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ABSTRACT In Deep Reinforcement Learning (DRL) for robotics application, it is important to find energy-
efficient motions. For this purpose, a standard method is to set an action penalty in the reward to find
the optimal motion considering the energy expenditure. This method is widely used for the simplicity of
implementation. However, since the reward is a linear sum, if the penalty is too large, the system will
fall into local minima and no moving solution can be obtained. In contrast, if the penalty is too small,
the effect may not be sufficient. Therefore, it is necessary to adjust the amount of the penalty so that the
agent always moves dynamically, and the energy-saving effect is sufficient. Nevertheless, since adjusting the
hyperparameters is computationally expensive, we need a learningmethod that is robust to the penalty setting
problem. We investigated on the Spiking Neural Network (SNN), which has been attracting attention for its
computational efficiency and neuromorphic architecture. We conducted gait experiments using a hexapod
agent while varying the energy penalty settings in the simulation environment. By applying SNN to the
conventional state-of-the-art DRL algorithms, we examined whether the agent could explore for an optimal
gait with a larger penalty variation and obtain an energy-efficient gait verified with Cost of Transport (CoT),
a metric of energy efficiency for gait. Soft Actor-Critic (SAC)+SNN resulted in a CoT of 1.64, Twin Delayed
Deep Deterministic policy gradient (TD3)+SNN resulted in a CoT of 2.21, and Deep Deterministic policy
gradient (DDPG)+SNN resulted in a CoT of 2.08 (1.91 for normal SAC, 2.38 for TD3, and 2.40 for DDPG).
DRL combined with SNN succeeded in learning more energy efficient gait with lower CoT.

INDEX TERMS Spiking neural network, deep reinforcement learning, energy efficiency, hexapod gait,
spatio-temporal backpropagation.

I. INTRODUCTION
Energy-efficient control is an important aspect in the field
of robotics as the energy resource is limited for autonomous
mobile robots. Several studies have been conducted to mini-
mize the energy consumption of legged robots. One method
changes the gait to match the terrain using CPG [1] and
other methods transit the gait according to its own energy
consumption [2], [3]. On the other hand, Deep Reinforcement
Learning (DRL), which learns the optimal behavior under
unknown environments by end-to-end learning, has recently
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attracted considerable attention in robotics for its high capa-
bility on solution space exploration.

In DRL, it adopts another approach to obtain energy-
efficient behavior patterns by learning. One standard way
is to add an action penalty term to the reward function by
multiplying the agent’s action by a weight coefficient for
considering the energy expenditure. This method can be
practically applied to any DRL algorithm because it only
adds a term to the reward function, and it is reported to be
effective in preventing overfitting [4]. However, the weight
coefficients need to be somewhat larger to achieve a sufficient
effect. Because the reward is a linear sum, if the penalty is
too large, the system falls into local minima, and no moving
solution can be obtained. In contrast, if the penalty is too
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small, the effect may be insufficient. Therefore, adjusting
the hyperparameters generally requires many trials, and the
computational cost andmanual tuning effort become a central
issue of the DRL technique. In the motion generation task
using continuous control, it is necessary to search for a control
input that enables dynamic movement at all times. Besides,
we need a learning method that is robust to the reward set-
ting problem without falling into the local minima where
the agent stops, even if we penalize the energy expenditure.

To overcome these issues, we investigated a spiking neural
network (SNN), which has attracted attention for its compu-
tational efficiency and neuromorphic architecture. An SNN
is a model of neurons in the brain that transmits information
by spiking signals. It can handle spatio-temporal information,
and in biological systems, noise induces the generation of
regularity in excitable systems such as neurons and cells [5].
An SNN has discontinuous potentials and contains noise in
the system. Therefore, it is expected to yield better results [6],
[7]. The spikes are binary and do not need to transmit analog
values; thus, SNNs can perform efficient computation [8],
[9], and recently, it has been reported that they can rapidly
search for movements that adapt to the environment during
walking motions [10]. The potential for higher exploration
performance of SNNs can be an attractive function for the
learning process. However, this exploration ability aspect of
SNNs has not been well studied in robotics so far, compared
to other well-known aspects.

In this study, we performed walking experiments with a
larger penalty variation for a hexapod agent and with the
state-of-the-art different DRL algorithms. We verify whether
the combination of DRL and SNNs can explore the optimal
motion and obtain energy-efficient behavior patterns, even
when the energy penalty is larger than that for conventional
DRL. In addition to the investigation of its reward acquisition,
we also verified the cost of transport (CoT), which is a metric
of energy efficiency for gait.

II. RELATED WORK
SNNs have been focused on their ability to perform effi-
cient computations because of their ability to handle binary
spikes. Thus, several studies have already been performed
to apply SNNs to mobile robots [11]–[13]. However, it is
known that the backpropagation method used in artificial
neural networks (ANNs) cannot be applied to the training of
SNNs; thus, spike-timing-dependent plasticity (STDP) was
used to train SNNs in these studies. STDP performs well
only in low-dimensional tasks, but it has difficulty in high-
dimensional tasks. SNNs use other learning rules to solve
high-dimensional tasks, and some methods have been pro-
posed, such as converting a trained ANN into an SNN [14],
which approximates the backpropagation method of an ANN
(SpikeProp [15], SuperSpike [16], spatio-temporal Back-
propagation [17]). In a study using these learning methods to
tackle high-dimensional continuous control tasks, a method
of applying SNNs to DRL algorithms was proposed [18],
[19]. They applied SNNs to the actor part of each DRL algo-

rithm and used ANNs for the critic. They also showed that
they were able to deploy to Loihi, a neuromorphic processor,
and performed efficient computation.

In contrast, although these studies focused on the benefit
of efficient computation, another point of view is that the
discontinuous potential of themodel contributes to the robust-
ness of the model [7]. Furthermore, a musculoskeletal biped
simulation study was reported [10] that enabled immediate
adaptation to environmental changes in its gait by using an
SNN-based controller with the contribution of spike-induced
ordering.

III. BACKGROUND
In this section, we describe a brief reinforcement-learning
problem setup and the algorithm we used. Next, we describe
the concept of spiking neural networks (SNNs), model, and
PopSAN, which combines DRL and SNNs.

A. DEEP REINFORCEMENT LEARNING
In DRL problems, we consider an infinite-horizon Markov
decision process (MDP), defined by (S,A, p, r), where the
state space S and the action spaceA are continuous, the state
transition probability p : S × S ×A→ [0, 1] represents the
probability density function of the current state st and action
at to the next state st+1, and r : S × A→ R represents the
reward given by interactingwith the environment. In addition,
we use trajectory ρπ that is obtained by the policy π (at |st ).
We used three different model-free DRL algorithms, SAC

[20], TD3 [21], and DDPG [22], which are widely used in
continuous control tasks. SAC and TD3 are now known as
state-of-the-art DRL algorithms.

SAC is a stochastic DRL algorithm that learns a policy
π (at |st ) thatmaximizes the objective function (1) considering
the entropy termH of the policy.

J (π ) =
∞∑
t=0

E(st ,at )∼ρπ [r (st , at)+ γ · H (π (· | st))] (1)

By maximizing the expected policy entropy term, the
learned policy canmaximize the reward obtained while main-
taining the diversity of the behaviors for better exploration
ability. In addition, it can be trained off-policy, resulting
in high sample efficiency. More details of the theorem are
provided in [20].

TD3 and DDPG are deterministic DRL algorithms that
learn policy π(at |st ) = µθ (s) that outputs the presumably
optimal action for the current state. TD3 improves the explo-
ration ability and overestimation of the estimated value. The
objective function is shown in Equation (2).

J (π ) =
∞∑
t=0

E(st ,at )∼ρπ [r (st , at)] (2)

In TD3, an overestimation of the value estimated in the
DDPG is improved by using a method called clipped double
Q-learning, which extends the double Q-learning in discrete
actions. In addition, to improve the exploration capability,
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FIGURE 1. Global architecture of PopSAN.

Gaussian noise is added to the output of the deterministic
policy (target policy smoothing).

B. SPIKING NEURAL NETWORK
SNNs transmit information through spike trains. Besides,
it captures the characteristics of real spiking neurons. Various
models have been proposed [23], [24], [25]. The spike train
is shown in (3).

S(t) =
∑
s

δ(t − ts) (3)

where s is the label of a spike and δ is a Dirac function.
One of the most widely used models is the leaky integrate-

and-fire (LIF) model for its computational simplicity. The
LIF model is described in Equation (4).

τ
du(t)
dt
= −u(t)+ I (t) (4)

where u(t) is the membrane potential at time t , τ is the time
constant and I (t) is input signal that is induced by a presy-
naptic spike train. When membrane potential u(t) exceeds a
given threshold Vth, the neuron fires and resets its potential to
ureset .

Although SNNs have the advantage of handling spatio-
temporal information, it is known that the backpropagation of
an ANN cannot be applied directly to the training of multi-
layered SNNs. Thus, we used the STBP method [17], which
has shown high performance in SNN training.

C. PopSAN
In this study, we applied SNN to DRL using the PopSAN
method [19]. Fig.1 shows the architecture of PopSAN.
PopSAN is an application of SNNs to the actor part of

the actor-critic in reinforcement learning and consists of an
encoder module, a computation module of an SNN, and a
decoder module. In the encoder module, the observation is
encoded as a spike using population coding. The stimulation
strength in the population, AE , is expressed by Equation (5).

AE = exp (−1/2 · ((s− µ)/σ )2) (5)

After being converted to the spike format, the SNN is
trained using extended STDP [18]. LIF neurons were used in
the SNN module. First, the presynaptic spike o is integrated
and converted to a current c (6). The current c is then inte-
grated and converted to a membrane potential v (7). When

FIGURE 2. Hexapod agent in our study. It has observations as the joint
positions and velocities, torso velocities and orientations, and sensor
information (IMU, force, torque). Actions are input to the actuator of each
joint.

the membrane potential exceeds a threshold, the neuron fires
(8).

c(t) = dc · c(t − 1)+W · o(t)+ b (6)

v(t) = dv · v(t − 1) · (1− o(t − 1))+ c(t) (7)

o(t) = Threshold(v(t)) (8)

dc and dv are the current and voltage decay factors.
The decoder module converts the activity of the population

output of the SNN layer into the action of the agent. It calcu-
lates the firing rate by summing up the number of spikes of
the neurons in each defined timestep (9). Then, the ith action
is calculated using Equation (10).

fr =
∑T

t=1 o(t)
T

(9)

a = Wd · fr+ bd (10)

Wd and bd are weight and bias for each action dimension.

IV. PROPOSED METHOD
We conducted walking experiments with DRL and SNN-
driven DRL, and compared the results with the cost of trans-
port (CoT), a measure of energy efficiency.

In this section, we explain the details of the agents used
in the walking experiment, PopSAN, which applies SNNs to
DRL, and the details of CoT.

A. SIMULATED AGENTS
We carried out experiments using MuJoCo [26], a physics
simulation engine that is widely used for reinforcement learn-
ing of continuous control tasks. We chose a legged robot
that is widely used as a mobile robot. The hexapod agent
is shown in Fig. 2 and was created in the dm_control [27]
environment, an open-source library byDeepMind. The agent
has six legs. For each leg, the shoulder has two degrees of
freedom of rotation, the elbow has one degree of freedom of
rotation, and the wrist has one degree of freedom of linear
motion, which is a passive spring. Three actuators for drive
the shoulder and elbow. The joints of the agent are set with
certain stiffness, so that the posture is maintained even when
no torque is applied. However when it walks, the agent needs
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FIGURE 3. For each algorithm, the temporal variation regarding reward during the learning is visualized while the value of α is varied
from 0 to 1. 1 rollout is 1000 timesteps. If an the reward converges at 1000 (the dotted line), it indicates that the agent is stopped for
walking.

to apply torque to move its body. These are 112 observations:
the position and velocity of the hinge, the output of the torque
of the actuators, the velocity of the torso, the uprightness
of the torso (the inner product of the z-axis of the torso

and the z-axis of the absolute coordinate), the value of the
IMU sensor, and the force and torque applied to the toes.
Actions have 18 dimensions: the torque input of each leg
actuator.
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TABLE 1. The training results for each algorithm at 200k and 500k steps.
The reward is the value obtained by subtracting the survival reward from
the reward used in training. SD represents the standard deviation for
10 evaluations.

We set the reward function R as in (11) and trained the
agents using each algorithm.

R = v+ s− α
actuator∑
i=0

ai(t)2 (11)

where v is the speed of the torso, s is the survival reward,
which takes the value 1 for each time step until it falls, ai(t) is
the torque input to the actuator (action) andα is the coefficient
for the sum of the squares of action over the number of actu-
ators. α acts as a penalty for the energy expenditure. As the
action penalty increases, the agent is required to acquire more
energy-efficient walking patterns.

B. WALKING EXPERIMENT
We trained the agent using each of the DRL algorithms and
SNN-driven DRL algorithms. We chose PopSAN [19] as the
method for adapting an SNN to each DRL algorithm. The
DRL algorithm that we used was based on PFRL [28], a DRL
library. We also implemented PopSAN in combination with
DRL of PFRL, referring to the authors’ implementation.1 The
source code used in this study can be found at 2 We used a
DNN and an SNN with 256 neurons in two layers. The other
hyperparameters are described in Table. 3.

C. COST OF TRANSPORT
We used the energy efficiency metric, CoT, to evaluate the
efficiency of walking obtained through learning to verify the
physical performance rather than the computational reward.

1https://github.com/combra-lab/pop-spiking-deep-rl
2https://github.com/Katsumi-N/hexapod_walk_snn

TABLE 2. Cost of Transport (CoT) obtained from each algorithm. red
indicates less than 2.5, bold indicates greater than or equal to 2.5 and
less than 3.0. X indicates the situation where the agent did not walk.

CoT is defined as (12).

CoT =

∑
i=0

∫ t
0 |ai(t)θ̇i(t)|dt

mg1d
(12)

where the numerator is the energy consumption of the agent,
ai(t) and θi(t) indicate the torque input and angle of the ith

joint, respectively.m is the mass of the agent, g is gravity, and
1d is the distance traveled by the agent. The CoT indicates
the amount of energy required tomove a unit distance, and the
smaller the CoT, the greater the energy-efficiency of walking.

V. EXPERIMENTAL RESULT
To obtain more energy-efficient walking, we trained the agent
using the DRL algorithms SAC, TD3, DDPG, and each algo-
rithm with SNN, by varying the reward setting regarding
the value of the weighting factor for energy expenditure α
from 0 to 1. Subsequently, to evaluate the energy efficiency
of the walking obtained from the training, we measured the
CoT of a trained agent.

A. WALKING EXPERIMENT
Table 1 shows the final reward for the walking experi-
ment, which is calculated as the total reward minus the
survival reward. Fig. 3 shows the learning process. We set
1000 timesteps for a rollout, and every 10 000 timesteps,
10 evaluations without exploration are run. We trained each
algorithm for 500 000 timesteps using three seeds. SD is the
standard deviation of the reward over 10 evaluations. If the
agent falls down in the middle of the learning process, it starts
the next rollout. The highest reward for each algorithm with
and without the SNNs is shown in red. This means there is
one red indication between SAC and SAC+SNN, one red
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FIGURE 4. Results of PCA on the gait of trained agent’s observations at 1000 timesteps. (a) shows observations after
training (500 000 timesteps) without encoding. (b) shows observations encoded into spike format with the non-trained
encoder. (c) shows observations encoded with the trained encoder. In (c), the observations are more separated than in
(a) and (b).

indication between TD3 and TD3+SNN and so on. Here,
for each algorithm, as the value α increases, the total reward
collected is 1000, indicate that no walking progress has been
made. When the robot stops, the first term (velocity) and
the third term (penalty for the action) of the reward equation
become zero, and only the second term (the survival reward)
is given. The maximum number of timesteps is 1000 if the
robot does not fall over, so the reward for stopping the robot
is 1000. the agent is learning to stop. In each DRL, the reward
did not exceed 1000 atα = 0.8, and the agent stoppedwithout
walking. In contrast, DRLwith an SNN succeeded in learning
walking with a reward higher than 1000 in each case.

B. MEASURING THE COST OF TRANSPORT
Next, we measured the CoT using the agent that had trained
for 200 000 timesteps and 500 000 timesteps, as shown
in Table 2. We performed 1000 timestep walking experi-
ments 30 times to calculate the CoT and its standard devi-
ation. Red and bold letters indicate CoT less than 2.5, and
within the range of 2.5–3, respectively. Table 2 reveals
that, in most cases, the CoT decreased as the learning step
progressed. As α increased, the agent was able to learn
more energy-efficient walking with a lower CoT. The results
show that it is effective to increase the penalty term of the
action to learn an efficient movement. For SAC+SNN and

DDPG+SNN, walking with the smallest CoT was obtained
when α = 0.8. For each algorithm, the DRL with SNN
obtained a lower CoT walking than the DRL alone.

Fig. 5-7 shows the position and velocity of the center
of mass (CoM) in the z-axis (height direction) during the
last learning phase for 1000 timesteps of walking for each
algorithm at α = 0.6. In the case of TD3 and DDPG, the
temporal variation of the phase portrait was largely reduced
by using the SNN and a consistent limit cycle based on the
CoM. By using the SNN, the agent was able to learn to walk
with less CoM shift, which is an energy-efficient walking
with low CoT.

C. ANALYSIS OF ENCODED OBSERVATIONS
To validate the SNN contributions to the acquisition of gait
patterns, we examined how the agent’s observations were
separated into spikes during encoding.

For each algorithm using the SNN, we performed principal
component analysis on the observations of the agent with
500 000 timestep training (a), the observations encoded into
spike format using an untrained encoder (b), and the observa-
tions encoded using a trained encoder (c). The PCA results
are presented in Fig. 4. Regarding (a) and (b), even when
untrained encoders are used, they are transformed into a form
that captures more periodic structures than the unencoded
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FIGURE 5. Phase portrait regarding CoM for SAC and SAC+SNN at
α = 0.6. This figure shows the relationship between the position of the
CoM on the z-axis (height direction) and its velocity for the last learning
phase (1000 timesteps).

TABLE 3. Hyperparameters for each DRL algorithms.

observations, especially DDPG+SNN. Furthermore, when
regarding (b) and (c), before and after learning the encoder,
the distance between the observations in (c) is greater than
that in (b). It is thought that the learning of the encoder has
improved the representational capability of the network, and
thus, the observations can better be separated. These results
suggest that the learned encoder transforms its observations
into a complex and periodic structure through learning, which
is advantageous for learning gait

VI. DISCUSSION
As shown in Table 2, by using the SNN in all algorithms of
SAC, TD3, and DDPG, the agent was able to learn walking
without falling into the local minima of stopping at α = 0.8.
In contrast, when α = 0.8, it could not learn walking by using
TD3 andDDPG. It walked by using SACbutwith a highCoT.
In addition, for the same value of α, the algorithms with the
SNN exhibited a lower CoT than that without the SNN. Thus,

FIGURE 6. Phase portrait of CoM for TD3 and TD3+SNN at α = 0.6.

FIGURE 7. Phase portrait of CoM for DDPG and DDPG+SNN at α = 0.6.

wewere able to obtain energy-efficient behavior patterns with
low CoTs. Among all these tests, SAC+SNN achieved the
lowest CoT of 1.64. This result is significant because SAC is
already known for its good exploration ability; however, it can
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FIGURE 8. Learning rate validation of hyperparameters when α = 0.8.

FIGURE 9. Batch size validation of hyperparameters when α = 0.8.

be further improved by combining it with an SNN. The good
exploration ability of SAC could be confirmed when it was
compared to TD3 and DDPG. Although DDPG did not show
good performance, it wasmore effective when combinedwith
the SNN. This can be observed from the numbers of bold and

red rewards and CoT in the tables, as compared to the case of
non-SNN DDPG.

SAC is known to have a higher exploration ability than
other deterministic DRL algorithms, and it was reported
to produce more energy-efficient motions than TD3 in our
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group’s previous study [29], [30]. However, this is the first
report on the case where the most energy-efficient gait
was obtained when SAC was combined SAC with SNN.
Potentially, this indicates that the type of exploration can
be different and compensatory for both the SAC and SNN
explorations. In addition, Fig. 3 and Table 1 show that gait
patterns in TD3 and DDPG driven by SNNs are less variable
than those without SNNs, resulting in an increasing trend
in reward. Because these algorithms learn by deterministic
policy, they exhibit fast computations; however, compared to
algorithms such as SAC, they tend to fall into local minima.

Therefore, SNN facilitated the acquisition of periodic pat-
terns, which in turn led to the acquisition of gait patterns with
less CoM shift, as shown in Figs.6 and- 7. This probably
results from obtaining a more accurate periodic represen-
tation of the observations via population coding, an shown
in Fig. 4. In particular, DDPG showed a sudden drop in
reward in the later stages of learning; however, by using SNN,
the model acquired a more stable gait, which is a visible
improvement incorporated with SNN.

In DDPG and TD3, noise is added to improve the explo-
ration performance, but the size of the noise is a hyperpa-
rameter, so it needs to be adjusted for each task to obtain
a sufficient effect. However, the noise effect caused by the
discontinuous potentials of the SNN does not require hyper-
parameter adjustment; therefore, it can be used generally for
various DRL algorithms.

In contrast, the CoT is sometimes lower for normal DRLs
when either the learning step or α is small. In PopSAN, both
the encoders and decoders are learnable. However, when the
learning steps are small, they are not learned sufficiently,
which may result in high CoT walking. The reason why the
CoT is sometimes lower in normal DRL when α is small is
that the influence of the energy efficiency term in the reward
is small, and even SNN-driven DRL sometimes results in a
gait with unnecessarily large leg movements.

VII. CONCLUSION
In this study, to obtain energy-efficient gait patterns,
we trained a six-legged agent to walk with different reward
settings by varying the weight to consider for the energy
expenditure. The effect of SNN-driven DRL was investigated
over different DRL algorithms and evaluated for the energy
efficiency of the hexapod gait using CoT.

In both the stochastic algorithm such as SAC and the deter-
ministic algorithm such as TD3 and DDPG, we succeeded
in searching the walking pattern even with a larger energy
penalty setting, when it was combined with SNN. SNN-
driven DRL obtained a more energy-efficient gait when the
learning step was considerable, and a larger energy penalty
was set. To the best of our knowledge, this is the first report
that the most energy-efficient motion could be obtained when
SAC is driven with an SNN than with SAC only. In addition,
we confirmed the increase in the reward in TD3 and DDPG.

Until now, SNNs have been mainly focused on their
computational efficiency merits, but we have experimentally

demonstrated that they are also beneficial in terms of acquir-
ing periodic patterns for energy-efficient motor learning in
legged agents in DRL.

APPENDIX
HYPERPARAMETERS FOR EACH DRL ALGORITHMS
The hyperparameters used for each DRL algorithm are listed
in Table 3. Some parameters that significantly affected the
learning were experimentally determined by the validation
experiments shown in Figs. 8 and 9. The other parameters
were determined by referring to PFRL [28] and PopSAN [19].

Fig. 8 shows that none of the DRL algorithms succeed
in learning. On the contrary, SNN-driven DRL succeeds in
learning, except when the learning rate is 7e-4 in SAC+SNN
and DDPG+SNN. Fig. 9 shows that all batch sizes, except
when the SAC’s batch size is 128, fail to learn, whereas the
SNN-driven DRL succeeds in learning for all batch sizes.
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