
Received October 8, 2021, accepted October 29, 2021, date of publication November 8, 2021,
date of current version November 19, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3126658

Crossing the Reality Gap: A Survey on
Sim-to-Real Transferability of Robot
Controllers in Reinforcement Learning
ERICA SALVATO , GIANFRANCO FENU , ERIC MEDVET ,
AND FELICE ANDREA PELLEGRINO , (Member, IEEE)
Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy

Corresponding author: Erica Salvato (erica.salvato@phd.units.it)

This work was supported in part by the Italian Ministry for Research in the framework of the 2017 Program for Research Projects of
National Interest (PRIN), under Grant 2017YKXYXJ.

ABSTRACT The growing demand for robots able to act autonomously in complex scenarios has widely
accelerated the introduction of Reinforcement Learning (RL) in robots control applications. However, the
trial and error intrinsic nature of RL may result in long training time on real robots and, moreover, it may
lead to dangerous outcomes. While simulators are useful tools to accelerate RL training and to ensure safety,
they often are provided only with an approximated model of robot dynamics and of its interaction with the
surrounding environment, thus resulting in what is called the reality gap (RG): a mismatch of simulated and
real control-law performances caused by the inaccurate representation of the real environment in simulation.
The most undesirable result occurs when the controller learnt in simulation fails the task on the real robot,
thus resulting in an unsuccessful sim-to-real transfer. The goal of the present survey is threefold: (1) to
identify the main approaches to face the RG problem in the context of robot control with RL, (2) to point
out their shortcomings, and (3) to outline new potential research areas.

INDEX TERMS Reality gap, reinforcement learning, robotics, sim-to-real.

I. INTRODUCTION
Reinforcement Learning (RL) [1] allows to design controllers
(often referred to as agents) with the capability of learning an
optimal behaviour by interacting with the environment. The
behaviour is defined in terms of state-action pairs, also known
as policy, which is learnt through a trial and error process.
In some well-known RL tasks, such as pole-balancing,

grid-search, or mountain car, state and action spaces of
the system are small enough to allow approximating poli-
cies through tables [1], i.e., actions and states can be dealt
with as finite discrete variables. However, the higher the
complexity of the system to control, the more ineffective
the tabular approaches become [1]. Indeed an increase in
system complexity is often related to an increase of the
state and action spaces dimensions, which makes a tabular
approach intractable. In challenging cases, such as robot
control, treating state and action as continuous variables in
a compact set is a more appropriate way to deal with the
problem [2], [3]. For this purpose, approximators of the

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongqiang Cheng .

policy or of some supporting element, such as value func-
tion, or of both, are required [1]. When Deep Neural Net-
works (DNNs) are employed as approximators, the approach
is referred to as Deep Reinforcement Learning (DRL); it
allows to develop RL controllers with less manual feature
engineering than classic tools (radial basis functions, tile
coding, etc.) [4]–[6]. On the other hand, when DRL is directly
employed on the robot in real-time, it results in considerably
long training times. Moreover, due to the intrinsic trial and
error nature of RL, a real-world training, in particular during
the exploration phase of the state and action space, can lead
to unsafe actions of the robot. Therefore, a way to train robots
safely and quickly is needed.

Simulators allow to easily address these problems once
they are provided with a model of the robot dynamics able
to replicate the actual behaviour as closely as possible.
In principle, simulators allow to train the controller with
faster and safer procedures: once the policy has been learnt,
it is transferred to the real system (sim-to-real transfer) [7].
However, sim-to-real transfer is only effective when the sim-
ulator is given a sufficiently accurate model of the real robot
and the environment [8]; unfortunately, the more accurate the

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 153171

https://orcid.org/0000-0003-3815-6652
https://orcid.org/0000-0003-0867-8388
https://orcid.org/0000-0001-5652-2113
https://orcid.org/0000-0002-4423-1666
https://orcid.org/0000-0001-7282-7638


E. Salvato et al.: Crossing RG: Survey on Sim-to-Real Transferability of Robot Controllers in RL

simulation, the heavier the computational cost. A less accu-
rate simulator is therefore often preferred, although it may
result in a less effective sim-to-real transfer. The phe-
nomenon in which a controller learnt on simulator degrades
once applied on the real world is the so-called reality gap
(RG) [9]. In the worst case, the RG leads to a failure of the
policy when applied on the real world, which means a robot
unable to achieve its goal.

RL is not the only approach that can be affected by the
RG. Any technique in which the controller design relies on a
simulator of the real system can potentially exhibit a reality
gap [10]. Indeed, several works faced the RG problem in
other frameworks, such as Evolutionary Computation [9],
[11]–[17] or Model Predictive Control [18]–[21].

However, here we focus our attention only on those works
facing the RG problem on robot controllers learnt with RL.
Most of the many solutions proposed in the literature, are
task-dependent and/or have been tested on a specific task
only. The outcomes are that: (a) generalisation is not ensured,
(b) and a comparison between different approaches is not
feasible.

Although a sketch of the current state of the art is already
proposed in [22], here we conduct a more in-depth analysis.
We introduce the main concept behind the RG in a general
RL framework and we survey relevant and recent literature
concerning RG in the context of robot control with RL.
According to our analysis, the approaches for coping with RG
in this context fall into three broad categories: domain ran-
domisation (DR), adversarial reinforcement learning (ARL),
and transfer learning (TL). Hence, we introduce a general
RL framework suitable to be specialised for each of the
mentioned approaches.

The aims of the present work are:
(1) to provide a systematic picture of the literature con-

cerning how to solve the RG problem in robot control
tasks with RL;

(2) to clarify the differences between the three main iden-
tified approaches by highlighting the relative pros and
cons;

(3) to identify new possible research areas.
The remainder of the paper is organised as follows.

In Section II we describe a formal framework for RL useful
to better explain the key elements of DR, ARL, and TL.
In Section III we introduce RL as a means for robot control
and discuss the RG in the context of robotics. In Section IV
we survey and discuss the current methodologies to face
the RG, relying, where possible, on the provided formalism.
Finally, in Section V, we draw the conclusions.

II. REINFORCEMENT LEARNING
Reinforcement Learning (RL) can be employed to perform
optimal data-driven control without the need to rely on a
mathematical model of system dynamics [1], [23], [24].

It is typically described as a Markov Decision Process
(MDP); i.e., a tuple (X ,A, p, r) defined by the state set X , the
control set A, the transition probability p, and the immediate

reward r ∈ R. In brief, it expresses a discrete-time stochas-
tic control process in which a scalar r is employed to
assess the quality of the controller choice in terms of task
achievement.

Here, we adopt a control systems-oriented formalism sim-
ilar to the one employed in [25]. However, what follows also
applies to MDP settings by defining some of the following
elements in terms of expected values.

A. ADOPTED FORMALISM
A dynamical discrete-time system � is a tuple (X ,A,O, f , g)
composed of the state set X , the control set A, the obser-
vation set O, a transition function f : X × A → X , and
an observation function g : X → O. Let x(k) ∈ X ,
a(k) ∈ A, and o(k) ∈ O be the state, the applied control input,
and the observation, respectively, at the k-th time-instant.
A dynamical discrete-time system, starting from an initial
state x(0) and subjected to a control sequence a(0), a(1), . . . ,
evolves according to the following laws:

x(k+1) = f
(
x(k), a(k)

)
(1)

o(k+1) = g
(
x(k+1)

)
= g

(
f
(
x(k), a(k)

))
. (2)

An environment E is a dynamical discrete-time system
described by a tuple (X ,A,O, f , g, h) composed of the same
elements of � plus a reward function h : X × A → R.
Let r (k+1) ∈ R be the reward at the (k + 1)-th time-instant.
An environment E , starting from an initial state x(0) and sub-
jected to a control sequence a(0), a(1), . . . , evolves according
to Equations (1) and (2) and:

r (k+1) = h
(
x(k), a(k)

)
. (3)

Overall, we assume that g(f (·)) = f (·), thus resulting
in o(k+1) = x(k+1). The following is also pertinent, with
appropriate adjustments, in case of g(f (·)) 6= f (·) that simply
means dealing with a partial observability of the state. In the
MDP setting this amount to employing a Partially Observable
Markov Decision Process (POMDP), which requires to intro-
duce the concept of belief [26]. However, it is not necessary
for the purpose of the present work.

A controller (or policy) for a dynamical discrete-time sys-
tem, and therefore also for an environment, is a function
π : O→ A.
Given a discount factor γ ∈ [0, 1], an optimal policy π∗ is

a policy that satisfies, for any initial state x(0):

π∗ = argmax
π∈5

+∞∑
k=0

γ kh
(
x(k), π

(
o(k)

))
= argmax

π∈5

Jπ
(
x(0)

)
, (4)

where 5 is the set of policies, while Jπ
(
x(0)

)
is the infi-

nite horizon discounted reward starting from x(0) under the
policy π .
We denote with π ↔ E the closed-loop system where

π determines the control input to be applied onE , represented

153172 VOLUME 9, 2021



E. Salvato et al.: Crossing RG: Survey on Sim-to-Real Transferability of Robot Controllers in RL

FIGURE 1. The closed-loop system π ↔ E where a policy (light blue block
above) applies a control input a(k) to an environment (gray block below)
that outputs an observation o(k+1) and a reward r (k+1).

in Figure 1. In particular, according to the above definitions
and to the assumption that g(f (·)) = f (·), the scheme repre-
sents a state feedback control. Clearly, when g(f (·)) 6= f (·),
the same scheme could represent an output feedback control.
A policy learning algorithm L is an algorithm that, given an

environment E = (X ,A,O, f , g, h) and a learnable policies
set 5L

⊆ 5, outputs (learns) a policy πL = L(E) ∈
5L . When the learning encompasses an interaction with the
environment, the policy learning algorithm could be seen as
an agent L that learns a controller π by interacting with an
environment E . We denote by L ↔ E the resulting closed
loop system (Figure 2). A policy learning algorithm is said to
bemodel-based, if it relies on the knowledge of f and g (either
known or identified based on collected data), or model-free,
otherwise.

FIGURE 2. The closed-loop system L↔ E where a RL-based agent L
(green block above) applies a control input a(k) to an environment (gray
block below) that outputs an observation o(k+1) and a reward r (k+1).

A typical RL agent can be seen as a policy learning algo-
rithm L. Indeed, during training, it interacts with the envi-
ronment E = (X ,A,O, f , g, h) and updates a controller π by
observing the consequences (in terms of reward r) of selected
control inputs. Its global goal is to learn a controller π∗ in E
which satisfies (4).

The learning procedure can either be episodic or in a
single chapter (non-episodic): in the former case, the learn-
ing is performed through episodes and the state is reset
in case of a failure, a goal achievement, or the achieve-
ment of the maximum episode length T . In addition,
the agent can update the controller either by using data
from the current policy (on-policy) or independently of it
(off-policy).

RL approaches can be categorised in three main cate-
gories [1]:
• Value-function approaches, based on the idea of the
value of a state (value function Vπ (x)) or of a
state-control input pair (action-value functionQπ (x, a)).
The value function and the action-value function repre-
sent, respectively, the cumulative reward obtained from
x(k) by applying π and the cumulative reward obtained
from x(k) by first choosing an a(k) and then applying π .
The optimal policy corresponds to the optimal V or
Q functions:

V ∗(x(k)) = max
π

Jπ
(
x(k)

)
(5)

Q∗(x(k), a(k)) = max
π

h
(
x(k), a(k)

)
+γ Jπ

(
x(k+1)

)
. (6)

In brief, by interacting with the environment and observ-
ing rewards, either V ∗ or Q∗ are estimated, thus leading
to the optimal policy.

• Policy-search approaches, in which a parametrized pol-
icy πθ is defined, whose parameters θ are updated based
on the observed reward in order to maximise Jπθ , either
employing gradient-based or gradient-free optimisation
techniques [27].

• Actor-Critic approaches, which integrate the idea of both
previous categories. Vπ (x), in this case, is employed
as a baseline (Critic) for policy gradient optimisation
(Actor).

Further technicalities are not necessary for the purpose of this
work. For additional details on RL we refer readers to [1],
[25], [28], [29].

III. REINFORCEMENT LEARNING IN ROBOTICS
The motivation for using RL in robotics is to make a
robot autonomous in finding an optimal policy, through
trial and error interactions with its environment, without
an explicit knowledge of the model (model-free). How-
ever, as a matter of fact, the most effective methods to
date are model-based [30]–[32]. In addition, policy search
approaches result in more efficient trainings in terms of time
needed for convergence [33]–[38]. Regardless of the specific
RL method being used, the application of RL enabled
researchers and practitioners to face different significant
robotic tasks (e.g., manipulation, navigation, motion con-
trol, etc.). In Table 1, we report the tasks that are more

VOLUME 9, 2021 153173



E. Salvato et al.: Crossing RG: Survey on Sim-to-Real Transferability of Robot Controllers in RL

FIGURE 3. Schematic representation of the application of RL to the robot control problem using simulation. First, given the real robot and it
environment E (block at bottom right), a simulator E ′ (block at bottom left) is obtained by modelling E using φ. Then an agent L (block at top left)
learns a policy π∗ in simulation. Finally, the learnt policy is transferred to the real robot where it can be deployed (block at top right).

TABLE 1. Overview of the robotic tasks involving RL controllers.

often considered,1 along with a few significant research
papers, some of which (those dealing with sim-to-real trans-
ferability) are surveyed in the present study.

When tackling a robot control problem with RL, accord-
ing to the formulation and notation above provided, the
designer should ensure that (a) the environment E captures
the robot-surrounding environment dynamics; (b) the obser-
vations o ∈ O include proprioceptive measures useful to
capture the robot dynamic evolution (e.g., joints position and
velocity); (c) the control inputs a ∈ A correspond to values
for the appropriate robot actuators (e.g., torques to be applied
to joints or desired acceleration/speed/position, depending on
the specific control system).

A first issue concerns the representation of Vπ (x), and
Qπ (x, a). While in some simple RL scenarios O and A sets

1The main tasks addressed in the literature are: navigation, manipulation,
locomotion, and motion control. The former concerns the ability of robots to
determine their position in a given reference frame, and plan a path leading
them to some target locations. Manipulation refers to the set of tasks in which
robots interact with objects around them, e.g., grabbing an object, opening
a door, packing an order in a box. Locomotion encompasses all the various
applications in which robots have to transport themselves from one place
to another. Finally, motion control is the ability of the robot to determine a
temporal sequence of control inputs to achieve a desired movement. Here we
include in this latter subcategory all motion tasks not included in the previous
categories.

can be discretised over a finite range, hence allowing a tabular
representation ofVπ (x) orQπ (x, a), in robot control problems
the physical nature of observations and control inputs advo-
cates for a finely discretised (ideally, continuous) representa-
tion ofO and A. In this case, table may require a huge amount
of memory and the problem gets practically intractable.
An alternative and often suitable solution to escape tabular
representation is function approximation, recently addressed
by DRL. Here DNNs are used as function approximators
of Vπ (x), Qπ (x, a), or directly π , and a loss function ηθ is
designed in order to guide the training of the network itself.
For a more detailed description of DRL, including recent
efforts and some applications, we refer the reader to [4], [63].

A second issue, pivotal for the aim of the present work,
derives from the trial and error process employed by RL
and its direct application to the robot: learning time may
become too long, thus unpractical, and the risk of dam-
aging the robot, or more in general the environment, may
be too high. Typically, simulators are used for address-
ing this issue; i.e., an environment mapping operator φ is
assumed to exist (albeit unknown in practice) such that E ′ =
φ(E) = (X ′,A′,O′, f ′, g′, h′) is a digital approximated copy
of E . Intuitively, φ corresponds to modelling a real system
described by E as a simulated system described by E ′ such
that a policy learnt on E ′ can be applied to E . The resulting
controller design and test are, therefore, split in two distinct
phases that are performed on two different environments:
(i) an agent L interacts with a simulated environment E ′ =
φ(E) and outputs a controller π∗; (ii) the resulting π∗ is
applied on the real E .

In this scenario, outlined in Figure 3, the latter step, that in
general can be defined as E ′-to-E transfer, can be renamed
as sim-to-real transfer, given the nature of the considered E ′

and E .
As will be clear from the reviewed examples in the follow-

ing sections, a controller learnt in simulation often exhibits

153174 VOLUME 9, 2021



E. Salvato et al.: Crossing RG: Survey on Sim-to-Real Transferability of Robot Controllers in RL

performance losses when applied on the real robot and, in the
worst scenario, totally fails the task. From the point of view
of the designer, this issue becomes relevant when, although a
safer and faster training and an effective test have been carried
out on E ′, the policy learnt in simulation does not achieve the
goal in real world. In such a situation, the learning algorithm
is affected by an intolerable RG and the corresponding learnt
policy π∗ is said to be non-transferable.
Note that, although it is not always clearly emphasised,

a mandatory step ahead of the sim-to-real transfer is to
perform a test of the learnt policy on the simulator itself.2

Otherwise, there is no guarantee of the learnt controller effec-
tiveness in achieving the task even in simulation. For instance,
a typical learning stop criterion consists in terminating the
training when the moving average of the cumulative reward
settles down. However, this empirical rule does not ensure
that the learnt controller is able to correctly perform the task.
The learning algorithm may have been trapped in a local
maximum, and the resulting controller may have a completely
unexpected behaviour in tests, even on the simulator.

If the test on the simulator is effective, possible reasons for
a performance loss in a test on the real robot, and therefore
for RG, are:
(a) φ operator is unrealistic: E and E ′ differences in f ,f ′

and/or g, g′ are such that, applying the same input on
both environments, the resulting o and o′ are different;
or, possibly, E and E ′ differences in h and h′ lead to
two different optimisation problems Jπ (x) 6= Jπ (x ′);

(b) L is unable to output aπ∗ sufficiently robust to possibly
small and unavoidable errors in φ.

However, the particular case in which h′ is very different from
h is unusual, in practice. Typically, h is properly designed
and remains ‘‘the same’’ for both E and E ′ (for this reason
hereinafter we consider h′ = h). Therefore, the RG can be
essentially attributed to a mismatch between E and E ′ and
the possible solutions may be: (a) improve E ′, by properly
adjusting φ (not always possible because it could result in an
excessive computational effort or because of lack of knowl-
edge); (b) make the controller more robust to model errors.

Note that, in general, it is not required that the controller
behaves identically when applied to E and E ′, but, rather,
that it is E ′-to-E transferable, i.e., sim-to-real transferable.
In practice, this requirement translates to a (subjectively)
properly bounded RG. Clearly, if an appropriate behaviour
is only reached when E ′ is an identical copy of the robot E
(E ′ = φ(E) = E), using E ′ rather than E has no benefit in
reducing the overall learning time. But still, E ′ may be useful
for addressing risks concerning safety.

Figure 4 summarises a generic routine for investigating the
presence of RG. We start by (1) performing a training on E ′;
(2) thenwe test the resulting policyπ on the sameE ′, to check
its effectiveness in reaching the task, and, only if the test ends

2This only applies to those situations where the controller is transferred
on the real robot. As shown in Section IV-C, in some scenarios, the training
continues on the real robot. Hence a test procedure is not needed in these
cases.

FIGURE 4. Flowchart of the routine to test the presence of the RG.

successfully, (3) we test π also on E ; otherwise, we revert
to III. Once that the III has been executed, (4) we compare
the performance obtained in the π tests on E and E ′.

IV. METHODOLOGIES FOR SOLVING RG
In the present paper, we focus only on those articles that
meet all the following requirements: (i) address explicitly
the RG problem, (ii) deal with robot control applications,
and (iii) employ RL techniques. We have identified three
major categories of approaches for addressing the RG in this
scenario: domain randomisation (DR), adversarial RL (ARL),
transfer learning (TL). All the articles discussed below are
summarised in Table 2 according to this categorisation. The
table also shows, for each article, if the authors conducted
experiments only in simulation (sim-to-sim) or (also) on real
robot (sim-to-real), and specifies the employed simulators.

Due to task diversity (Figure 5 shows a visual summary
of the robotic tasks) and the lack of a common theoretical
framework for the RG, the surveyed articles do not present
their results in a way that permit a systematic comparison.
However, we provide a general formal definition for each of
the previously mentioned categories, according to the formal-
ism of Section II, which allows to understand each approach.

A. DOMAIN RANDOMISATION
Domain randomisation (DR) has already achieved good
results in sim-to-real transfer of robotics controllers outside
RL [54], [75]–[79]. The main idea behind this approach is
what in control theory is called robust control under either
parametric or non parametric uncertainty [80], [81], that is

VOLUME 9, 2021 153175



E. Salvato et al.: Crossing RG: Survey on Sim-to-Real Transferability of Robot Controllers in RL

TABLE 2. List of the surveyed articles, specifying the category
(Cat. column). S2S and S2R columns show whether in the article the
proposed technique was evaluated by performing sim-to-sim or
sim-to-real experiments, respectively.

the design of controllers able to guarantee certain properties
despite some tolerable parameters variations and/or noise.

We call Ẽ ′ = φ̃(E) a corrupted simulator described by a
tuple (X̃ ′, Ã′, Õ′,Z ′, ϒ ′, f̃ ′

ξ ′
, g̃′
ψ ′
, h) in which Z ′ is the process

disturbances set, ϒ ′ is the measurement disturbances set,
f ′
ξ ′
: X̃ ′ × Ã′ × Z ′ → X̃ ′ the corrupted and parametric

transition function, with parameters ξ ′ ∈ 4′, and g′
ψ ′
: X̃ ′→

Õ′ the corrupted and parametric observation function, with
parameters ψ ′ ∈ 9 ′.
Given a parametrisation ξ ′, ψ ′, starting from an initial state

x̃ ′(0) and subject to a control sequence ã′(0), ã′(1), . . . , a pro-
cess disturbance sequence ζ ′(0), ζ ′(1), . . . , and ameasurement
disturbance sequence υ ′(0), υ ′(1), . . . , a corrupted simulator
Ẽ ′ evolves according to:

x̃ ′(k+1) = f̃ ′ξ ′
(
x̃ ′(k), ã′(k), ζ ′(k)|ξ ′

)
(7)

õ′(k+1) = g̃′ψ ′
(
x̃ ′(k+1), υ ′(k)|ψ ′

)
(8)

r̃ ′(k+1) = h
(
x̃ ′(k), ã′(k)

)
. (9)

The main idea behind DR is that, during training,
L selects ξ ′ and ψ ′, interacts with the resulting environ-
ment Ẽ ′, and updates a controller π by observing the
consequences (in terms of reward) of selected control
inputs ã′(k), process disturbances ζ ′(k), and measurement
disturbances υ ′(k). Its final goal is twofold: (a) maximize the
finite horizon discounted reward in a perturbed environment
(see Equation (4)) and (b) find a solution π∗ which ensures a

TABLE 3. List of the surveyed articles that apply the DR approach.

loss in performance lower than a threshold when applied on
different domains of the same distribution.

In particular, the final controller π∗ sim-to-real transfer-
ability is here seen as a form of controller robustness obtained
by training π in a collection of environment models, chosen
by L, instead of a single one—Figure 6 graphically sum-
marises this process. The resulting controller π∗, learnt by
maximising the finite horizon discounted reward Jπ,T under
these conditions, is expected to be robust to perturbations.
Therefore, if these perturbations are such that the L ↔ E
interaction returns a π∗ affected by a tolerable RG, the result
is a sim-to-real transferable controller.

Table 3 summarizes the articles that tackle the RG using
the DR approach. The table shows also the employed learning
algorithms and the considered tasks.

We remark that in some of these studies the actual sim-
to-real transferability is not evaluated (see Table 2); instead
the controller robustness with respect to the perturbations is
tested. We discuss each of the paper below.

In Sadeghi and Levine [39] authors train a vision-based
navigation policy entirely in simulation, trying to use it on
a real quadrotor without performing additional real training
runs. During training, at each time k , the state of the system is

153176 VOLUME 9, 2021



E. Salvato et al.: Crossing RG: Survey on Sim-to-Real Transferability of Robot Controllers in RL

FIGURE 5. Overview of some robotic tasks considered in the surveyed articles to address the RG. (a) The Fetch robot used in [49]. (b) The Minitaur
of [54]. (c) The robot employed for manipulation task in [74]. (d) The robotic arm engaged in deformable object manipulation of [45]. (e) The Marble
maze game of [56]. (f) The ball on plate system used by [53]. (g) The Fetch robot used for the pushing task of [44]. (h) The quadrotor employed for
the autonomous navigation task of [40]. (i) The five-finger humanoid hand used in [57]. (j) The classical Open AI Gym environment used to test in
simulation several strategies [49]–[52].

FIGURE 6. Schematic representation of L↔ Ẽ ′ interaction in DR
approaches.

here represented by an indoor synthetic image I (k) generated
by a renderer. Images are generated in order to reproduce
different hallways and a variety of environment parametric
settings (ξ ′, ψ ′). First, a Deep Convolutional Neural Network

is learnt in order to predict the collision probability for each
I (k), a(k). Then, a Deep RL agent is trained for fine-tuning
the previous model to provide the action-value function
Q(I (k), a(k)). Hallway randomisation enacts a wide variety
of environments, and shows very good performance during
test, both in simulation and on the real world, even with envi-
ronments never seen during training. However, performance
falls when the drone encounters reflective glass doors, thus
resulting in a crash.

Mandlekar et al. [50] introduces an algorithm, called
Adversarially Robust Policy Learning (ARPL), to teach a
controller to correctly behave in presence of increasing
adversarial perturbations. The agent uses a curriculum learn-
ing approach [91], in which ξ ′, υ ′(k), and ζ ′(k) alternately
assume the form of isometrically scaled versions of Fast
Gradient Sign Method (FGSM) [92]. Here, the controller is
parametrized by θ (πθ ) and updated following the on-policy
vanilla Trust Region Policy Optimisation (TRPO) [83]. The
key idea is to use a corrupted simulator Ẽ ′ in training,
and then testing the resulting π∗ on a different corrupted
simulator Ẽ ′′ = (X ′′,A′′,O′′,Z ′′, ϒ ′′, f ′

ξ ′′
, g′
ψ ′′
, h) environ-

ment, obtained with different perturbations Z ′′ 6= Z ′,
ϒ ′′ 6= ϒ ′, 4′′ 6= 4′ and 9 ′′ 6= 9 ′. These perturba-
tions are such that π∗ is misled to provide wrong control
inputs a′′(k+1).

VOLUME 9, 2021 153177



E. Salvato et al.: Crossing RG: Survey on Sim-to-Real Transferability of Robot Controllers in RL

The choice of adversarial perturbations is motivated by the
fact that by employing them, the resulting models are likely
to generalise well [93].

The ARPL algorithm has been tested in several benchmark
examples (Inverted pendulum, Half cheetah, Hopper,Walker)
and seems to deliver promising results, exhibiting signifi-
cant robustness. However, examples of sim-to-real controller
transferability have not yet been provided.

The Simulation-based Policy Optimisation with Transfer-
ability Assessment (SPOTA) algorithm, designed in [53],
uses randomised physics parameters, drawn from a probabil-
ity distribution ξ ′ ∼ ρκ (ξ ′) (parametrized by κ), to perform a
robust optimisation of the controller. In SPOTA, the controller
is trained on model ensembles, according to the following
4 phases: (i) learn a candidate solution πCθ using a TRPO
updating rule; (ii) learn nR reference solutions π

Rj
θ , j =

1, . . . , nR on nR different Ẽ ′, each obtained for different ξ ′

andψ ′ settings; (iii) compare the performance of candidateC
with that of each referenceRj in the same condition ofRj; and,
finally, (iv) decide whether or not stop the learning. The last
step is carried out by introducing a Simulation Optimisation
Bias (SOB) concept: an error caused by an optimistic bias
of the optimisation procedure, whose existence has been
proven by [94]. The authors have assumed that it can be
treated as the error between the finite horizon discounted
reward Jπ∗Rθ ,T obtained by considering the reference solutions
and the finite horizon discounted reward JπCθ ,T of candi-
date solution. Taking into account that an RL approach in
a stochastic setting allows to find only estimates of Jπ∗Rθ ,T
and JπCθ ,T , the authors have derived an upper bound for the
tolerated SOB of the candidate solution, called Upper Con-
fidence bound on Simulation Optimisation Bias (UCSOB).
In order to ensure a desired performance β, the final candidate
solution UCSOB must be lower than β. In this framework,
the authors have tested the algorithm by developing a con-
troller for a ball on plane task, governed by a robotic arm,
in the same simulator (obtaining satisfactory results) and
varying the physics engine (with worse outcomes). However,
although in this case a sim-to-sim transferability test has
been carried out, a sim-to-real controller test has not been
done.

Peng et al. [44] shows the effectiveness of memory-based
policies (i.e., policies learnt by using past memory for future
learning [95]–[97]) to deal with the RG, introducing DR
to generalise environment dynamics. Hindsight Experience
Replay [84] has been used for the purpose: a technique able
to generalise over different goals using past experience as a
baseline. In this case, the parameters ξ ′, the measurement
noise υ ′(k), and the time step 1t are sampled according to
a distribution, which is a design parameter. In particular, ξ ′

is kept locked for an entire episode, while the remainder
are varied at each time step. The proposed solution, learnt
using a RDPG algorithm (off-policy), has been tested on a
robotic pushing task and, when transferred to reality, shows
performances comparable to those obtained in simulation,
despite poor calibration.

An improved version of DDPG [88] is adopted in [45]
to solve deformable object manipulation tasks in simulation.
The resulting controller transferability on the real robot is
therefore tested. In particular, a robotic arm is involved in
three different towel folding tasks, in which RGB images
are included in the observation o. The DR is here imple-
mented by sampling some environment values from either
normal or uniform distributions around noisy ground truth
estimates. Experimental results suggest that randomisation of
extrinsic camera parameters (i.e., position and orientation) is
particularly useful for sim-to-real transfer, since the controller
has an evident sensitivity to changes of its position. Besides,
they show that heavy randomisation can lead to unsuccessful
transfers.

Controller sim-to-real transferability has also been tested
on locomotion tasks of a Minitaur quadruped of Ghost
Robotics [54]. Here authors have used Proximal Policy Opti-
misation (PPO) to learn π∗ and have observed the impact of
two different solutions to reduce the RG: (a) improving sim-
ulated model via system identification; (b) using randomised
ζ ′(k), υ ′(k), and ξ ′ to learn robust controllers as the observa-
tion space changes. Obtained results suggest that simulators
improvement is an essential requirement since, as the model
becomes less adequate, not even a robust controller is able to
avoid a large RG. The authors of the cited paper also pointed
out that considering a large observation space does not always
bring benefits. On the contrary, their evaluations have shown
that controllers learnt in simulation with large observation
space lead to bad results when transferred to real robot.

Van Baar et al. [56] shows the benefits of using DR
and Asynchronous Actor Critic Agent (A3C) algorithm [86]
(on-policy) for learning the controller, with respect to not
using DR. The parameters ξ ′ are here randomly sampled
according to a uniform distribution. Both controllers are
then applied on real-world robot and the fine-tuning time
required to convergence is compared. The analysed task is
a Marble maze game driven by a robotic arm and the results
show that there is a trade-off between controller robustness
and fine-tuning steps. Controller learnt through DR requires
fewer fine-tuning steps than the remaining one, further proof
of an existing trade-off between efficiency and RG.

In a quite recent work [57], Automatic Domain Randomi-
sation (ADR) is proposed in order to transfer a policy learnt
in simulation on the real system, framing it in a manipu-
lation task of Rubik’s cube with a robotic hand. Here, the
RL agent does not solve Rubik’s cube but ‘‘only’’ learns,
using a PPO algorithm (on-policy), how to move correctly the
robotic hand in order to perform control inputs suggested by
another non-AI based algorithm.What changes from standard
DR idea are ρκ (ξ ′) and ρκ (υ(k)) distributions (parametrized
by κ) that allow to randomly select υ(k) and ξ ′. Indeed, while
in other DR approaches these distributions are parametrized
with fixed κ , in ADR κ changes during learning procedure.
In particular, these additional environments, obtained with
different κ , are added to the considered collection of environ-
ment models only when a lower performance limit is reached

153178 VOLUME 9, 2021



E. Salvato et al.: Crossing RG: Survey on Sim-to-Real Transferability of Robot Controllers in RL

(i.e., a fixed number of successful episodes are performed).
The developed controller has been firstly tested in environ-
ments in which distributions were manually tuned, achieving
good results. In addition, a sim-to-real transfer is performed,
with worse results.

ARandomised-to-Canonical AdaptationNetwork (RCAN)
is conversely introduced in [46]. The main idea is to map the
observations collected on the simulated domain as well as
those collected on the real domain into a common further
domain called the canonical domain. The approach has been
applied to a vision-based robot grasping task, and the canon-
ical domain consists of extremely simplified images whose
purpose is capturing just the relevant information for the task.
The map is learnt by using an image-conditioned Generative
Adversarial Network (cGAN) [98], able to map an image of a
domainD into an adapted image of the canonical domainDc;
i.e., G : D → Dc. The resulting image of Dc is then sent to
the controller which is learnt by using Q-function Targets via
Optimisation (QT-Opt) [89]. During training, cGAN receives
randomised simulated images, sampled from the trajectories,
and learns to convert them in canonical images. The result-
ing observations are then used by the QT-Opt to produce
the policy. In the test procedure, the real-world images are
mapped into canonical images and sent to the controller.
The proposed approach returns excellent results, however,
an effective transfer is not always achieved. In particular,
when the cGAN during training is fed with images sampled
only from non-successful trajectories, the final controller
results in an unsatisfactory transfer.

Siekmann et al. [61] proposes a simple terrain random-
ization to learn robust proprioceptive controllers for bipedal
robots involved in the task of climbing and descending
stairs. They model the policy with a Long short-term mem-
ory (LSTM) network, for its capability of processing tempo-
ral sequences. Indeed, unlike feed-forward neural networks,
LSTMs are equipped with a feedback mechanism that allows
them to process sequences of input data, without treating each
sample of the sequence independently. They retain useful
information about earlier data points in the sequence, aiding
in the processing of new data points. The authors compare
the performance of three different controllers π : (i) A learned
LSTM controller with different terrain parameters ψ , (ii) a
feed-forward NN controller learned with different ψ ′ terrain
parameters, and (iii) a LSTM controller learned on a single
simulated environment. The experimental results show that
the first π is the one with the highest overall probability of
success in the task. Thus, the combination of LSTM and DR
seems to be an effective solution to the problem for the tested
task.

Finally, Hu et al. [41] face the reality gap of a controller
involved in a wheeled robot navigation task. The proposed
solution tries to render the controller robust to possible para-
metric errors in the model, but also to possible disturbances
that corrupt its dynamics. To this end (i) a terrain randomisa-
tion is performed by varying its viscosity and inclination ψ ′,
(ii) disturbances on the travel distance and on the yaw rotation

υ
(k)
1 are randomly imposed to the dynamics, (iii) latency dis-

turbances are imposed at each time-step, hypothesising that
a latency between perception and movement performance
occurs υ(k)2 , and (iv) the pose-estimation error υ(k)3 is also
taken into account. The resulting π , learned entirely in sim-
ulation, results in an effective application on the real-world
environment. Moreover, a comparison with some state of
the art solutions for robot navigation highlights the better
performance of the proposed approach in terms of success
rate as well as cumulative travel distance, and time required
for task execution.

B. ADVERSARIAL RL
In the adversarial RL (ARL), the agent L is composed of two
sub-agents: the protagonist LP and the antagonist LA. The
underlying idea resembles the one behind domain randomi-
sation: enforce robustness (and, hence, improve controller
transferability) by training the controller in a collection of
environment models instead of a single one. In the case
of ARL, however, the diversity is obtained by training a
secondary controller (the adversarial) to generate more dif-
ficult models to handle (those that minimise the cumula-
tive reward). Figure 7 graphically summarises the process
of ARL.

FIGURE 7. Schematic representation of L↔ Ẽ ′ interaction in ARL
approaches.

Given a corrupted simulator Ẽ ′ of E , defined by a
tuple (X̃ ′, Ã′, Õ′,Z ′, ϒ ′, f̃ ′

ξ ′
, g̃′
ψ ′
, h) and evolving according

to Equations (7) to (9),, LP and LA interact with Ẽ ′ seeking to
maximise their respective discounted cumulative reward [99].

We denote with r̃ ′(k+1)P the reward of LP. A common
choice [100] is to provide LA with a reward r̃ ′(k+1)A =

−r̃ ′(k+1)P . As a result two controllers are learnt:

VOLUME 9, 2021 153179



E. Salvato et al.: Crossing RG: Survey on Sim-to-Real Transferability of Robot Controllers in RL

• πP, whose target is to maximise the cumulative reward
over time, resulting in the final controller which will be
tested in a Ẽ ′-to-E transfer;

• πA : Õ′ → Z ′ × ϒ ′ × 4′ × 9 ′ that searches for those
environment perturbations or parameters variations that
minimise the same cumulative reward over time.

The outputs of LA and πA are perturbations and parameters
variations of Ẽ ′. In a noise-corrupted simulated environment,
the observed reward and hence the discounted reward will
depend on the disturbances as well as on the policy. Since,
in ARL, disturbances are generated by the adversarial agent,
the finite horizon discounted reward will depend on both
policies. To catch this dependency we can write JπP,πA

(
x̃ ′(0)

)
.

The resulting L goal can be compactly stated as:

max
πP

min
πA

JπP,πA
(
x̃ ′(0)

)
, (10)

falling in a worst-case approach that in control theory
is known as min-max optimal control (also referred to
H∞-control) [101]–[103].

Consequently, in ARL, Ẽ ′ interacts simultaneously with LA
and LP, thus L ↔ Ẽ ′ results in LA ↔ Ẽ ′ ↔ LP and the global
L task is to find:

π∗L = argmax
πP

argmin
πA

JπP,πA . (11)

Table 4 summarises the articles that use ARL for learning
robust controllers, along with the respective learning algo-
rithms and the considered tasks.

TABLE 4. List of the surveyed articles that apply the ARL approach.

The ARL approach was firstly introduced by [51], with
the Robust Adversarial Reinforcement Learning (RARL)
algorithm. There, πP (the protagonist’s policy) is trained to
work in presence of an adversary (πA), able to inject desta-
bilising disturbances to environment (in particular only ξ ′

disturbances). The proposed solution can be summarised in
two main steps that are repeated niter times: (i) learn the
protagonist policy πP while keeping the adversary one fixed;
(ii) learn the adversary policy πA while keeping πP fixed.
The experiments have been done on several OpenAI Gym
environments [82]. In a first experiment, the authors compare
mean and variance of the cumulative reward over 50 RARL
policies, obtained using different seeds and initialisation, with
TRPO ones. For all tasks RARL behaves better than TRPO
in terms of mean and variance. In a second experiment, [51]

shows that RARL behaves better than TRPO under adver-
sarial attacks while keeping hold the protagonist. Finally,
in a third experiment, the authors introduce different ζ (k) in
the test phase, and again obtain better results with respect
to TRPO.

Pan et al. [58] builds on the RARL idea by introducing
the Risk-Averse Robust Adversarial RL (RARARL) concept:
a RARL algorithm in which the protagonist is trained to
be risk-averse and the adversarial, in contrast, risk-seeking.
The authors of the cited study state that ‘‘a robust policy
should not only maximise long-term expected reward, but
should also select actions with low variance of that expected
reward’’. For that purpose, they train κ different Q-value net-
works that return κ action-value outputs. The risk of an action
is estimated by the empirical variance of these κ Q-values
(Varκ (Q)). At the beginning of each training episode one of
the κ networks is randomly chosen and employed for control
input selection during the entire episode. The protagonist
and the antagonist take actions sequentially: the protagonist
action-value functionQπP is augmented by a risk-averse term
(Varκ (QπP )), which encourages the choice of lower variance
control inputs; the adversary QπA , instead, is reduced by a
risk-seeking term (Varκ (QπA )) in order to guide it towards
higher-variance outputs. The algorithm has been tested in a
simulated self-driving task and obtained experimental results
highlighting the better robustness of RARARL controller
with respect to one subjected to random perturbation in train-
ing. During the test, control inputs are selected according to
the mean value of the κ networks.

C. TRANSFER LEARNING
The previously discussed approaches are aimed at controllers
that, once learnt in simulation, can be directly transferred on
real robots without any (or, at most, with very few) additional
training steps. Basically, an agent searches for a sim-to-real
transferable controller.

A different perspective is the one adopted in transfer learn-
ing (TL) approach. Indeed, its aim is not to find a solu-
tion to the RG, but rather to avoid its occurrence by means
of two subsequent or simultaneous training phases (first in
simulation and second in reality), penalising the resulting L
efficiency.

Let us ignore for the moment the RG and suppose to be
in a classic RL training scenario, described by L ↔ E . The
basic idea of TL is that generalisation is possible not only
within task but also between tasks [105]. Therefore, since a
task can be entirely defined by an environment, considering a
second different but compatible environment,3 the controller
learnt for the first is expected to be a helpful tool to speed-up
the second learning process, whether or not it involves the
same agent. Thereby, in RL, in which the controller is the
result of a trial and error process, TL could be employed

3Two environmentsE = (X ,A,O, f , g, h) andE ′ = (X ′,A′,O′, f ′, g′, h′)
are compatible if and only if A = A′ andO = O′. Thus, a policy for a system
E is also a policy for every system E ′ that is compatible with E . However,
a policy which is optimal for E is in general not optimal for E ′.

153180 VOLUME 9, 2021



E. Salvato et al.: Crossing RG: Survey on Sim-to-Real Transferability of Robot Controllers in RL

FIGURE 8. Schematic representation of TL approaches.

TABLE 5. List of the surveyed articles that apply the TL approach.

to speed-up the learning, thus avoiding training from
scratch.

Back to the RG, the idea of ‘‘recycling’’ policies
between tasks could be useful in speeding the real
robot learning procedure or, possibly, while perform-
ing a fine tuning of simulated and real agents (L ′ and
L respectively).
In the first scenario, what has been learnt in simulation,

by using L ′, is reused (in its entirety or in part) in subsequent
phases of real-world training, performed by using L. The
expected result is a faster real-world training that bridges the
discrepancy between simulator and real robot at its root, i.e.,
while real agent L is learning its π . Therefore, the transfer
occurs once, and only in one direction (from simulation to
reality).

In the second case, by providing some real information to
simulator and taking example from it, the simulator could
more realistically adapt itself to reality, thus reducing perfor-
mance misalignment and, thereby, the RG. In this situation,
the transfer is repeated, and in both directions (sim-to-real
and real-to-sim).

Overall, we will refer to the exchanged information as
u(k)exch =

[
u′(k) u(k)

]T
, in which u′(k) is the sim-to-real trans-

ferred information, while u(k) the real-to-sim one (Figure 8).
We categorise the different TL approaches based on:

• the kind of information passed through u(k)exch, (e.g.,
weights of an image processing net, state-control input
pairs, policy parameters or even the policy itself);

• the transfer timing of u(k)exch, either continuous (C-TL) or
one shot (1-TL), the latter generally occurring at the end
of the training in simulation;

• the direction of u(k)exch transfer, either bidirectional
(2D-TL), i.e., u(k)exch = [u′(k) u(k)]T , or unidirectional
(1D-TL), i.e., u(k)exch = [0 u(k)]T or u(k)exch = [u′(k) 0]T ;

• whether there is an agent L (e.g., RL, Inverse Dynam-
ics Neural Network (IDNN), etc.) or a controller π
(e.g., Model Predictive control (MPC), etc.) in the real
setting E .

Table 5 summarises the articles that use TL and characterises
them in terms of these four factors. The table also shows the
tasks and algorithms.

VOLUME 9, 2021 153181



E. Salvato et al.: Crossing RG: Survey on Sim-to-Real Transferability of Robot Controllers in RL

Christiano et al. [49] adopted TL to perform sim-to-real
control input adaptation. They assume that if simulator does
not exactly replicate the real robot behaviour, applying the
same control input in both scenarios does not necessarily
lead to same observation. However, they assume that the
observation o′(k) obtained in simulation, is the one that should
be achieved also on the real environment. Therefore, given
the simulated observation o′(k), they employ past history to
discover what real control input a(k) can lead to o(k) ' o′(k).
For this purpose, a neural network is trained in order to
predict the control input a(k) that leads to a specific o(k).
In particular, it is assumed that a simulated-based
policy π ′, a forward dynamic robot model F , and a sequence
τi =

(
o(0), a(0), . . . , o(i−1), a(i−1), o(i)

)
of i real observations

and i − 1 real control inputs are known. Here, TRPO is
used to learn π ′, but any L agent (not necessarily RL) could
be used for the purpose. While training the policy π , the
policy π ′ returns a control input a′(i) based on the provided
history τi. However, rather than being applied to the real
robot, it is sent to F and the resulting observation o′(i)

is provided, together with τi, as inputs to L. Finally, the
learnt policy π provides the control input a(i) that results
in o(k) similar to o′(k). Therefore, here the communication
is continuous and in both directions u(i)exch = [u′(i) u(i)]T =
[o′(i) τi]T . It is worth remarking that what is actually learnt
in this case is an inverse dynamic model (implemented as a
neural network) that must be employed in conjunction with
the controller learnt in simulation. The authors of the cited
study evaluate their approach first in a sim-to-sim scenario
with several OpenAI Gym environments and then in a sim-
to-real scenario based on a Fetch robot. Results highlight the
effectiveness of such method and the relatively low number
of samples required for convergence. However, the authors
assume that, when the consequences of a control input applied
in simulation differ from those applied on the real robot, real
observations should match simulated ones, and that is not
always true.

In [60], the Grounded Action Transformation (GAT) algo-
rithm is proposed to learn a humanoid bipedal locomotion
policy. Inspired by the Grounded Simulation Learning (GSL)
idea, introduced in [109], they try to reproduce it in a RL
framework, additionally improving some aspects. GLS is
based on two main principles: grounding and guide. The
former refers to making the simulator E ′ closer to the real
robot E , by properly modifying some parameters of E ′ on
the basis of data collected from E . The latter consists in
having an expert able to guide the optimisation algorithm in
finding the proper parameters of E ′ to be tuned. In practice,
given an evaluation function Jeval, such as a penalty func-
tion (for example the opposite of the reward), a policy π
is applied to the real robot in order to collect end-effector
trajectories D. By performing D both in simulation and in
reality, and collecting the resulting real end-effector trajec-
tories, an optimisation problem is solved in order to find
those E ′ parameters able to minimise the Kullback-Leibler

divergence between the probability of observing the same
trajectories in the two cases. The resulting E ′ is therefore
used in order to find a set of candidate policies 5C trying to
minimise Jeval. The optimal policy is the π ∈ 5c such
that Jeval is minimised once performed on the real robot E .
However, the above procedure is aimed at finding the correct
values of the E ′ parameters. Conversely, GAT introduces
an action transformation function a′(k) = m(a(k)), learnt in
a supervised fashion, able to map each action a(k) ∈ A
into an action a′(k) ∈ A′. In particular, a forward robot
dynamics model is trained to compute the x(k+1) resulting
from a(k). The inverse robot dynamics, instead, is trained to
find the simulated action a′(k) able to lead the simulator in
x ′(k+1) = x(k+1). The resulting procedure leads to u(k)exch =

[u′(k) u(k)]T = [a′(k), a(k)]T . Both sim-to-sim and sim-to-real
experiments provide good results; however, as authors point
out, the drawback of using a supervised method for m(·)
learning is that policies are no longer effective when there are
changes between training and testing distributions.Moreover,
neglecting the contact dynamics can lead to simulation bias.

Wulfmeier et al. [52] proposed Mutual Alignment Trans-
fer Learning (MATL), a method that relies on a Generative
Adversarial Network (GAN) [110]. The main idea is similar
to [49]: enforcing a similarity between observations o′(k)

and o(k). Indeed, although a control sequence achieving the
goal in simulation may not produce the same effects in the
real environment, the corresponding sequence of simulated
observations, if reproduced on the real system, can lead to
task accomplishment. For the purpose, here, simulator E ′

and real robot E work in parallel as generators and interact
with two different agents (L ′ and L respectively). A discrim-
inator D, instead, is employed (and trained along with L ′

and L) to classify the environment from which a sequence
of observations τκ , provided as input, has been collected.
L and L ′ are trained not only to maximise their respective
environment reward, but also to mislead the discriminator,
based on the assumption that the more the discriminator is
mislead, the more ‘‘aligned’’ the observations are. Therefore,
each time a sequence of observations τκ is collected, D will
receive it as input and will output the probability D(τκ ) that
it was generated by E ′. A term log(D(τκ )) is respectively
added and subtracted to E and E ′ rewards thus encouraging
misleading actions (here TRPO is the employed algorithm).
The proposed solution results in an experience exchange
between L and L ′ and a consequent alignment of the col-
lected observations. To exploit the simulator, L ′ is updated
M times more frequently than L, thus accelerating learning.
Thereby, in this case u(k)exch is the D output and it is equal to
[− log(D(τκ )) log(D(τκ ))]T . Wulfmeier et al. [52] evaluate
their approach on various RL tasks: rllab [111], OpenAIGym,
and DartEnv [82]. Results show that MATL is able to work
with significantly different environments of same simula-
tor in which only parameters variation is performed. Less
encouraging results are reported when employing different
simulators.

153182 VOLUME 9, 2021



E. Salvato et al.: Crossing RG: Survey on Sim-to-Real Transferability of Robot Controllers in RL

A different solution was proposed in [43], where pro-
gressive nets [74] are employed for sim-to-real information
transfer. Here, by exploiting the capability of those nets to
learn a tasks sequence through lateral connections, simulated
knowledge can be used to avoid training from scratch on
real robot. A progressive net is composed of l ‘‘columns’’
in which the i-th column represents an independent network
of κ hidden activations. Each j-th activation actj,i of the i-th
column is a function of the same column j − 1-th activation
(actj−1,i) and of the j − 1-th activation of all the previous
m < i columns (actj,1, . . . , acti−1). Rusu et al. [43] propose
to use this tool in order to learn a simulated controller π ′, via
A3C algorithm, in the first column and subsequently transfer
its knowledge on real robot by means of lateral connections
headed towards the second column, which represents the real
agent L. Then, the second net training (L) begins. Therefore,
letting s be a simulated column, u(k)exch = [u′(i) 0]T =
[(act1,s, . . . , actk,s) 0]T . The authors evaluate their approach
on a robot manipulation task on Jaco arm [112] in which a
visual target must be reached. The performances are com-
pared with those obtained using a fine-tuning approach show-
ing the superiority of progressive nets.

In [55], a Neural Augmented Simulation (NAS) approach
is used to reduce the RG. A Long Short Term Memory is
trained on the differences between simulated and real robot,
and used to adapt the simulator on the basis of real world data.
The policy π resulting from a Proximal Policy Optimisation
algorithm is learnt on the simulated environment, whose next
state at each step is adjusted by using the correction term
1 provided by the LSTM. The resulting policy, therefore,
associates to each estimated value of the real robot state
x(i) = x ′(i) + 1 an action a′(i) = a(i). The transfer is
in this case only from the simulator to the real robot and
u(k)exch = [u′(i) 0]T = [π 0]T . The NAS has been tested in a
sim-to-sim and a sim-to-real transfer. For the former, authors
create an artificial RG by varying some parameters of two
different simulated robotics environments of Open AI Gym,
one of which was considered as the real environment. For
the sim-to-real transfer, two Poppy Ergo Jr robots [113] have
been used in a ErgoShield task, in which an attacker (one
of the two involved robots) is controlled to touch as often as
possible the shield attached to the end-effector of a defender
(the other robot). The defender is able to move the shield in
random poses. Experimental results show good performance
both in sim-to-sim and sim-to-real transfer. Moreover, since
a policy-specific fine-tuning is not required, the method can
be appropriate for multi-task robotic applications.

In [40], conversely, they propose to learn a RL con-
troller in simulation (using a deep Q-Learning approach) in
which the first stages represent a visual perception mod-
ule, parametrized by vector θVP. Therefore, by keeping the
weights fixed, they use this module to work with real-data
and predict rewards for h planned control inputs by learning
a DNN. The predictor is trained, by means of a real-world
data-set, in order to minimise reward prediction error. In the
second phase, the real application, the predictor is used by

an MPC controller. Hence, at each step, the MPC controller
computes a sequence of h control inputs which maximises the
expected discounted predicted reward within an horizon h.
In this context, u(k)exch = [u′(k) 0]T = [θVP 0]T . As pre-
scribed by the MPC approach, only the first control input
is applied; hence, the process is repeated. Kang et al. [40]
consider a nano aerial vehicle collision avoidance task to
assess the proposed solution. Moreover, the authors compare
it with other approaches: simulation only, simulation with
fine-tuning, simulation with fine-tuning and perception fixed,
real world only, supervised and unsupervised. Their solution
outperforms all others tested, and shows the best result in
terms of pre-collision time.

Yuan et al. [47] performs an action-value function adapta-
tion in a supervised fashion. Here, a Baxter robot is asked to
solve a nonprehensile rearrangement task, i.e., the problem of
pushing an object into a predefined goal pose. The proposed
procedure consists of three sequential steps: (1) learning,
in simulation, an optimal action-value function Qsim able to
select the best action a′ to performwhen an image of the scene
is provided as observation o′, (2) collecting a data-set of real
and simulated observation pairs (o, o′), and (3) using it, along
with the pre-trained Qsim, in order to create a Qreal useful to
adapt the agent for a real world application. In the former,
a deep-Q network is used to approximate Qsim. In the second
step, starting from real scenes o, the obstacle and the portable
object positions are used to recreate the same scenes in sim-
ulation o′. In particular, randomly setting o0, the RL agent
(learnt in step IV-C) is applied to the real robot in order to col-
lect a set of Oreal = o0, o1, o2, . . . from which the respective
simulated counterpart set Osim = o′0, o′1,′ o2, . . . is created.
The resulting data-set, composed of (Oreal,Osim,Qsim) is
used in order to learn a Qreal able to minimise a loss function
defined as r + γQsim −Qreal. Three different strategies have
been deployed: (a) train Qreal keeping the Qsim structure
but retraining the network in its entirety; (b) use Qsim as
baseline and adapt only the parameters of the convolutional
layers; (c) add two new fully connected layers to increase
the flexibility of the network and learn their parameters
and those of the convolutional layers. Therefore in this case
u(k)exch = [u′(k) 0]T = [(Osim,Qsim), 0]T . Authors compare
their results with the one obtained by using the same domain
randomisation idea of [75]. Experimental results show that
their approaches surpass the one of [75] in terms of per-
formances and, in particular, (c) turns out to be the best.
However, collecting data both in simulation and in reality in
order to build the data-set used to learn theQreal may be costly
and time-consuming.

D. DISCUSSION AND PROMISING IDEAS
Despite several attempts found in the literature to make sim-
to-real transferable controllers, many of which associate the
idea of robustness with that of sim-to-real transferability
(DR and ARL), the lack of uniformity of the considered tasks
does not allow to determine which solution is the more appro-
priate in terms of the RG. Besides, a considerable fraction

VOLUME 9, 2021 153183



E. Salvato et al.: Crossing RG: Survey on Sim-to-Real Transferability of Robot Controllers in RL

of the proposed approaches were not experimentally eval-
uated in an actual sim-to-real scenario. A controller robust
to certain model disturbances or parametric variations, is not
necessarily sim-to-real transferable. In fact, if these variations
and disturbances do not correctly represent the simulator
inaccuracies with respect to reality, it might result not sim-
to-real transferable. This suggests that an interaction with the
real system during training is still needed: to this respect,
TL approaches appear promising. On the other hand, the
TL approaches here surveyed often lacked an assessment of
the robustness. Moreover, since TL requires two successive
(or simultaneous) training phases, it may be exhibit low effi-
ciency.

Some mixed approaches exist, that borrow ideas from
DR, ARL, and TL. A first attempt in merging DR and TL
is proposed in [114]. Here the authors propose to learn a
policy in a randomised simulation and to adapt the distri-
bution of simulation parameters on the basis of a real-world
performance.

A promising research direction to tackle the RG prob-
lem could be the meta-learning strategy application in RL,
in order to quickly adapt experience gained in simulation on
the real system [115], [116]. In Meta-RL, given a distribution
over tasks, the agent learns an adaptive policy that maximises
the expected reward for a new task from the distribution.
A recent work [117] has shown the great ability of this
approach to generalise in environments totally different from
those used during the training.

Another promising solution to avoid a direct RL training
on the real robot seems to be the Probabilistic Inference for
Learning Control (PILCO) proposed by [118]. Here, a proba-
bilistic model of the system dynamics is learnt incorporating
uncertainty by using only some trial on the real system and
a policy is learnt through it. This solution allows to avoid
the RG in the first place, by training a simulator with few
real interactions and using it for the trial and error procedure.
However, although the potential usefulness of PILCO and
Meta-RL to cope with the RG, the former underestimates
state uncertainty at future time steps [119], thus possibly
leading to a decrease in performance; the latter, on the other
hand, is computational demanding and needs an high number
of real-world evaluations [120].

V. CONCLUSION AND OPEN CHALLENGES
Training a RL robotic controller in real-time in its actual envi-
ronment is a costly process.While simulators can alleviate the
problem, the approximations often present in the employed
models play a crucial role in determining the effectiveness
of the learnt controllers. The more accurate the model of the
robot (and the surrounding), the more effective the controller
but, at the same time, the greater the computational cost
of learning it. When performances of the controller in the
simulator and in real robot are different, a RG exists and the
controller is not sim-to-real transferable.

In the present article, we provided a formal framework
for the RG and reviewed the most relevant existing methods

aiming to achieve sim-to-real transferable controllers in
robotics RL applications. We surveyed the literature concern-
ing RL and RG and categorised the approaches as: domain
randomisation, adversarial reinforcement learning, and trans-
fer learning. Moreover, we described them in detail according
to the proposed framework and in terms of the employed
algorithms, involved tasks, and evaluation methods.

We conclude commenting on some significant open chal-
lenges. Each one of the examined approaches appears tailored
to a specific task, and its applicability to other, potentially dif-
ferent, tasks is not clear. A general task-independent approach
able to guarantee an effective sim-to-real transferability of
the controller is still missing. With this in mind, we believe
that a significant open problem is that of providing a proper
index able to reveal and quantify the RG. Indeed, being able to
characterise and quantify the RG would (i) enable systematic
comparison among different techniques, hence favouring the
advancement of research, and (ii) allow to use the measure
of RG directly as an optimisation objective, hence putting the
transferability as a direct goal in the learning of RG-aware
controllers. Another significant open problem is the sam-
ple efficiency of the developed approaches. As highlighted
in [121], RL is very data-intensive. The computation effort
required for learning a RL agent involved in a complex
task can be huge, thus limiting the practical applicability
of such methods. The surveyed approaches lead to learning
paradigms that unquestionably aggravate this issue, espe-
cially in those cases in which an interaction with different
environment domains is involved.

REFERENCES
[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA, USA: MIT Press, 2018.
[2] J. Kober, J. A. Bagnell, and J. Peters, ‘‘Reinforcement learning in robotics:

A survey,’’ Int. J. Robot. Res., vol. 32, no. 11, pp. 1238–1274, 2013.
[3] A. A. Shahid, L. Roveda, D. Piga, and F. Braghin, ‘‘Learning continuous

control actions for robotic graspingwith reinforcement learning,’’ inProc.
IEEE Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2020, pp. 4066–4072.

[4] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
‘‘Deep reinforcement learning: A brief survey,’’ IEEE Signal Process.
Mag., vol. 34, no. 6, pp. 26–38, Nov. 2017.

[5] N. Kohl and P. Stone, ‘‘Policy gradient reinforcement learning for fast
quadrupedal locomotion,’’ in Proc. IEEE Int. Conf. Robot. Automat.
(ICRA), vol. 3, Apr. 2004, pp. 2619–2624.

[6] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger,
and E. Liang, ‘‘Autonomous inverted helicopter flight via reinforcement
learning,’’ inExperimental Robotics IX. Berlin, Germany: Springer, 2006,
pp. 363–372.

[7] M. Breyer, F. Furrer, T. Novkovic, R. Siegwart, and J. Nieto, ‘‘Flexible
robotic grasping with sim-to-real transfer based reinforcement learning,’’
2018, arXiv:1803.04996.

[8] E. Salvato, G. Fenu, E.Medvet, and F. A. Pellegrino, ‘‘Characterization of
modeling errors affecting performances of a robotics deep reinforcement
learning controller in a sim-to-real transfer,’’ in Proc. 44rd Int. Conv. Inf.,
Commun. Electron. Technol. (MIPRO), 2021, pp. 1324–1329.

[9] N. Jakobi, P. Husbands, and I. Harvey, ‘‘Noise and the reality gap: The
use of simulation in evolutionary robotics,’’ in Proc. Eur. Conf. Artif. Life.
Berlin, Germany: Springer, 1995, pp. 704–720.

[10] S. Hofer, K. Bekris, A. Handa, J. C. Gamboa, M. Mozifian, F. Golemo,
C. Atkeson, D. Fox, K. Goldberg, J. Leonard, C. Karen Liu, J. Peters,
S. Song, P. Welinder, and M. White, ‘‘Sim2Real in robotics and automa-
tion: Applications and challenges,’’ IEEE Trans. Autom. Sci. Eng., vol. 18,
no. 2, pp. 398–400, Apr. 2021.

153184 VOLUME 9, 2021



E. Salvato et al.: Crossing RG: Survey on Sim-to-Real Transferability of Robot Controllers in RL

[11] J. B. Pollack, H. Lipson, S. Ficici, P. Funes, G. Hornby, and
R. A. Watson, ‘‘Evolutionary techniques in physical robotics,’’ in Proc.
Int. Conf. Evolvable Syst. Berlin, Germany: Springer, 2000, pp. 175–186.

[12] S. Nolfi, D. Floreano, O. Miglino, and F. Mondada, ‘‘How to evolve
autonomous robots: Different approaches in evolutionary robotics,’’ in
Artificial life IV: Proceedings of the Fourth International Workshop on
the Synthesis and Simulation of Living Systems. Cambridge, MA, USA:
MIT Press, 1994, pp. 190–197.

[13] D. Floreano and J. Urzelai, ‘‘Evolution of plastic control networks,’’ Auto.
robots, vol. 11, no. 3, pp. 311–317, 2001.

[14] C. Hartland and N. Bredeche, ‘‘Evolutionary robotics, anticipation and
the reality gap,’’ in Proc. IEEE Int. Conf. Robot. Biomimetics, Dec. 2006,
pp. 1640–1645.

[15] J.-B. Mouret and K. Chatzilygeroudis, ‘‘20 years of reality gap: A few
thoughts about simulators in evolutionary robotics,’’ in Proc. Genetic
Evol. Comput. Conf. Companion, 2017, pp. 1121–1124.

[16] S. Koos, J.-B. Mouret, and S. Doncieux, ‘‘The transferability approach:
Crossing the reality gap in evolutionary robotics,’’ IEEE Trans. Evol.
Comput., vol. 17, no. 1, pp. 122–145, Feb. 2012.

[17] S. Kriegman, D. Blackiston, M. Levin, and J. Bongard, ‘‘A scalable
pipeline for designing reconfigurable organisms,’’ Proc. Nat. Acad.
Sci. USA, vol. 117, no. 4, pp. 1853–1859, 2020. [Online]. Available:
https://www.pnas.org/content/117/4/1853

[18] A. S. Badwe, R. D. Gudi, R. S. Patwardhan, S. L. Shah, and
S. C. Patwardhan, ‘‘Detection of model-plant mismatch in MPC appli-
cations,’’ J. Process Control, vol. 19, no. 8, pp. 1305–1313, 2009.

[19] M. Kano, Y. Shigi, S. Hasebe, and S. Ooyama, ‘‘Detection of significant
model-plant mismatch from routine operation data of model predictive
control system,’’ IFAC Proc. Volumes, vol. 43, no. 5, pp. 685–690, 2010.

[20] S. Selvanathan and A. K. Tangirala, ‘‘Diagnosis of poor control loop per-
formance due to model–plant mismatch,’’ Ind. Eng. Chem. Res., vol. 49,
no. 9, pp. 4210–4229, May 2010.

[21] L. E. Olivier and I. K. Craig, ‘‘Model-plant mismatch detection and
model update for a run-of-mine ore milling circuit under model predictive
control,’’ J. Process Control, vol. 23, no. 2, pp. 100–107, Feb. 2013.

[22] W. Zhao, J. P. Queralta, and T. Westerlund, ‘‘Sim-to-real transfer in deep
reinforcement learning for robotics: A survey,’’ in Proc. IEEE Symp.
Comput. Intell. (SSCI), Dec. 2020, pp. 737–744.

[23] R. Bellman, ‘‘On the theory of dynamic programming,’’ Proc. Nat. Acad.
Sci. USA, vol. 38, no. 8, p. 716, 1952.

[24] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators.
Boca Raton, FL, USA: CRC Press, 2017.

[25] D. P. Bertsekas, Reinforcement Learning and Optimal Control. Belmont,
MA, USA: Athena Scientific, 2019.

[26] A. C. Rodriguez, R. Parr, and D. Koller, ‘‘Reinforcement learning using
approximate belief states,’’ in Proc. Adv. Neural Inf. Process. Syst., 2000,
pp. 1036–1042.

[27] H. Van Hasselt, ‘‘Reinforcement learning in continuous state and action
spaces,’’ in Reinforcement Learning. Berlin, Germany: Springer, 2012,
pp. 207–251.

[28] M. P. Deisenroth, G. Neumann, and J. Peters, A Survey on Policy Search
for Robotics. Boston, MA, USA: Now, 2013.

[29] B. Recht, ‘‘A tour of reinforcement learning: The view from continu-
ous control,’’ Annu. Rev. Control, Robot., Auton. Syst., vol. 2, no. 1,
pp. 253–279, 2019.

[30] C. G. Atkeson and S. Schaal, ‘‘Robot learning from demonstration,’’ in
Proc. Int. Conf. Mach. Learn., vol. 97, 1997, pp. 12–20.

[31] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, ‘‘An application of rein-
forcement learning to aerobatic helicopter flight,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2007, pp. 1–8.

[32] H. Durrant-Whyte, N. Roy, and P. Abbeel, Learning to Control a Low-
Cost Manipulator Using Data-Efficient Reinforcement Learning. Cam-
bridge, MA, USA: MIT Press, 2012, pp. 57–64. [Online]. Available:
https://ieeexplore.ieee.org/document/6301026

[33] V. Gullapalli, J. A. Franklin, and H. Benbrahim, ‘‘Acquiring robot skills
via reinforcement learning,’’ IEEEControl Syst., vol. 14, no. 1, pp. 13–24,
Feb. 1994.

[34] H. Miyamoto, S. Schaal, F. Gandolfo, H. Gomi, Y. Koike, R. Osu,
E. Nakano, Y. Wada, and M. Kawato, ‘‘A kendama learning robot based
on bi-directional theory,’’ Neural Netw., vol. 9, no. 8, pp. 1281–1302,
1996.

[35] R. Tedrake, T. W. Zhang, and H. S. Seung, ‘‘Learning to walk in 20
minutes,’’ in Proc. 14th Yale Workshop Adapt. Learn. Syst., Beijing,
China, vol. 95585, 2005, pp. 1412–1939.

[36] J. Peters and S. Schaal, ‘‘Learning to control in operational space,’’ Int.
J. Robot. Res., vol. 27, no. 2, pp. 197–212, 2008.

[37] J. Peters and S. Schaal, ‘‘Natural actor-critic,’’ Neurocomputing, vol. 71,
nos. 7–9, pp. 1180–1190, Mar. 2008.

[38] K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, and J. Mouret,
‘‘A survey on policy search algorithms for learning robot controllers in a
handful of trials,’’ IEEE Trans. Robot., vol. 36, no. 2, pp. 1–20, Apr. 2019.

[39] F. Sadeghi and S. Levine, ‘‘CAD2RL: Real single-image flight without a
single real image,’’ 2016, arXiv:1611.04201.

[40] K. Kang, S. Belkhale, G. Kahn, P. Abbeel, and S. Levine, ‘‘Generaliza-
tion through simulation: Integrating simulated and real data into deep
reinforcement learning for vision-based autonomous flight,’’ in Proc. Int.
Conf. Robot. Automat. (ICRA), May 2019, pp. 6008–6014.

[41] H. Hu, K. Zhang, A. H. Tan, M. Ruan, C. G. Agia, and G. Nejat, ‘‘A sim-
to-real pipeline for deep reinforcement learning for autonomous robot
navigation in cluttered rough terrain,’’ IEEE Robot. Autom. Lett., vol. 6,
no. 4, pp. 6569–6576, Oct. 2021.

[42] Y. Zhu, Z. Wang, C. Chen, and D. Dong, ‘‘Rule-based reinforce-
ment learning for efficient robot navigation with space reduction,’’
IEEE/ASME Trans. Mechatronics, early access, Apr. 13, 2021, doi:
10.1109/TMECH.2021.3072675.

[43] A. A. Rusu, M. Vecerík, T. Rothörl, N. Heess, R. Pascanu, and
R. Hadsell, ‘‘Sim-to-real robot learning from pixels with progres-
sive nets,’’ in Proc. 1st Annu. Conf. Robot Learn. (CoRL), Moun-
tain View, CA, USA, Nov. 2017, pp. 262–270. [Online]. Available:
https://proceedings.mlr.press/v78/rusu17a.html

[44] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, ‘‘Sim-to-real
transfer of robotic control with dynamics randomization,’’ in Proc. IEEE
Int. Conf. Robot. Automat. (ICRA), May 2018, pp. 1–8.

[45] J. Matas, S. James, and A. J. Davison, ‘‘Sim-to-real reinforcement learn-
ing for deformable object manipulation,’’ in Proc. 2nd Annu. Conf. Robot
Learn. (CoRL), Zürich, Switzerland, Oct. 2018, pp. 734–743. [Online].
Available: https://proceedings.mlr.press/v87/matas18a.html

[46] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan,
J. Ibarz, S. Levine, R. Hadsell, andK. Bousmalis, ‘‘Sim-to-real via sim-to-
sim: Data-efficient robotic grasping via randomized-to-canonical adap-
tation networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2019, pp. 12627–12637.

[47] W. Yuan, K. Hang, D. Kragic, M. Y. Wang, and J. A. Stork, ‘‘End-to-
end nonprehensile rearrangement with deep reinforcement learning and
simulation-to-reality transfer,’’ Robot. Auto. Syst., vol. 119, pp. 119–134,
Sep. 2019.

[48] R. Liu, F. Nageotte, P. Zanne, M. de Mathelin, and B. Dresp-Langley,
‘‘Deep reinforcement learning for the control of robotic manipulation: A
focussed mini-review,’’ Robotics, vol. 10, no. 1, p. 22, Jan. 2021.

[49] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. Tobin,
P. Abbeel, and W. Zaremba, ‘‘Transfer from simulation to real
world through learning deep inverse dynamics model,’’ 2016,
arXiv:1610.03518.

[50] A. Mandlekar, Y. Zhu, A. Garg, L. Fei-Fei, and S. Savarese, ‘‘Adversar-
ially robust policy learning: Active construction of physically-plausible
perturbations,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Sep. 2017, pp. 3932–3939.

[51] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, ‘‘Robust adversarial
reinforcement learning,’’ in Proc. 34th Int. Conf. Mach. Learn., 2017,
pp. 2817–2826.

[52] M. Wulfmeier, I. Posner, and P. Abbeel, ‘‘Mutual alignment transfer
learning,’’ in Proc. 1st Annu. Conf. Robot Learn., vol. 78, S. Levine,
V. Vanhoucke, and K. Goldberg, Eds., Nov. 2017, pp. 281–290. [Online].
Available: https://proceedings.mlr.press/v78/wulfmeier17a.html

[53] F. Muratore, F. Treede, M. Gienger, and J. Peters, ‘‘Domain randomiza-
tion for simulation-based policy optimization with transferability assess-
ment,’’ in Proc. Conf. Robot Learn., 2018, pp. 700–713.

[54] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and
V. Vanhoucke, ‘‘Sim-to-real: Learning agile locomotion for quadruped
robots,’’ inProceedings of Robotics: Science and Systems. Pittsburgh, PA,
USA: RSS Foundation, Jun. 2018, pp. 10–20.

[55] F. Golemo, A. A. Taiga, A. Courville, and P.-Y. Oudeyer, ‘‘Sim-to-real
transfer with neural-augmented robot simulation,’’ in Proc. Conf. Robot
Learn., 2018, pp. 817–828.

[56] J. Van Baar, A. Sullivan, R. Cordorel, D. Jha, D. Romeres, and
D. Nikovski, ‘‘Sim-to-real transfer learning using robustified controllers
in robotic tasks involving complex dynamics,’’ in Proc. Int. Conf. Robot.
Automat. (ICRA), May 2019, pp. 6001–6007.

VOLUME 9, 2021 153185

http://dx.doi.org/10.1109/TMECH.2021.3072675


E. Salvato et al.: Crossing RG: Survey on Sim-to-Real Transferability of Robot Controllers in RL

[57] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider,
N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan, W. Zaremba,
and L. Zhang, ‘‘Solving Rubik’s cube with a robot hand,’’ 2019,
arXiv:1910.07113.

[58] X. Pan, D. Seita, Y. Gao, and J. Canny, ‘‘Risk averse robust adversarial
reinforcement learning,’’ in Proc. Int. Conf. Robot. Automat. (ICRA),
May 2019, pp. 8522–8528.

[59] K. G. S. Apuroop, A. V. Le, M. R. Elara, and B. J. Sheu, ‘‘Reinforcement
learning-based complete area coverage path planning for a modified
hTrihex robot,’’ Sensors, vol. 21, no. 4, p. 1067, Feb. 2021. [Online].
Available: https://www.mdpi.com/1424-8220/21/4/1067

[60] J. P. Hanna and P. Stone, ‘‘Grounded action transformation for robot
learning in simulation,’’ in Proc. 31st AAAI Conf. Artif. Intell., 2017,
pp. 1–7.

[61] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, ‘‘Blind
bipedal stair traversal via Sim-to-Real reinforcement learning,’’ 2021,
arXiv:2105.08328.

[62] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and
K. Sreenath, ‘‘Reinforcement learning for robust parameterized locomo-
tion control of bipedal robots,’’ 2021, arXiv:2103.14295.

[63] S. S. Mousavi, M. Schukat, and E. Howley, ‘‘Deep reinforcement learn-
ing: An overview,’’ in Proc. SAI Intell. Syst. Conf. Cham, Switzerland:
Springer, 2016, pp. 426–440.

[64] E. Todorov, T. Erez, and Y. Tassa, ‘‘MuJoCo: A physics engine for
model-based control,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Oct. 2012, pp. 5026–5033.

[65] Blender Community. (2020). Blender: Open Source 3D Modeling Suit.
[Online]. Available: https://www.blender.org

[66] Sourceforge. (2020). SimSpark. [Online]. Available:
https://simspark.sourceforge.net/

[67] Open Source Robotics Foundation. (2020). GAZEBO: Robot Simulation
Made Easy. [Online]. Available: https://www.gazebosim.org/

[68] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa,
M. Stilman, and C. K. Liu, ‘‘DART: Dynamic animation and robotics
toolkit,’’ J. Open Source Softw., vol. 3, no. 22, p. 500, Feb. 2018.

[69] CM Labs. (2001). Vortex Studio Real-Time Simulation and Visualization
Software for System-Level Modeling of Mechatronics and Mechanical
Equipment. [Online]. Available: https://www.cm-labs.com/vortex-studio/

[70] E. Coumans and Y. Bai. (2016–2019). Bullet Physics SDK. [Online].
Available: https://bulletphysics.org

[71] E. Coumans and Y. Bai. (2016). Pybullet, a Python Module for Physics
Simulation for Games, Robotics and Machine Learning. [Online]. Avail-
able: https://pybullet.org

[72] F. Xia, A. Zamir, Z. He, S. Sax, J. Malik, and S. Savarese, ‘‘Gibson
ENV: Real-world perception for embodied agents,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 9068–9079.

[73] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and
A. Sumner. (2000). TORCS, the Open Racing Car Simulator. [Online].
Available: https://torcs.sourceforge

[74] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, ‘‘Progressive neural net-
works,’’ 2016, arXiv:1606.04671.

[75] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
‘‘Domain randomization for transferring deep neural networks from sim-
ulation to the real world,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Sep. 2017, pp. 23–30.

[76] S. James, A. J. Davison, and E. Johns, ‘‘Transferring end-to-end
visuomotor control from simulation to real world for a multi-
stage task,’’ in Proc. 1st Annu. Conf. Robot Learn. (CoRL),
Mountain View, CA, USA, Nov. 2017, pp. 334–343. [Online]. Available:
https://proceedings.mlr.press/v78/james17a.html

[77] I. Mordatch, K. Lowrey, and E. Todorov, ‘‘Ensemble-CIO: Full-body
dynamic motion planning that transfers to physical humanoids,’’ in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2015,
pp. 5307–5314.

[78] J. M. Wang, D. J. Fleet, and A. Hertzmann, ‘‘Optimizing walking con-
trollers for uncertain inputs and environments,’’ ACM Trans. Graph.,
vol. 29, no. 4, p. 73, 2010.

[79] A. Vandesompele, G. Urbain, H. Mahmud, F. Wyffels, and
J. Dambre, ‘‘Body randomization reduces the sim-to-real gap for
compliant quadruped locomotion,’’ Frontiers Neurorobotics, vol. 13,
p. 9, Mar. 2019, doi: 10.3389/fnbot.2019.00009.

[80] S. P. Bhattacharyya, ‘‘Robust control under parametric uncertainty: An
overview and recent results,’’ Annu. Rev. Control, vol. 44, pp. 45–77,
Jan. 2017.

[81] J. Ackermann, Robust Control: The Parameter Space Approach. London,
U.K.: Springer, 2012.

[82] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, ‘‘OpenAI gym,’’ 2016, arXiv:1606.01540.

[83] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, ‘‘Trust
region policy optimization,’’ in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889–1897.

[84] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong,
P. Welinder, B. McGrew, J. Tobin, O. P. Abbeel, andW. Zaremba, ‘‘Hind-
sight experience replay,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 5048–5058.

[85] N. Heess, J. J Hunt, T. P Lillicrap, and D. Silver, ‘‘Memory-based control
with recurrent neural networks,’’ 2015, arXiv:1512.04455.

[86] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, ‘‘Asynchronous methods for deep
reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn., 2016,
pp. 1928–1937.

[87] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Prox-
imal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

[88] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess,
T. Rothörl, T. Lampe, andM. Riedmiller, ‘‘Leveraging demonstrations for
deep reinforcement learning on robotics problems with sparse rewards,’’
2017, arXiv:1707.08817.

[89] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
‘‘Scalable deep reinforcement learning for vision-based robotic manip-
ulation,’’ in Proc. The 2nd Conf. Robot Learn., vol. 87, A. Billard,
A. Dragan, J. Peters, and J. Morimoto, Eds., Oct. 2018, pp. 651–673.
[Online]. Available: https://proceedings.mlr.press/v87/kalashnikov18a.
html

[90] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level
control through deep reinforcement learning,’’Nature, vol. 518, no. 7540,
pp. 529–533, 2015.

[91] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, ‘‘Curriculum learn-
ing,’’ in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 41–48.

[92] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harnessing
adversarial examples,’’ in Proc. 3rd Int. Conf. Learn. Represent. (ICLR),
San Diego, CA, USA, May 2015, pp. 1–11.

[93] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. J. Goodfellow, and R. Fergus, ‘‘Intriguing properties of neural
networks,’’ in Proc. 2nd Int. Conf. Learn. Represent. (ICLR), Banff, AB,
Canada, Apr. 2014, pp. 1–10.

[94] B. F. Hobbs and A. Hepenstal, ‘‘Is optimization optimistically biased?’’
Water Resour. Res., vol. 25, no. 2, pp. 152–160, Feb. 1989.

[95] A. W. Moore and C. G. Atkeson, ‘‘Prioritized sweeping: Reinforcement
learning with less data and less time,’’ Mach. Learn., vol. 13, no. 1,
pp. 103–130, 1993.

[96] S. P. Choi and D.-Y. Yeung, ‘‘Predictive Q-routing: A memory-based
reinforcement learning approach to adaptive traffic control,’’ inProc. Adv.
Neural Inf. Process. Syst., 1996, pp. 945–951.

[97] J. Peng and R. J. Williams, ‘‘Efficient learning and planning within the
Dyna framework,’’ Adapt. Behav., vol. 1, no. 4, pp. 437–454, 1993.

[98] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image translation
with conditional adversarial networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jul. 2017, pp. 1125–1134.

[99] W. Uther andM. Veloso, ‘‘Adversarial reinforcement learning,’’ Carnegie
Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU-CS-03-107,
1997.

[100] M. L. Littman, ‘‘Markov games as a framework for multi-agent rein-
forcement learning,’’ in Machine Learning Proceedings. Amsterdam,
The Netherlands: Elsevier, 1994, pp. 157–163.

[101] D. L. Ma, S. H. Chung, and R. D. Braatz, ‘‘Worst-case performance
analysis of optimal batch control trajectories,’’ in Proc. Eur. Control Conf.
(ECC), Aug. 1999, pp. 3256–3261.

[102] D. L. Ma and R. D. Braatz, ‘‘Worst-case analysis of finite-time control
policies,’’ IEEE Trans. Control Syst. Technol., vol. 9, no. 5, pp. 766–774,
Sep. 2001.

153186 VOLUME 9, 2021

http://dx.doi.org/10.3389/fnbot.2019.00009


E. Salvato et al.: Crossing RG: Survey on Sim-to-Real Transferability of Robot Controllers in RL

[103] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, ‘‘State-space
solutions to standard H2 and H∞ control problems,’’ IEEE Trans. Autom.
Control, vol. 34, no. 8, pp. 831–847, Aug. 1989.

[104] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, ‘‘Deep exploration
via bootstrapped DQN,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 4026–4034.

[105] M. E. Taylor and P. Stone, ‘‘Transfer learning for reinforcement learn-
ing domains: A survey,’’ J. Mach. Learn. Res., vol. 10, pp. 1633–1685,
Jul. 2009.

[106] N. Hansen, ‘‘The CMA evolution strategy: A comparing review,’’ in
Towards a New Evolutionary Computation. Berlin, Germany: Springer,
2006, pp. 75–102.

[107] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning
with double Q-learning,’’ in Proc. 13th AAAI Conf. Artif. Intell., 2016,
pp. 1–7.

[108] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, ‘‘Self-supervised
deep reinforcement learning with generalized computation graphs for
robot navigation,’’ in Proc. IEEE Int. Conf. Robot. Automat. (ICRA),
May 2018, pp. 1–8.

[109] A. Farchy, S. Barrett, P. MacAlpine, and P. Stone, ‘‘Humanoid robots
learning to walk faster: From the real world to simulation and back,’’ in
Proc. Int. Conf. Auto. Agents Multi-Agent Syst., 2013, pp. 39–46.

[110] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[111] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, ‘‘Bench-
marking deep reinforcement learning for continuous control,’’ in Proc.
Int. Conf. Mach. Learn., 2016, pp. 1329–1338.

[112] V. Maheu, P. S. Archambault, J. Frappier, and F. Routhier, ‘‘Evaluation of
the JACO robotic arm: Clinico-economic study for powered wheelchair
users with upper-extremity disabilities,’’ inProc. IEEE Int. Conf. Rehabil.
Robot., Jun. 2011, pp. 1–5.

[113] Poppy Station. (2020). Poppy Project: Open Source Robotics Platform.
[Online]. Available: https://www.poppy-project.org/en/

[114] F. Muratore, C. Eilers, M. Gienger, and J. Peters, ‘‘Data-efficient domain
randomization with Bayesian optimization,’’ 2020, arXiv:2003.02471.

[115] N. Schweighofer and K. Doya, ‘‘Meta-learning in reinforcement learn-
ing,’’ Neural Netw., vol. 16, no. 1, pp. 5–9, 2003.

[116] A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine, ‘‘Meta-
reinforcement learning of structured exploration strategies,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2018, pp. 5302–5311.

[117] L. Kirsch, S. van Steenkiste, and J. Schmidhuber, ‘‘Improving general-
ization in meta reinforcement learning using learned objectives,’’ 2019,
arXiv:1910.04098.

[118] M. Deisenroth and C. E. Rasmussen, ‘‘Pilco: A model-based and data-
efficient approach to policy search,’’ in Proc. 28th Int. Conf. Mach. Learn.
(ICML), 2011, pp. 465–472.

[119] M. Deisenroth, D. Fox, and C. E. Rasmussen, ‘‘Gaussian processes for
data-efficient learning in robotics and control,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 2, pp. 408–423, Feb. 2013.

[120] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, ‘‘Meta-learning
in neural networks: A survey,’’ 2020, arXiv:2004.05439.

[121] S. Tu and B. Recht, ‘‘Least-squares temporal difference learning for
the linear quadratic regulator,’’ in Proc. Int. Conf. Mach. Learn., 2018,
pp. 5005–5014.

ERICA SALVATO received the B.Sc. degree in
electronic engineering from the University of
Messina, Italy, in 2015, and the M.Sc. degree in
electrical and control systems engineering from
the University of Trieste, Italy, in 2018. She is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Engineering and Architecture, University
of Trieste. Her research interests include the arti-
ficial intelligence application as a systems con-
trol tool but includes also control theory, machine
learning, and robotics.

GIANFRANCO FENU received the Laurea degree
(M.Sc. degree) in electronic engineering and the
Ph.D. degree in information engineering from the
University of Trieste, in 1996 and 2001, respec-
tively. From October 1997 to March 1998, he was
aVisiting Ph.D. Student with the FachgebietMess-
und Regelungstechnik (Institute for Measurement
and Automatic Control), University of Duisburg–
Essen, Germany, led by Prof. Paul M. Frank. Since
November 1999, he has been an Assistant Pro-

fessor with the Department of Engineering and Architecture, University
of Trieste. His research interests include control theory, fault diagnosis,
machine learning, and robotics.

ERIC MEDVET received the degree (cum laude)
in electronic engineering and the Ph.D. degree
in computer engineering from the University of
Trieste, Italy, in 2004 and 2008, respectively. He is
currently with the University of Trieste as an
Associate Professor in computer engineering and
the Director of the Evolutionary Robotics and
Artificial Life Laboratory. Besides evolutionary
robotics, his research interests include genetic pro-
gramming and applications of machine learning.

FELICE ANDREA PELLEGRINO (Member,
IEEE) was born in Conegliano, Italy, in 1974.
He received the Laurea degree in engineering and
the Ph.D. degree from the University of Udine,
Italy, in June 2000 and May 2005, respectively.
Since 2006, he has been with the Department
of Engineering and Architecture, University of
Trieste, where he is currently an Associate Profes-
sor. His research interests include control theory,
machine learning, and computer vision. He is also

an Associate Editor of the IEEE CONTROL SYSTEMS LETTERS and a member of
the Conference Editorial Board of the IEEE Control Systems Society and the
European Control Association.

VOLUME 9, 2021 153187


