2009.5295255
http://dx.doi.org/10.1109/32.879817
http://dx.doi.org/10.1109/VLHCC.2016.7739696
http://dx.doi.org/10.1109/SANER.2016.86
http://dx.doi.org/10.1109/VLHCC.2005.34
http://dx.doi.org/10.1007/11915355_15
http://dx.doi.org/10.1109/MAHC.2007.4338438
http://dx.doi.org/10.1109/FIE.2011.6142980
http://dx.doi.org/10.1007/978-3-540-69924-8_20
http://dx.doi.org/10.1007/978-3-540-69924-8_20
http://dx.doi.org/10.1145/3300115.3309504
http://dx.doi.org/10.1145/3334480.3382807

M. Csernoch et al.: Developing Computational Thinking Skills With Algorithm-Driven Spreadsheeting

[58] G. Pólya, How To Solve It: A New Aspect of Mathematical Method,
2nd ed. Princeton, NJ, USA: Princeton Univ. Press, 1957.

[59] G. Pólya, Mathematical Discovery. on Understanding, Learning, and
Teaching Problem Solving. New York, NY, USA: Wiley, 1981.

[60] O. Müller, ‘‘Pattern oriented instruction and the enhancement of analogi-
cal reasoning,’’ in Proc. Int. workshop Comput. Educ. Res. (CER), 2005,
pp. 57–67, doi: 10.1145/1089786.1089792.

[61] O. Müller, D. Ginat, and B. Haberman, ‘‘Pattern-oriented instruction
and its influence on problem decomposition and solution construc-
tion,’’ ACM SIGCSE Bull., vol. 39, no. 3, pp. 151–155, Jun. 2007, doi:
10.1145/1269900.1268830.

[62] D. Kahneman, Thinking, Fast and Slow. New York, NY, USA: Farrar,
Straus; Giroux, 2011.

[63] J. Sweller, P. Ayres, and S. Kalyuga, Cognitive Load Theory. Berlin,
Germany: Springer, 2011.

[64] M. Roter, ‘‘Managing people for improvement,’’ in Adaptiveness and
Superior Results. New York, NY, USA: McGraw-Hill, 2009.

[65] H. Tambunan, ‘‘The effectiveness of the problem solving strategy and the
scientific approach to Students’ mathematical capabilities in high order
thinking skills,’’ Int. Electron. J. Math. Educ., vol. 14, no. 2, pp. 293–302,
Feb. 2019, doi: 10.29333/iejme/5715.

[66] P. Mishra and M. J. Koehler, ‘‘Technological pedagogical content knowl-
edge: A framework for teacher knowledge,’’ Teachers College Rec.,
vol. 108, no. 6, pp. 1017–1054, 2006.

[67] C. Angeli and N. Valanides, Technological Pedagogical Content Knowl-
edge: Exploring, Developing, and Assessing TPCK. NewYork, NY, USA:
Springer, 2015.

[68] Best Practice Awards 2015, Train the Trainer, ECDL Foundation, Dublin,
Ireland, 2015, pp. 36–38.

[69] J. Hattie, Visible Learning for Teachers: Maximizing Impact on Learning.
Oxfordshire, U.K.:Routledge, 2012.

[70] M. Ben-Ari, ‘‘Bricolage forever!’’ in Proc. 11st Annu. Workshop (PPIG),
Leeds, U.K., Jan. 1999, pp. 1–5. Accessed: Jul. 21, 2015. [Online].
Available: http://www.ppig.org/papers/11st-benari.pdf

[71] M. Ben-Ari and T. Yeshno, ‘‘Conceptual models of software artifacts,’’
Interacting Comput., vol. 18, no. 6, pp. 1336–1350, Dec. 2006, doi:
10.1016/j.intcom.2006.03.005.

[72] M. Csernoch, ‘‘Do you speak and write in informatics?’’ in
Proc. 10th Int. Multi-Conf. Complex., Inform. Cybern. (IMCIC),
2019, pp. 147–152. Accessed: Jan. 15, 2021. [Online]. Available:
https://www.iiis.org/CDs2019/CD2019Spring/papers/ZA216TN.pdf

[73] M. Csernoch, P. Biró, J. Máth, and K. Abari, ‘‘Testing algorithmic skills
in traditional and non-traditional programming environments,’’ Informat.
Educ., vol. 14, no. 2, pp. 175–197, Oct. 2015.

[74] M. Prensky. (Oct. 2001). Digital Natives, Digital Immigrants. From on
the Horizon MCB University Press. Accessed: Mar. 21, 2018. [Online].
Available: https://www.marcprensky.com/writing/Prensky%20-
%20Digital%20Natives,%20Digital%20Immigrants%20-
%20ParPRET.pdf

[75] P. A. Kirschner, J. Sweller, and R. E. Clark, ‘‘Why minimal guidance
during instruction does not work: An analysis of the failure of construc-
tivist, discovery, problem-based, experiential, and inquiry-based teach-
ing,’’ Educ. Psychol., vol. 41, no. 2, pp. 75–86, Jun. 2006.

[76] P. A. Kirschner and P. De Bruyckere, ‘‘The myths of the digital native
and the multitasker,’’ Teaching Teacher Educ., vol. 67, pp. 135–142,
Oct. 2017.

[77] P. Biro and M. Csernoch, ‘‘The mathability of com-
puter problem solving approaches,’’ in Proc. 6th IEEE
Int. Conf. Cognit. Infocommunications (CogInfoCom),
Oct. 2015, pp. 111–114, doi: 10.1109/CogInfoCom.2015.7390574.

[78] P. Biro and M. Csernoch, ‘‘The mathability of spreadsheet tools,’’ in
Proc. 6th IEEE Int. Conf. Cognit. Infocommunications (CogInfoCom),
Oct. 2015, pp. 105–110, doi: 10.1109/CogInfoCom.2015.7390573.

[79] J. Case and R. Gunstone, ‘‘Metacognitive development as a shift in
approach to learning: An in-depth study,’’ Stud. Higher Educ., vol. 27,
no. 4, pp. 459–470, Oct. 2002.

[80] S. Booth, Learning to Program: A Phenomenographic Perspective.
Gothenburg, Sweden: Acta Universitatis Gothoburgensis, 1992.

[81] M. Csernoch and P. Biró, ‘‘Computer Problem-solving,’’ Hungarian,
Számítógépes Problémamegoldás, vol. 62, no. 3, pp. 86–94, 2015.

[82] C. Wolfram. (2015). Evidence: Let’s Promote not Stifle Innovation
in Education. Accessed: Oct. 12, 2015. [Online]. Available:
https://www.conradwolfram.com/home/2015/5/21/role-of-evidence-
in-education-innovation

[83] J. Cao, S. D. Fleming, M. Burnett, and C. Scaffidi, ‘‘Idea garden: Situated
support for problem solving by end-user programmers,’’ Interacting Com-
put., vol. 27, no. 6, pp. 640–660, Nov. 2015, doi: 10.1093/iwc/iwu022.

[84] J. Carroll and C. Rosson, ‘‘The paradox of the active user,’’ in
Interfacing Thought: Cognitive Aspects of Human-Computer Interaction,
J. M. Carroll, Ed. Cambridge, MA, USA: MIT Press, 1998,
pp. 80–111.

[85] M. Csernoch and P. Biró, ‘‘Edu-edition spreadsheet competency frame-
work,’’ in Proc. Conf. Spreadsheet Risk Manage. (EuSpRIG), London,
U.K., 2018, pp. 121–136.

[86] P. Hilton and F. G. Pólya, Mathematical Discovery. On understanding,
learning, and teaching problem solving. New York, NY, USA: Wiley,
1981.

[87] J. A. Chen, D. B.Morris, andN.Mansour, ‘‘Science teachers’ beliefs. Per-
ceptions of efficacy and the nature of scientific knowledge and knowing,’’
in International Handbook of Research on Teachers’ Beliefs, H. Fives and
M. G. Gill, Eds. Oxfordshire, UK.: Routledge, 2015, pp. 370–386.

[88] PISA 2009 Results: Student on Line: Digital Technologies and Perfor-
mance, OECD, Paris, France, 2011.

[89] Main Results From the PISA 2012 Computer-Based Assessments, in
Students, Computers and Learning: Making the Connection, OECD Pub-
lishing, Paris, France, 2015.

[90] OECD. Education at a Glance 2016. OECD Indicators
(Summary Hungarian), Hungarian: OECD Mutatók. (Összefoglalás
magyarul), Oktatási Körkép 2016. Accessed: May 17, 2018.
[Online]. Available: https://www.keepeek.com/Digital-
Asset-Management/oecd/education/education-at-a-glance-
2016/summary/hungarian_24bbf13e-hu#page2

[91] O. Hatamleh and G. Tilesch, Between Brains. Milton Keynes, U.K.:
Lightning Source UK Ltd., 2020.

[92] S. Krishnamurthi and K. Fisler, ‘‘Programming paradigms and beyond,’’
in The Cambridge Handbook of Computing Education Research (Cam-
bridge Handbooks in Psychology), S. Fincher and A. Robins, Eds.
Cambridge, U.K.: Cambridge Univ. Press, 2019, pp. 377–413, doi:
10.1017/9781108654555.014.

[93] K. D. Lee, Foundations of Programming Languages, 2nd ed. Cham,
Switzerland: Springer, 2017.

[94] G. Szanyi, ‘‘The investigation of students’ skills in the process of func-
tion concept creation,’’ Teaching Math. Comput. Sci., vol. 13, no. 2,
pp. 249–266, 2015.

[95] C. Wolfram. Stop Teaching Calculating, Start Teaching Math-
Fundamentally Reforming the Math Curriculum. Transcript: Wolfram
Technology Conference Talk. TED Global. Accessed: Oct. 12, 2018.
[Online]. Available: https://www.computerbasedmath.org/resou
rces/Education_talk_transcript.pdf

[96] G. Lovászová and J. Hvorecký, ‘‘On programming and
spreadsheet calculations,’’ Spreadsheets Educ., vol. 1, no. 1,
pp. 44–51, 2003. Accessed: Jan. 25, 2016. [Online]. Available:
https://epublications.bond.edu.au/ejsie/vol1/iss1/3

[97] M. Schneider, ‘‘An empirical study of introductory lectures in infor-
matics based on fundamental concepts,’’ in Informatics and Students
Assessment (Lecture Notes in Informatics), vol. 1. Germany: GI-Edition,
Schloss Dagstuhl, 2004, pp. 123–133.

[98] M. Schneider, ‘‘A strategy to introduce functional data modeling at school
informatics,’’ in From Computer Literacy to Informatics Fundamentals,
R. T. Mittermeir, Ed. 2005, pp. 130–144. Berlin, Germany: Springer, doi:
10.1007/978-3-540-31958-0_16.

[99] P. Hubwieser, ‘‘Functional modelling in secondary schools using spread-
sheets,’’ Educ. Inf. Technol., vol. 9, no. 2, pp. 175–183, Jun. 2004, doi:
10.1023/B:EAIT.0000027929.91773.ab.

[100] P. Warren, ‘‘Learning to program: Spreadsheets, scripting and
HCI,’’ in Proc. 6th Australas. Conf. Comput. Educ., vol. 30,
2004, pp. 327–333. Darlinghurst, NSW, Australia: Australian
Computer Society. Accessed on: Jan. 25, 2018. [Online]. Available:
https://dl.acm.org/citation.cfm?id=979968.980012.

[101] P. Sestoft, ‘‘Spreadsheet technology,’’ IT Univ. Copenhagen,
Copenhagen, Denmark, Tech. Rep. ITU-TR-2011-142, 2011.

[102] R. Skemp, The Psychology of LearningMathematics. Mahwah, NJ, USA:
Lawrence Erlbaum Associatives, 1971.

[103] K. Sebestyén, G. Csapó, and M. Csernoch. Introduction to
Algorithmic_Based Data Management in Spreadsheet Environment.
The Turkish Online Journal of Educational Technology. INTE
2019. Accessed: Jan. 25, 2020. [Online]. Available: https://www.int-
e.net/publication_folder/inte/inte_iticam_2019.pdf

153958 VOLUME 9, 2021

http://dx.doi.org/10.1145/1089786.1089792
http://dx.doi.org/10.1145/1269900.1268830
http://dx.doi.org/10.29333/iejme/5715
http://dx.doi.org/10.1016/j.intcom.2006.03.005
http://dx.doi.org/10.1109/CogInfoCom.2015.7390574
http://dx.doi.org/10.1109/CogInfoCom.2015.7390573
http://dx.doi.org/10.1093/iwc/iwu022
http://dx.doi.org/10.1017/9781108654555.014
http://dx.doi.org/10.1007/978-3-540-31958-0_16
http://dx.doi.org/10.1023/B:EAIT.0000027929.91773.ab

M. Csernoch et al.: Developing Computational Thinking Skills With Algorithm-Driven Spreadsheeting

[104] K. Sebestyén and G. Csapó. Visualising Sprego Inequality
Problems With 2D Representations. Turkish Online Jour-
nal of Educational Technology. INTE 2018. Accessed:
Jan. 25, 2020. [Online]. Available: https://www.int-e.net/
publication_folder/inte/inte_iticam_idec2018_v2.pdf

[105] Á. Gulácsi and N. Dienes. 3D Software Environment for Educational
Sprego Programming. The Turkish Online Journal of Educational Tech-
nology, INTE 2018. Accessed: Jan. 25, 2020. [Online]. Available:
https://www.tojet.net/special/2018_12_3.pdf

[106] Á. Gulácsi, N. Dienes andM. Csernoch, ‘‘Sprego toolbox: A way to teach
spreadsheeting meaningfully,’’ in Turkish Online J. Educ. Technol., vol. 2,
pp. 296–302, Dec. 2019.

[107] G. Csapo, ‘‘Sprego virtual collaboration space,’’ in Proc. 8th IEEE
Int. Conf. Cognit. Infocommunications (CogInfoCom), Sep. 2017,
pp. 000137–000142, doi: 10.1109/CogInfoCom.2017.8268230.

[108] G. Csapo, ‘‘Sprego virtual collaboration space: Improvement guidelines
for the MaxWhere seminar system,’’ in Proc. 8th IEEE Int. Conf. Cognit.
Infocommunications (CogInfoCom), Sep. 2017, pp. 000143–000144, doi:
10.1109/CogInfoCom.2017.8268231.

[109] C. Wilcox and J. Walkenbach. (2003). Guidelines and Examples
of Array Formulas. Accessed: Dec. 13, 2018. [Online].
Available: https://support.office.com/en-us/article/Guidelines-
and-examples-of-array-formulas-3be0c791-3f89-4644-a062-
8e6e9ecee523?CorrelationId=643cf62a-061f-461e-8008-
d601efbad369&ui=en-U.S.&rs=en-U.S.&ad=U.S

[110] J. Walkenbach, ‘‘Excel 2010 Bible,’’ Accessed on: December, vol. 13,
2018. [Online]. Available: http://www.seu.ac.lk/cedpl/student

[111] R. R. Panko, ‘‘What we don’t know about spreadsheet errors today: The
facts, why we don’t believe them, and what we need to do,’’ in Proc.
EuSpRIG, London, U.K., Jul. 2015, pp. 1–15.

[112] P. Biro and M. Csernoch, ‘‘Deep and surface metacognitive processes
in non-traditional programming tasks,’’ in Proc. 5th IEEE Conf. Cog-
nit. Infocommunications (CogInfoCom), Nov. 2014, pp. 49–54, doi:
10.1109/CogInfoCom.2014.7020507.

[113] P. Biró, M. Csernoch, K. Abari, and J. Máth. (2015). Testing Algo-
rithmic and Application Skills. Turkish Online Journal of Educa-
tional Technology. Accessed: May 15, 2020. [Online]. Available:
https://www.tojet.net/special/2015_8_1.pdf

[114] P. Biró and M. Csernoch, ‘‘Maths problems in pseudo-codes compared
to computer usage,’’ in Proc. Int. Conf. Educ. New Developments,
M. Carmo, Ed. Lisboa, Portugal: InScience Press, 2018, pp. 341–346.

[115] M. Csernoch and P. Biró, ‘‘Are digital natives spreadsheet natives?’’ 2019,
arXiv:1909.00865.

[116] M. Csernoch, ‘‘From webtables to datatables,’’ 2020, arXiv:2006.14694.
[117] Microsoft. Excel Functions (Alphabetical). Excel for Microsoft 365

Excel for Microsoft 365 for Mac Excel for the web Excel 2021 Excel
2021 for Mac Excel 2019 Excel 2019 for Mac Excel 2016 Excel 2016 for
Mac Excel 2013 Excel Web App Excel 2010 Excel 2007 Excel for Mac
2011 Excel Starter 2010. Accessed: Sep. 23, 2021. [Online]. Available:
https://support.microsoft.com/en-us/office/excel-functions-alphabetical-
b3944572-255d-4efb-bb96-c6d90033e188

[118] SLE 2020. School Leaving Exams. Hungarian:
Érettségi. Accessed: May 17, 2020. [Online]. Available:
https://www.oktatas.hu/kozneveles/erettsegi/jogszabalyok

[119] SLE in Informatics 2020. School Leaving Exams in Informatics.
Hungarian: Informatika Érettségi. Accessed: May 17, 2020. [Online].
Available: https://www.oktatas.hu/pub_bin/dload/kozoktatas/erettsegi/vi
zsgakovetelmenyek2017/informatika_vk_2017.pdf

[120] M. Csernoch and P. Biro, ‘‘First year students’ attitude to
computer problem solving,’’ in Proc. 8th IEEE Int. Conf. Cognit.
Infocommunications (CogInfoCom), Sep. 2017, pp. 225–230,
doi: 10.1109/CogInfoCom.2017.8268247.

[121] K. Pintér. (2012).On Teaching Mathematical Problem-Solving and Prob-
lem Posing. PhD thesis. Doctoral School in Mathematics and Com-
puter Science University of Szeged Faculty of Science and Informat-
ics Bolyai Institute. Accessed: May 29, 2020. [Online]. Available:
https://www.math.u-szeged.hu/phd/dreposit/phdtheses/pinter-klara-a.pdf

[122] K. Chmielewska and D. Matuszak, ‘‘Mathability and
coaching,’’ in Proc. 8th IEEE Int. Conf. Cognit. Infocom-
munications (CogInfoCom), Sep. 2017, pp. 000427–000432,
doi: 10.1109/CogInfoCom.2017.8268284.

[123] R. E. Mayer, ‘‘The psychology of how novices learn computer program-
ming,’’ ACM Comput. Surveys, vol. 13, no. 1, pp. 121–141, Mar. 1981,
doi: 10.1145/356835.356841.

[124] J. B. Biggs and K. E. Collis, Evaluating the Quality of Learning: The
SOLO Taxonomy. New York, NY, USA: Academic, 1982.

[125] R. Lister, B. Simon, E. Thompson, J. L. Whalley, and C. Prasad, ‘‘Not
seeing the forest for the trees: Novice programmers and the SOLO
taxonomy,’’ in Proc. 11st Annu. SIGCSE Conf. Innov. Technol. Comput.
Sci. Educ., New York, NY, USA, 2006, pp. 118–122.

[126] J. Sheard, A. Carbone, R. Lister, B. Simon, E. Thompson, and
J. L. Whalley, ‘‘Going SOLO to assess novice programmers,’’ ACM
SIGCSE Bull., vol. 40, no. 3, pp. 209–213, Aug. 2008.

[127] L. E. Klopfer, A. B. Champagne, and R. F. Gunstone, ‘‘Naive knowledge
and science learning,’’Res. Sci. Technol. Educ., vol. 1, no. 2, pp. 173–183,
Jan. 1983.

[128] M. Moyo, A. C. Tiba, and K. Madzima. (2016). Impact
of Pre-Service Teachers’ Prior Knowledge of Information
Technologies on Perceptions and Beliefs on Computers in
Education Modules. Accessed: Jun. 15, 2019. [Online].
Available: https://uir.unisa.ac.za/bitstream/handle/10500/22888/M
oses%20Moyo%2C%20Anyen%20Chantylee%20Tiba%2C%20Kud
akwashe%20Madzima.pdf?sequence=1

MÁRIA CSERNOCH was born in Szentes,
Hungary, in 1963. She received the teacher degree
in mathematics—descriptive geometry, the B.Sc.
degree in software engineering, in 1986, the
teacher degree in informatics, in 1997, the degree
in English, in 2000, the Ph.D. degree in mathe-
matics and computer sciences, in 2006, and the
Dr. habil. degree in applied linguistics from the
University of Debrecen, Hungary, in 2012.

She currently works as an Associate Professor
at the Faculty of Informatics, University of Debrecen. Her research inter-
ests include didactics of Informatics—specialized in developing algorithmic
skills, computational thinking, and teaching programming languages, com-
putational linguistics, and computer aided language teaching and learning.

PIROSKA BIRÓ was born in Ditro, Romania,
in 1983. She received the M.Sc. degree in
computational mathematics from the Faculty of
Mathematics-Informatics, University of Babes-
Bolyai, and the Ph.D. degree in informatics from
the University of Debrecen, Hungary, in 2015.

She currently works as a Senior Lecturer at the
University of Debrecen and Sapientia Hungarian
University of Transylvania. Her research inter-
ests include didactics of informatics, algorithmic

thinking, high level programming languages, and computer aided education.

JÁNOS MÁTH was born in Cegléd, Hungary,
in 1959. He received the degree in mathematics
and the Ph.D. degree from the University of Debre-
cen, Hungary, in 1984 and 1997, respectively.

He currently works as an Associate Professor at
the Faculty of Arts and Humanities, University of
Debrecen. His research interests include statistics,
knowledge space theory, and cognitive load theory.

VOLUME 9, 2021 153959

http://dx.doi.org/10.1109/CogInfoCom.2017.8268230
http://dx.doi.org/10.1109/CogInfoCom.2017.8268231
http://dx.doi.org/10.1109/CogInfoCom.2014.7020507
http://dx.doi.org/10.1109/CogInfoCom.2017.8268247
http://dx.doi.org/10.1109/CogInfoCom.2017.8268284
http://dx.doi.org/10.1145/356835.356841

