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ABSTRACT Hot events spread quickly on social networks. Predicting event diffusion on social networks,
also known as topic propagation, is an important task. The two important factors that affect topic propagation
are users and topics, and both users’ roles and topics’ influences are time dependent on social networks.
However, existing studies have largely overlooked this fact, so topic propagation prediction is still a major
challenge. In this paper, a Topic Propagation Prediction method is proposed based on Dynamic Analysis
of user-role and topic-influence, named TPP-DA, which predicts the topic propagation on social networks
from both users’ and topics’ perspectives. First, we introduce a temporal perspective to improve the static
analysis to the dynamic analysis of user-role, which is more adaptable to the changeable user-roles on social
networks. Second, we introduce a metric called the topic heat to dynamically analyze the topic-influence on
a single user and social group. Third, we combine the dynamic analysis of user-role and topic-influence with
a weighted probability model to accurately predict topic propagation trends. The weights are determined by
the dynamic analysis of user-role and topic-influence. Finally, several experiments are conducted to evaluate
TPP-DA. Compared with TPP, the average error rate of TPP-DA is reduced by approximately 33%, which
proves the efficiency of TPP-DA.

INDEX TERMS Topic propagation, user-role, topic-influence, probability model, social networks.

I. INTRODUCTION
Today, social networks are playing an increasingly important
role in people’s lives. Hot events or topics spread rapidly in
social networks. Analyzing hot events in social networks can
help governments and companies in mining useful informa-
tion or studying rumor diffusionmodels [1]–[3]. For example,
for a good topic in social networks, e.g., ‘‘Olympic Games’’,
we must predict how many people will pay attention to the
topic in the future. In contrast, we should understand the
propagation law of a rumor so that the government can refute
it. Therefore, topic propagation prediction, which predicts the
spread of topics, is an important task.

Topic propagation refers to how information is propagated
through social networks [4]. It may be affected by the users
and topics in social networks. Additionally, topic propagation
can be affected by other factors, such as the community
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structure and the temporal information of social net-
works [5]–[7]. While user relationships are important parts
of community structure, and the time-varying user interest
and topic heat embody the temporal information of social
networks, they also depend on users and topics. Therefore,
we only focus on analyzing the impact of users and topics on
topic propagation in this paper.

First, users have different interests in different topics in
social networks. A user may have different roles in different
topics, so he or she may have varying degrees of influence
on other users regarding various topics. Meanwhile, users
have many friends with the same or similar interests in social
networks, and they interact with each other in various ways.
They may also have different roles in their relationships and
have varying degrees of influence on each other to affect topic
propagation. Furthermore, the analysis of user-role should
consider the changeability of users’ interests or hobbies over
time. In brief, user-role analysis should be considered in topic
propagation prediction.
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Second, the topic itself affects topic propagation. Different
topics in social networks have different influences. These top-
ics compete for users’ attention. For example, many people
focus on hot events; therefore, hot topics can spread quickly.
However, other topics may diffuse slowly in social networks.
Meanwhile, the heat of the topics will change over time.
As the topic heat changes, the topic-influence also changes.
Therefore, topic-influence should be considered when study-
ing topic propagation.

There are some researches on topic propagation models,
such as the linear threshold (LT) model [8], [9] and the inde-
pendent cascade (LC) model [10]–[13]. Some works utilized
epidemic models [14]–[16], data-driven models [17]–[20],
various dynamical models [21]–[25] or deep learning neural
networks [26]–[29] for topic propagation to explore informa-
tion diffusion. However, these works did not conduct both
user-role and topic-influence analyses, so they could be fur-
ther improved. In our previous work [30], we proposed a user-
role-based topic propagation prediction (TPP) model, but it
analyzed user-role statically, and it did not consider topic-
influence. Social networks are time-varying, and user-roles
and topic-influences are time dependent. Existing studies on
topic propagation have overlooked the time dependency of
user-roles and topic-influences; predicting topic propagation
trends remains a major challenge.

In this paper, we propose a Topic Propagation Prediction
method based on the Dynamic Analysis of user-role and
topic-influence, named TPP-DA. Its purpose is to predict the
topic propagation in social networks considering both users’
and topics’ perspectives.

First, we analyze the inadaptability of our previous static
user-role analysis, which is the user-roles change over time
in social networks. To address the problem, a temporal per-
spective s introduced to static analysis. Then, user-role is
analyzed dynamically. Similar to static user-role analysis,
four user-role factors are incorporated to characterize user
attributes along two dimensions. In one dimension, the user
expert-factor and leader-factor are analyzed based on a sin-
gle user behavior. In the other dimension, the user social-
factor and similarity-factor are described based on social
behavior.

Second, topics are time dependent, and they compete for
users’ attention. The topic itself also plays an important role
in topic propagation. Topic-influence should be considered
when predicting topic propagation. Topic-influence analysis
consists of two parts. The first part is the topic-influence on
a single user, and the second part is the topic-influence on
a social group. We also introduce a metric called topic heat
to calculate the topic-influences on a single user and social
group.

Third, the dynamic analysis of user-role and topic-
influence is combined with a weighted probability model to
predict topic propagation trends more accurately. Here, the
weights are determined by the dynamic analysis of user-role
and topic-influence. Behavior probability, relationship proba-
bility and time probability are utilized to form the probability

model, and they are calculated based on user behaviors, group
relationships and time spans.

Finally, we present the algorithms in detail and analyze the
computational complexities of the algorithms. Some exper-
iments are conducted to evaluate TPP-DA. Compared with
TPP (our previous topic propagation with static user-role
analysis), the average error rate of TPP-DA is reduced by
approximately 33%. The experimental results show its effi-
ciency. Our main contributions have particular importance
for topic propagation prediction. To summarize, the contri-
butions of this paper are as follows:

1) The dynamic analysis of user-role and topic-influence is
utilized to conduct topic propagation prediction. To the best
of our knowledge, this paper is the first to predict topic prop-
agation based on the dynamic analysis of user-role and topic-
influence in social networks from both users’ and topics’
perspectives.

2) A temporal perspective is introduced to improve our
previous static analysis to dynamically analyze on user-role,
which is more adaptable to user-roles changing over time
in social networks. Topic-influences are also dynamically
analyzed on both single user and social group, which are
calculated based on topic heat.

3) The dynamic analysis of user-role and topic-influence is
combined with a weighted probability model to predict topic
propagation trends more accurately. Some experiments are
conducted to evaluate TPP-DA, and the experimental results
show its efficiency.

The remainder of this paper is organized as follows.
Section II describes the relatedworks. Section III presents the
topic propagation problem formulation. Section IV shows the
dynamic analysis of user-role and topic-influence in detail.
Section V gives the weighted probability model and topic
propagation (TPP-DA) algorithm. Section VI evaluates the
method. Finally, the conclusion is presented in Section VII.

II. RELATED WORKS
One of the main issues in social networks is to predict infor-
mation diffusion. With the development of networking and
informatization in recent years in particular, the study of topic
propagation models has been a popular topic in academia.

Several representative topic propagation models are avail-
able, such as the linear threshold (LT) model [8], [9] and
the independent cascade (LC) model [10]–[13]. For strong
communities that can facilitate global diffusion by enhancing
local intracommunity spreading, Nematzadeh et al. [8] inves-
tigated topic propagation with the linear threshold model.
Guille and Hacid [9] proposed a practical solution that
aimed to predict the temporal dynamics of diffusion in social
networks. The approach was based on machine learning
techniques and the inference of time-dependent diffusion
probabilities from a multi-dimensional analysis of individ-
ual behaviors. Gray et al. [10] studied the effect of graph
structure on the flow of information over a network using
Watts’s simple model of global cascades. Wang et al. [11]
developed a user representation learning model to solve the

154718 VOLUME 9, 2021



J. Wang, H. Zhao: Dynamic Analysis of User-Role and Topic-Influence for Topic Propagation in Social Networks

information diffusion prediction problem on social media.
The model learned the role-based representations based on
a cascade modeling objective and employed the matrix fac-
torization objective of reconstructing structural proximities
to regularize the representations. A diffusion model based
on a cascade model framework was proposed to generate the
retweeting network in [12]. Gao et al. [13] proposed a novel
information-dependent embedding-based diffusion predic-
tion (IEDP) model. The proposed model further learned the
propagation probability of information in the cascade as a
function of the relative positions of information-specific user
embedding in the information-dependent subspace.

Due to the similarity between topic propagation in social
networks and virus propagation on biological networks, epi-
demic models [14]–[16] have been widely applied to explore
the information dynamics in social networks. Considering
that the numerical solutions (both continuous and discrete) of
traditional SIR-based (Susceptible-Infective-Removed) mod-
els cannot match the corresponding simulation results of node
behavior, Rui et al. [14] extended the classic SIR model
to the new SPIR (Susceptible-Potential-Infective-Removed)
model by introducing the new concept of the potential
spread set. In the diffusion process, a new proposed model
characterized a practical reinfection-reemergence scenario
caused by the change in social attributes for individuals [15].
Kong et al. [16] introduced a connection between general-
ized stochastic SIR models and self-exciting point processes
in a finite population. However, nearly all of the previous
epidemic models failed to sufficiently consider the influ-
ence of social ties. Subsequently, some studies using data-
driven models [17]–[20] for topic propagation have emerged.
An analysis method of the influence of the potential edges of
topic propagation was studied using a simple topic propaga-
tion model of the networks [17]. Molaei et al. [18] proposed
a novel heterogeneous deep diffusion (HDD) approach in
which functional heterogeneous structures of the network
were learned by a continuous latent representation through
traversing meta-paths. Li et al. [19] proposed a diffusion
model based on multiple messages and a multiplex network
space. Stai et al. [20] defined informed Twitter users as those
who have produced/reproduced tweets with a specific hashtag
to more precisely capture real information propagation on
Twitter.

The above topic propagation models do not generally fol-
low the principle of the conservation of matter. Therefore, the
majority of studies on topic propagation use various dynam-
ical models [21]–[25]. Based on the propagation dynamics,
Liu et al. [21] proposed a nonlinear dynamic emergency
topic propagation system and mathematical model for public
events. Cao et al. [22] investigated topic propagation from an
evolutionary game-theoretic perspective, and they derived the
evolutionary dynamics and evolutionarily stable states (ESSs)
of diffusion. Farajtabar et al. [23] proposed a temporal point
process model, COEVOLVE, which efficiently simulated
interleaved diffusion and network events and generated traces

obeying the common diffusion and network patterns observed
in real-world networks. Hu et al. [24] proposed a hydro-
dynamic topic propagation prediction model (hydro-IDP)
that exploits a hydrodynamic model to describe the spread-
ing process of information on online social networks.
Saha et al. [25] proposed the Competing Recurrent Point
Process (CRPP), a probabilistic deep learning machine that
unifies the nonlinear generative dynamics of a collection of
diffusion processes and interprocess competition - the two
ingredients of visibility dynamics.

In addition, owing to the significant recent successes
of deep learning in multiple domains, attempts have been
made to predict information diffusion by developing neural
network-based approaches [26]–[29]. Chen et al. [26] pro-
posed a deep multitask learning-based information cascade
model (DMTLIC), which explicitly modeled and predicted
cascades through a multitask framework with a novelly
designed shared-representation layer. Wang et al. [27] pro-
posed a novel sequential neural network with structural
attention to model topic propagation. The proposed model
explores both the sequential nature of an information dif-
fusion process and the structural characteristics of a user
connection graph. Mishra [28] proposed a recurrent neural
network model by modeling a social cascade with a marked
Hawkes self-exciting point process and then learned a predic-
tive layer on top for popularity prediction using a collection
of cascade histories. Sankar et al. [29] present a novel vari-
ational auto-encoder framework (Inf-VAE), which utilized
powerful graph neural network architectures to learn social
variables to predict the set of all influenced users.

With the increase in the interaction frequency on hot top-
ics among users in social networks, users and topics play
increasingly important roles in topic propagation. Because
the user-roles and topic-influences are time dependent in
social networks, predictions of topic propagation trends
should account for this changeability. However, the existing
models either rely on the probabilistic modeling of informa-
tion diffusion based on partially known network structures
or discover the implicit structures of diffusion from users’
behaviors without considering the dynamic analysis of user-
role and topic-influence; therefore, they need to be further
optimized and improved. In this paper, based on our previ-
ous work [30], we introduce the dynamic analysis of user-
role and topic-influence to the topic propagation prediction
model, which predicts topic propagation in social networks,
considering both users’ and topics’ perspectives to predict
topic propagation trends more accurately.

III. TOPIC PROPAGATION PROBLEM FORMULATION
In this paper, we define topic propagation as predicting the
number of people who will spread a topic on a certain day in
the social network. Specifically, given a social network and a
topic, we should be able to predict how many people will pay
attention to the topic in a few days. In this section, we will
give the problem formulation of the topic propagation.
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FIGURE 1. The topic propagation model framework.

We use S = {U ,C,M} to denote a social network.
U represents all the users in the social network, U = {ui|
i = 1, 2, . . . ,N } and ui is the i-th user. C is the set of
topics, and C = {z}Kz=1. The topics can be automatically
extracted with statistical topic modeling such as probabilistic
latent semantic indexing (pLSI) [31] and latent Dirichlet
allocation (LDA) [32]. M represents the set of all messages
posted or commented on by all N users on all K topics, and
M = {M z

i |ui ∈ U , z ∈ C }.
Since a social network is a time-varying system, let U (t),

C(t) and M (t) be the user set, topic set and message set
at time t . U (t) ∈ U , C(t) ∈ C and M (t) ∈ M . M z

i =

{ mzi (t) |t = 1, 2, . . . T }, which denotes the set of messages of
user ui on topic z from time 1 to time T ,mzi (t) is the set of mes-
sages of user ui on topic z at time t , and xzi (t) = {0, 1} denotes
whether user ui discusses topic z at time t . If |mzi (t)| = 0,
then xzi (t) = 0; otherwise, xzi (t) = 1. For example, for user ui
and topic z, {xzi (1), x

z
i (2), . . . , x

z
i (t), . . .} = {0, 0, 1, 0, 1, . . .}

means that user ui discusses topic z at times 3 and 5. Another
topic, z′, {xz

′

i (1), x
z′
i (2), . . . , x

z′
i (t), . . .} = {1, 0, 0, 1, 0, . . .},

signifies that user ui discusses topic z′ at times 1 and 4. For a
topic z at any time t , if all of the users’ xzi (t) are summed,
then we know how many users are discussing topic z at

time t , i.e.,
N∑
i=1

xzi (t).

In brief, given a social network S with the users information
(relationships) and all messages from time 1 to time T , and
for a topic in S, we should predict how many people will pay

attention to the topic at time t ,
N∑
i=1

xzi (t). Table 1 summarizes

the important symbols used in the topic propagation model.
As mentioned earlier, the topic propagation may be

affected by the users and topics in social network, and the
user interest and topic heat change over time. Therefore, we
introduce the dynamic analysis of user-role and topic-
influence in topic propagation. Figure 1 shows the framework

TABLE 1. Important symbols used in the topic propagation model.

of our topic propagation model. The model contains three
parts.

The first part is the dynamic analysis of user-role. Taking
the social network as the input, user-roles are first dynami-
cally analyzed from four aspects. Four user-factors are intro-
duced to analyze user-role. The second part is the dynamic
analysis of topic-influence, which takes the social network as
the input and calculates the topic-influences on a single user
and a social group. Based on the dynamic analysis of user-
role and topic-influence, the third part introduces a weighted
probability model to accurately predict topic propagation
trends.

Based on the above three parts, a topic propagation model
(TPP-DA) is established, which can predict how the topic will
spread in social networks.

IV. DYNAMIC ANALYSIS OF USER-ROLE
AND TOPIC-INFLUENCE
In this section, we introduce the dynamic analysis of user-role
and topic-influence in topic propagation, which is the basis of
the topic propagation model.
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A. DYNAMIC USER-ROLE ANALYSIS
In our previous work [30], we studied how to statically ana-
lyze user-roles. However, since we know that social networks
are time-varying systems and user-roles and topic-influences
are time dependent in social networks too, the analysis of
user-role should consider this changeability over time. For
example, one of the user-roles, the expert-factor, has a value
that has remained static and constant throughout time accord-
ing to the static user-role analysis in our previous work.
However, it would be impractical because users may have
dynamic interests, attributes, and features over time. As a
result, the expert-factor value will also change over time.

We calculate the expert-factor value using static user-role
analysis with a dataset over 30 days. In addition, we divide the
30-day dataset into 10 consecutive sub-datasets, each span-
ning 3 days. Sincewewant to conduct static user-role analysis
on topic propagation, we conduct the same calculation for
the time windows (each 3-day sub-dataset) independently.
That is, for each time window, we calculate the user expert-
factors using data from every 3 days of the time window.
These results are shown in Fig. 2. The static expert-factor
over 30 days is constant, and the values every 3 days are
different, which proves that user-roles change over time. This
changeability should be considered when predicting topic
propagation.

FIGURE 2. The static expert-factor values of 30 days and every 3 days.

In addition to the user expert-factor, the user leader-factor
values are calculated over 30 days and every 3 days. The
results are shown in Fig. 3. As the user leader-factor is cal-
culated based on his/her relationships, which are generally
stable, it is less influenced by time. As a result, the change
in the user leader-factor is very small. In fact, the content-
based factors (expert-factor and similarity-factor) are more
time dependent, while the social-based factors (leader-factor
and social-factor) are less time dependent. In summary, intro-
ducing a temporal perspective is necessary when analyzing
user-role in social networks.

1) DYNAMIC USER EXPERT-FACTOR
This factor calculates the relative expertise of different users
in a social network. The expert users in a social network exert
a greater influence on topic propagation than other users.
Based on our previous work, the dynamic expert-factor can

FIGURE 3. The static leader-factor values of 30 days and every 3 days.

be denoted by introducing the time dimension:

Fep(ui, z, t) =
|mzi (t)|∑

uj∈U (t)
|mzj (t)|

(1)

where |mzi (t)| is the number of messages of user ui discussing
topic z at time t , and

∑
uj∈U (t)

|mzj (t)| is the total number of

messages of all users discussing topic z at time t .

2) DYNAMIC USER LEADER-FACTOR
This factor represents the influence of users’ social relation-
ships in social networks. Users with more social relation-
ships may have greater influence than other users. Similarly,
the static user leader-factor is modified by adding the time
dimension. The PageRank algorithm is used to calculate all
user leadership factors based on the regression relationship.
According to the PageRank algorithm, the dynamic user
leader-factor can be summarized as:

Fld (ui, z, t) =
1− d
|Uz(t)|

+ d
k∑
j=1

Fld (uij , z, t)

O(uij )
(2)

where Uz(t) is the set of users who have discussed topic z at
time t , O(ui) is the out-degree of ui, and D is a dampening
factor (generally d = 0.85). As with the iterative calculation
of pagerank, all the user leader-factors are initially set to 1
and are then iteratively calculated according to the social
relationships and Eq. (2) until they converge into stable values
to get the final the values of user leader-factors. Clearly,
0 ≤ Fld (uij , z, t) ≤ 1 and

∑
i
Fld (uij , z, t) for any topic z at

time t .

3) DYNAMIC USER SOCIAL-FACTOR
The dynamic user social-factor measures the strength of all
social relationships between the users in a social network.
In other words, the more users who have the same friends,
the closer and stronger the social relationships among users.
Here, using time as the variable and adding parameter t , the
dynamic user social-factor is obtained as:

Fsc(ui, uj, z, t) =
fr(ui, uj, z, t)
fr(ui, uj, t)

(3)
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where fr(ui, uj, z, t) is the number of mutual friends of ui and
uj in Uz(t) at time t , and fr(ui, uj, t) is the number of mutual
friends of ui and uj in U (t) at time t .

4) DYNAMIC USER SIMILARITY-FACTOR
The dynamic user similarity-factor is defined as the number
of messages that users interact with each other in social
networks, which describes the similarity of each user pair
in terms of subject preferences. The more interactions on
the same topic, the more users exert similar influences in
social networks. The dynamic user similarity-factor between
ui and uj is calculated as:

Fsl(ui, uj, z, t) =
|mzi (t)| + |m

z
j (t)|∑

z′∈C(t)
(|mz

′

i (t)| + |m
z′
j (t)|)

(4)

B. DYNAMIC TOPIC-INFLUENCE ANALYSIS
In social networks, the topic cannot propagate without social
users. In addition to users, the topic itself plays an important
role in topic propagation. For example, hot topics can spread
quickly while other topics may diffuse slowly in social net-
works. Generally, social networks have many topics. These
topics have different influences, and they also compete
for users’ attention; therefore, topic-influence affects topic
propagation. Some hot topics will spread to more users,
which can further enhance their influences. As a result, the
impact of topic-influence on topic propagation should be
considered.

Topic-influence analysis consists of two parts. One part is
the topic-influence on a single user, and the other part is the
topic-influence on a social group. In this subsection, we ana-
lyze the topic-influence on both a single user and a social
group.

1) TOPIC-INFLUENCE ON A SINGLE USER
In general, a user has dynamic interests; he or she may
pay close attention to several topics that will consume the
user’s attention. Therefore, the first factor affecting the topic-
influence on a single user depends on how much attention
the user directs on the topic, i.e., the topic heat on the
user. The following formula is adopted to calculate the topic
heat on a user, which is the ratio of the user’s messages
on a certain topic to the user’s messages on all topics at
time t .

Heat(z, ui, t) =
|mzi (t)|∑

z′∈C
|mz
′

i (t)|
(5)

Furthermore, users can interact with each other in social
networks. If a user’s friends are discussing a topic, then the
user is highly likely to be interested in the topic; therefore,
the topic-influence on a single user is related to the topic heat
on his or her friends. As a result, the second factor affecting

the topic-influence on a single user is:

Heat(z, f (ui), t) =
∑

uj∈f (ui)

Heat(z, uj, t)

=

∑
uj∈f (ui)

|mzj (t)|∑
z′∈C(t)

|mz
′

j (t)|
(6)

where f (ui) is the set of user ui’s friends.
Generally, the topic-influence of topic z on single user ui

at time t is:

Gtu(z, ui, t) = Heat(z, ui, t) · Heat(z, f (ui), t)

=
|mzi (t)|∑
z′
|mz
′

i (t)|

∑
uj∈f (ui)

|mzj (t)|∑
z′
|mz
′

j (t)|
(7)

2) TOPIC-INFLUENCE ON A SOCIAL GROUP
The topic-influence on social groups depends on the topic
heat of topic z for all users in the social group. The topic heat
on a social group is denoted as:

Heat(z,U , t) =

t∑
n=0

∑
ui∈U
|mzi (n)|

t∑
n=0

∑
ui∈U

∑
z′∈C
|mz
′

i (n)|
(8)

If the total number of messages on topic z from time 1 to
time t is large, then topic z may be popular, and its influence
will also be large. Therefore, the topic-influence of topic z on
a social group is:

Gtg(z,U , t) = Heat(z,U , t) (9)

C. LAGRANGE INTERPOLATION POLYNOMIAL
For user ui and topic z, if we have the previous s values,
(t,V (t)), (t − 1,V (t − 1)), . . . , (t − s + 1,V (t − s + 1)),
then we can predict the next value V (t + 1). For exam-
ple, if we have the previous s expert-factors (t,Fep(ui, z, t)),
(t − 1,Fep(ui, z, t − 1)), . . . , (t − s+ 1,Fep(ui, z, t − s+ 1)),
then we can predict the value of Fep(ui, z, t + 1).

A Lagrange interpolation polynomial is used in this study.
Given any finite set of points {(x1, y1), . . . , (xn, yn)} with all
xi distinct, we can construct the unique polynomial of the
minimum degree passing through all of those points. The
Lagrange formula can be written as:

L(x) =
n∑
i=1

(yi
n∏

j=1,j6=i

x − xj
xi − xj

) (10)

This formula works because each fraction takes the value
of 1 at the appropriate xi and takes the value of 0 at all
other xi.
Similarly, we can obtain a Lagrange interpolation formula

Lep(ui, z, x) given the previous s expert-factors, where time x
is the variable in the Lagrange formula.

Lep(ui, z, x) =
s∑

k=0

[Fep(ui, z, t − k)
s∏

j=0,j6=k

x − t + j
(j− k)

] (11)
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Then, we can obtain the expert-factor of ui on topic z at
time (t + 1), which is:

Fep(ui, z, t + 1) = Lep(ui, z, t + 1) (12)

As for other user factors and topic-influences, we can con-
struct similar Lagrange polynomials with previous s values
and then obtain the dynamic value at time t + 1.

V. DYNAMIC TOPIC PROPAGATION MODEL
In this section, we present the weighted probability model
used to predict topic propagation. First, we briefly introduce
the probability model in our previous work [30]. Second,
we study how to combine the dynamic analysis of user-role
and topic-influence with probability model to predict topic
propagation trends. Third, we present the pseudocode of the
TPP-DA algorithm.

A. THE PROBABILITY MODEL
User behaviors, relationships and time spans are used to
calculate the probability of user engagement on a topic.
Specifically, the number of times a user participates in a
topic, the number of people participating in a topic and the
popularity of the topic will affect the user’s behavior in
different ways. In other words, a probability model is built
according to behavior probability, relationship probability,
and time probability.

1) BEHAVIOR PROBABILITY
If a user often participates in the discussion of a certain topic,
then he or she is interested in the topic and may discuss
the topic in the future. As a result, we designate a behavior
probability function pb(ui, z, t) for user ui engaging in topic z
at time t , which is:

pb(ui, z, t)=pb(x
z
i (t))=

t−1∏
n=t−q

(k
[2−(xzi (t)−x

z
i (n))

2]
z · e−kz ) (13)

where xzi (n) denotes whether user ui discusses topic z at time
n, kz is a parameter that is trained for topic z in advance,
e is the base of the natural logarithms, and q means that
the user’s behavior probability at time t is associated with
the behavior probabilities from time (t − q) to time (t − 1).
When xzi (n) is equal to 1, the value of the behavior probability
function pb(ui, z, t) is directly proportional to the probability
of user ui joining the discussion at time n. Conversely, it is
directly proportional to the probability of user ui not joining
the discussion when xzi (n) = 0.

2) RELATIONSHIP PROBABILITY
Considering a user’s social relationships, if more users or
friends participate in a discussion, then he or she will be
more willing to discuss the topic. We designate a relationship
probability function pr (ui, z, t) for user ui who discusses topic

z at time t . The function pr (ui, z, t) is:

pr (ui, z, t) = pr (x
z
i (t)) =

t−1∏
n=t−q′

(l[1+y
(xzi (t)+x

z
i (n)−1)

2

z ]
z · e−lz )

(14)

yz =

(
N∑
i=1

t−1∑
n=t−(q′−1)

xzi (n))+ 1

(
N∑
i=1

t−2∑
n=t−q′

xzi (n))+ 1

(15)

where yz is the ratio of the change of the user number, which
is calculated by dividing the total number of users involved
in the discussion of topic z from time (t − (q′− 1)) to (t − 1)
by the total number of those involved in the discussion of
topic z from time (n = t − q′) to (t − 2). If the total number
of users decreases during the time period, yz is less than 1.
In addition, q′ means that a user’s relationship probability at
time t is related to the relationship probabilities from time
(t − q′) to time (t − 1). In addition, lz is a parameter that is
trained for topic z in advance, and e is the base of the natural
logarithms.

3) TIME PROBABILITY
Regarding the effectiveness of user interests, we assume
that users will gradually lose interest after participating in
topic discussions for a period. Generally, the total number
of participants decreases after reaching the peak number of
participants, and the rate of decline increases with the period
of time after the peak time. We designate a time probability
function pt (ui, z, t) for user ui engaging in topic z at time t to
calculate the probability using a time lapse factor:

pt (ui, z, t) = pt (x
z
i (t)) =

1

(t − tzm)λz·x
z
i (t)

(16)

where tzm is the peak time when the number of participants is
the highest from the initial time to time t on topic z, and λz is
a lapse exponential coefficient to be evaluated by experience.
If xzi (t) = 1, then the value of the time probability function
is larger than 1; and the greater t is, the lower the value of
the function will be. Thus, the longer the interval from the
peak time to the predicted time is, the lower the probability
of a user joining the discussion will be. If xzi (t) = 0, then the
value of the time probability function is 1.

B. TOPIC PROPAGATION MODEL
The dynamic user-role and topic-influence analysis are com-
bined with the probability model and integrated into a unified
topic propagation prediction model.

First, according to the analysis, users have different roles in
different topics, and the user-role influences also change over
time. Dynamic user-role analysis should be considered in
topic propagation. Second, the topic itself plays an important
role in topic propagation, therefore topic-influence should
be considered in topic propagation. The user-role (the user
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leader-factor and expert-factor) and topic-influence are com-
bined in a single user with the behavior probability to obtain
the following weighted probability:

PB(ui, z, t) = W1 · pb(ui, z, t) (17)

W1 = [Fep(ui, z, t)+ Fld (ui, z, t)] · Gtu(z, ui, t)

(18)

Similarly, the user social relationships (i.e., the social-
factor and similarity-factor) and topic-influence on social
groups are combined with the relationship probability to
obtain:

PR(ui, z, t) = W2 · pr (ui, z, t) (19)

W2 = [
∑

(Fsc(ui, ux , z, t)+ Fsl(ui, ux , z, t))]

·Gtg(z,U , t) (20)

As time passes, the probability of a particular user engag-
ing in a specific topic discussion decreases. Moreover, this
probability is affected by the user’s roles. In general, if a
user is an expert user on a topic, he or she will continue to
pay attention to it. Otherwise, he or she may lose interest
in the topic after a period of time. Thus, we revise the time
probability of a user on a topic as:

PT (ui, z, t) = W3 · pt (ui, z, t) (21)

W3 =
Fex(ui, z, t)

max
x

(Fex(ux , z, t))
(22)

Considering user-role and topic-influence analysis and the
weighted probability model together, we can devise a behav-
ioral tendency function, �(ui, z, t), for user ui on topic z at
time t , which is denoted as:

P(xzi (t)) = P(ui, z, t) ∝ �(x
z
i (t)) = �(ui, z, t)

= PB(ui, z, t) · PR(ui, z, t) · PT (ui, z, t)

= W · pb(ui, z, t)pr (ui, z, t)pt (ui, z, t)

= W · pb(x
z
i (t))pr (x

z
i (t))pt (x

z
i (t)) (23)

Here, P(xzi (t)) is the probability of the tendency of user ui
to engage in the discussion of topic z at time t . P(xzi (t)) has a
positive correlation with �(xzi (t)). W = W1 ·W2 ·W3.
Based on the above equations, the parameters kz, lz,

and λz can be estimated for each topic z by the sample
date. Then, we can calculate �(xzi (t)) by setting xzi (t) to
1 or 0. If xzi (t) = 1, �(xzi (t)) has a positive correlation with
P(xzi (t) = 1); and if xzi (t) = 0, �(xzi (t)) has a positive
correlation with P(xzi (t) = 0). After normalizing �(xzi (t)),
we can obtain the values of P(xzi (t) = 1) and P(xzi (t) = 0).
If P(xzi (t) = 1) ≥ P(xzi (t) = 0), we assume that user ui is
willing to engage in topic z at time t , i.e., xzi (t) = 1; otherwise,
we assume that user ui will not engage in topic z at time t , i.e.,
xzi (t) = 0.

C. ALGORITHMS
Because the TPP-DA is based on the dynamic analysis of
user-role and topic-influence, we first should train the model

and obtain the user-role factors and topic-influences. Based
on the training and testing results, we provide the details of
the TPP-DA algorithm.

We sort all messages from time 1 to time T in chronological
order, and then we divide them into a training set and a testing
set, which is Mtrain = {Mtrain(1),Mtrain(2), . . . ,Mtrain(t)}
and Mtest = {Mtest (t + 1),Mtest (t + 2), . . . ,Mtest (T )}.
Generally, the training set and testing set are independent, i.e.,
Mtrain ∩ Mtest = ∅ and Mtrain ∪ Mtest = Mall . To correctly
train user-roles and improve the prediction accuracy, the
training set and testing set must cover all users and topics, i.e.,
Utest = Uall and Ctrain = Ctest = Call .

1) DYNAMIC USER-ROLE TRAINING AND TESTING
The pseudocode of the user-role training algorithm is
depicted in algorithm 1. First, the training set is sorted
in chronological order and divided into multiple subsets
in lines 1-2. For each subset, we update some information
(lines 5-9) and then calculate the values of the user-roles
(lines 10-17). Finally, we return the training results from
time 1 to time t in line 19.

Algorithm 1 Dynamic User-Role Training Algorithm
Input: Training setMtrain
Output: User-role training result F tn=1
1: SortMtrain in chronological order;
2: Divide Mtrain into subsets Mtrain(1),Mtrain(2), . . . ,
Mtrain(t);
3: for (n = 1, n <= t , n++) do
4: Get subsetMtrain(n);
5: for each message m ∈ Mtrain(n) do
6: for each topic z ∈ C do
7: UpdateM z

i (n) of user ui;
8: end for
9: end for
10: for each topic z ∈ C do
11: for user ui ∈ U do
12: Calculate Fep(ui, z, n) and Fld (ui, z, n);
13: for each user uj(j6=i) ∈ U do
14: Calculate Fsc(ui, uj, z, n) and Fsl(ui, uj, z, n);
15: end for
16: end for
17: end for
18: end for
19: return F tn=1 = {Fep,Fld ,Fsc,Fsl}

t
n=1

Algorithm 2 predicts user-roles at unknown times. The
testing set is also sorted and divided into multiple subsets
(lines 1-2). For each subset, we construct the Lagrange for-
mulas and predict the values of user-roles at time (t + k)
(lines 5-13). Then, we update xzi (t + k) at time (t + k) with
the subset, which is prepared for the next iteration at time
(t + k + 1). Finally, we return the testing results from time
(t + 1) to time T in line 16.
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Algorithm 2 Dynamic User-Role Testing Algorithm

Input: User-role training result F tn=1, testing setMtest , s
Output: User-role analysis results FTn=t+1
1: SortMtest in chronological order;
2: DivideMtest into multiple subsetsMtest (t+1),Mtest (t+
2), . . . ,Mtest (T );
3: for (k = 1, k <= T , k ++) do
4: Get subsetMtest (t + k);
5: for each topic z ∈ C do
6: for user ui ∈ U do
7: Get the previous s training results;
8: Construct Lagrange formulas Lep and Lld and

calculate Fep(ui, z, n+ k) and Fld (ui, z, t + k);
9: for each user uj(j6=i) ∈ U do
10: Construct Lagrange formulas Lsc and Lsl , and

calculate Fsc(ui, uj, z, t + k) and
Fsl(ui, uj, z, t + k);

11: end for
12: end for
13: end for
14: Update xzi (t + k) at time (t + k) with Mtest (t + k);
15: end for
16: return FTn=t+1 = {Fep,Fld ,Fsc,Fsl}

T
n=t+1

Next, we analyze the computational complexity of
algorithms 1 and 2. If there are N users, K topics, and M
messages, Algorithm 1 first iteratesM times in the ‘‘for’’ loop
(lines 3-18). The computational complexities of lines 5-9 and
lines 10-17 are O(K ×M ) and O(K ×M × N ) respectively.
As a result, the computational complexity of algorithm 1 is
O(K × M × N 2). Generally, there are few topics, thus K is
a small fixed value, and the computational complexity of
algorithm 1 can be O(M × N 2). Similarly, algorithm 2 has
the same computational complexity as O(M × N 2).

2) DYNAMIC TOPIC-INFLUENCE TRAINING AND TESTING
The processes of topic-influence training and testing
are similar to those of user-role training and testing.
Algorithms 3 and 4 give the training and testing processes
of the topic-influence analysis respectively. In Algorithm 3,
we first update some information for each subset (lines 5-9),
and then calculate the topic-influences (lines 10-15).
In Algorithm 4, we construct the Lagrange formulas and
predict the values of topic-influences at time (t + k)
(lines 5-11). Next, we update xzi (t+k) with the subset, which
is prepared for the next iteration at time (t + k + 1).
In Algorithm 3, the computational complexities of

lines 5-9 and lines 10-15 areO(K×M ) andO(K×N ) respec-
tively. Moreover, the complexity of the loop (line 3) is O(M ).
Therefore, the computational complexity of Algorithm 3
is O(K × M × N ). Since K is a fixed value, the com-
plexity is O(M × N ). The complexity of Algorithm 4 is
also O(M × N ).

Algorithm 3 Dynamic Topic-Influence Training Algorithm
Input: Training setMtrain
Output: Topic-influence training result Gtn=1
1: SortMtrain in chronological order;
2: DivideMtrain into multiple subsets
Mtrain(1),Mtrain(2), . . . ,Mtrain(t);
3: for(n = 1, n <= t , n++) do
4: Get subsetMtrain(n);
5: for each message m ∈ Mtrain(n) do
6: for each topic z ∈ C do
7: UpdateM z

i (n) of user ui;
8: end for
9: end for
10: for each topic z ∈ C do
11: for user ui ∈ U do
12: Calculate Gtu(z, ui, n);
13: end for
14: Calculate Gtg(z, ui, n);
15: end for
16: end for
17: return Gtn=1 = {Gtu,Gtg}

t
n=1;

Algorithm 4 Dynamic Topic-Influence Testing Algorithm

Input: Topic-influence training result Gtn=1, testing set
Mtest , and s
Output: Topic-influence analysis results GTn=t+1
1: SortMtest in chronological order;
2: DivideMtest into multiple subsetsMtest (t+1),Mtest (t+
2), . . . ,Mtest (T );
3: for (k = 1, k <= T , k ++) do
4: Get subsetMtest (t + k);
5: for each topic z ∈ C do
6: for user ui ∈ U do
7: Get the previous s results;
8: Construct Lagrange formula Ltu and calculate
Gtu(z, ui, t + k);
9: end for
10: Construct Lagrange formula Ltg and calculate
Gtg(z,U , t + k);
11: end for
12: Update xzi (t + k) withMtest (t + k);
13: end for
14: return GTn=t+1 = {Gtu,Gtg}

T
n=t+1

3) TPP-DA ALGORITHM
The TPP-DA algorithm is depicted in Algorithm 5.

According to the previous subsections, pb(ui, z, n) and
pr (ui, z, n) are associated with the previous q and q′ values
of user ui, and pt (ui, z, n) is associated with the peak time
on topic z. At time n, the previous q and q′ values can be
obtained. Then, we can calculate the current pb(ui, z, n) and
pr (ui, z, n) with Eqs. (13) and (14) respectively. By updating
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the peak time tm, pt (ui, z, n) can be calculated with Eq. (16).
Then, the prediction value �(xzi (n)) is calculated with
Eq. (23). After normalizing�(xzi (n)), we can predict the value
of xzi (n) and calculate the number of users discussing topic z
at time n. Last, the test date is used to update the real xzi (n)
and tm and to prepare for the next iteration.

Algorithm 5 TPP-DA Algorithm

Input: User-role factors FTn=1, topic-influences GTn=1,
Mtest , q, and q′

Output: Number of users on topic z at time n: N (n, z)
1: Sort messages in chronological order;
2: DivideMtest into multiple subsets by time,
Mtest (t + 1),Mtest (t + 2), . . . ,Mtest (T );
3: n = t + 1;
4: while n++ ≤ T do
5: for each topic z ∈ C do
6: for each user ui ∈ U do
7: Get the peak time tm on topic z;
8: Calculate pb(ui, z, n)pr (ui, z, n)pt (ui, z, n);
9: Calculate �1(x

z
i (n)) and �0(x

z
i (n)) when x

z
i (n) =

1 and xzi (n) = 0, respectively;
10: end for
11: Normalize �1(x

z
i (n)) and �0(x

z
i (n)) for all users;

12: for each user ui ∈ U do
13: xzi (n) = 0;
14: Get P(xzi (n) = 1) and P(xzi (n) = 0);
15: if P(xzi (n) = 1) ≥ P(xzi (n) = 0) then
16: xzi (n) = 1;
17: end if
18: end for
19: Calculate N (n, z) =

∑N
i=1 x

z
i (n);

20: end for
21: Update xzi (n) and t

z
m with Mtest (n);

22: end while
23: return N (n, z);

In Algorithm 5, the computational complexities of
lines 6-10 and lines 12-18 are both O(N ). The statements
in the loop bodies (lines 5-20 and lines 4-22) run K and M
times, respectively. Thus, the computational complexity of
Algorithm 5 isO(K×M×N). Finally, since K is a fixed value,
the computational complexity is O(M × N ).

VI. EXPERIMENTS
A. DATASET
To evaluate the effectiveness of the TPP-DA method, suit-
able social network datasets are needed. The datasets are
collected from Sina Weibo and Twitter. After crawling the
data, the Sina dataset and Twitter dataset are obtained. The
Sina dataset contains 8586 users, 416826 microblogs (mes-
sages), and 98362 user relationships, while the Twitter dataset
has 6060 users, 15485 tweets (messages), and 11617 user
relationships. These data are managed in three tables: a user
table, a blog table, and a user relationship table. The user

table contains user information; the blog table contains all
attributes of all messages; and the relationship table consists
of two fields, ‘‘suid’’ and ‘‘tuid’’, indicating that ‘‘suid’’ pays
attention to ‘‘tuid’’.

As there are many topics in social networks, we focus
on only hot topics for the sake of simplicity. In the Sina
dataset, four hot topics are chosen: ‘‘US Presidential Elec-
tions’’, ‘‘Novel Coronavirus Pneumonia’’, ‘‘Smog’’, and
‘‘Elon Musk’’, which are labeled as the 1-1st topic, 1-2nd

topic, 1-3rd topic and 1-4th topic, respectively. In the Twitter
dataset, two topics, which are ‘‘tokyo_2020’’ and ‘‘capi-
tol_2020’’ are selected and labeled as 2-1st topic and
2-2nd topic, respectively. After data preprocessing, we remove
messages that do not relate to the above topics. Then, the
datasets are divided into six sub-datasets. For example,
19458 microblogs and 5472 relationships among 1228 users
are related to the 1-1st topic ‘‘US Presidential Elections’’ in
the first sub-dataset, 17184 microblogs and 5164 relation-
ships among 1305 users are related to the 1-2nd topic ‘‘Novel
Coronavirus Pneumonia’’ in the second sub-dataset, and so
on. Last, we obtain the Sina dataset with 50127 microblogs
and the Twitter dataset with 12367 tweets. The Sina dataset is
related to 3672 users and four topics, and there are 14846 rela-
tionships among these 3672 users, while the Twitter dataset
contains 982 users, 7636 relationships and 12367 tweets
related to two topics. The detailed information of the datasets
is shown in Table 2 and Table 3.

TABLE 2. The detailed information of Sina dataset.

TABLE 3. The detailed information of Twitter dataset.

Note that each user may have discussed more than one
topic, and the sum of the users on all topics may be larger
than the number of users in the dataset, which is similar for
the numbers of relationships and messages. All messages
are sorted in chronological order into two datasets. Then,
the datasets are divided into a training set and testing set.
The training set and testing set are independent, and both
of them cover all users and topics in each dataset. To show
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the dynamic analysis of user-role and topic-influence, the
training set and testing set were divided into subsets for every
day. The training set covers messages from time 1 to t , and the
testing set contains the latter messages ranging from (t + 1)
to T . Here, the time unit in [1, T ] is one day.

B. PARAMETER SETTINGS
1) PARAMETER OF THE LAGRANGE FORMULA TRAINING
The first important parameter used to construct the Lagrange
interpolation formula in the dynamic analysis of user-role and
topic-influence is s. As mentioned in Eq. (11), we can predict
the next value when we know the previous s values; the value
of parameter s affects the Lagrange interpolation formula.
Generally, the larger the parameter s is, the more complex the
constructed Lagrange formulas will be. As a result, we cannot
set parameter s too large. In our experiments, we set s as 2,
3, 5, 7, and 9. Then, we construct the Lagrange formula in
Eq. (11) to dynamically predict user expert-factors from time
(t + 1) to T with Eq. (12).

After constructing the Lagrange formula with the previ-
ous s values, we calculate the predicted expert-factors with
Eq. (12). Next, we compare them to the results calculatedwith
Eq. (1) using the actual data. The average error rates between
them with s varying are shown in Table 4.

TABLE 4. Average error rates of the predicted expert-factor values of the
Lagrange formula and the actual expert-factor values of the dynamic
user-role analysis with s varying on different topics.

Table 4 shows that the average error rates are the smallest
when s is set as 5 or 7 on different topics. When s = 2 or
s = 3, the Lagrange formulas will be linear functions and
quadratic polynomial functions. In these settings, the average
error rates are very large because they are not suitable for
sudden changes in user expert-factor values. The constructed
Lagrange formulas are too complex when s is set as 9, and
the average error rates are also large, which may be due to
overfitting. The results of setting s = 5 and s = 7 are the
same. We set s = 5 to construct the Lagrange formulas when
analyzing the user expert-factor dynamically.

As mentioned previously, the user expert-factor and
similarity-factor are content-based factors, and the leader-
factor and social-factor are relationship-based factors; there-
fore, we take the user leader-factor as an example to conduct
a dynamic user-role analysis experiment when s is set as 2, 3,
5, 7, and 9. The results are listed in Table 5. As analyzed in
Section IV, the user leader-factor is calculated based on the

TABLE 5. Average error rates of the predicted leader-factor values of the
Lagrange formula and the actual leaders-factor values of the dynamic
user-role analysis with s varying on different topics.

relationships, which are generally stable in social networks;
therefore, the change in the user leader-factor is very small
when s varies. For simplicity, we set s = 5 when constructing
the Lagrange formulas to predict the leader-factor value.

Last, we test the average error rates of topic-influence
analysis, and the results are similar. In summary, we set s = 5
in the dynamic analysis of user-role and topic-influence.

2) PARAMETERS OF THE PROBABILITY MODEL
In addition to the parameter s mentioned above, q, q′ and λ
are used to calculate the values in Eqs. (13), (14), and (16),
respectively. In our previous work, the 1-2nd topic and
1-4th topic were used as examples to calculate the average
errors between the prediction results and actual data with
varying settings of parameters q, q′ and λ, and the results are
shown in Table 6. According to the experimental results, the
model works best when q = q′ = 3 and λ = 0.5. We also set
q = q′ = 3 and λ = 0.5 as the default values in our
experiments.

TABLE 6. Average errors of the probability model on different topics.

C. EXPERIMENTAL RESULTS
1) COMPARISON RESULTS WITH OUR PREVIOUS WORK
In this subsection, the TPP-DA method is evaluated by com-
paring the prediction results of TPP-DA against those of our
previous work (TPP). Furthermore, we compare the results
of TPP-DA with actual data. We take time (each day) as
the abscissa axis and the number of users who may discuss
the topic at time n as the ordinate axis to draw curves. The
prediction results of TPP-DA and TPP against the actual data
on all topics are shown in Fig. 4. Moreover, we calculate
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FIGURE 4. The results of the TPP, TPP-DA and actual data on each day.

the average error rates between the prediction results and the
actual data, which are shown in Table 7.

Fig. 4 and Table 7 show that both TPP-DA and TPP
can predict topic propagation trends accurately. Moreover,
TPP-DA outperforms TPP on all topics in two datasets.
In particular, Table 7 shows that all average error rates of
TPP are over 10%, and even the error rate of TPP on the
1-2nd topic is nearly 16%. All average error rates of TPP-
DA are less than 10%, which indicates that TPP-DA has a
smaller error rate. Compared with TPP, the average error
rate of TPP-DA is reduced by approximately 33% for two
reasons. The first is that TPP-DA utilizes dynamic user-role
analysis, which is more adaptable to user-roles changing over
time in social networks. Conversely, TPP analyzes user-role
only statically, which ignores that user-roles are time depen-
dent. The second is that TPP-DA introduces topic-influence
analysis. TPP-DA considers the competition among topics to
analyze topic-influences on both single user and social group,
so it can model topic propagation trends more accurately.
To summarize, TPP-DA is based on the dynamic analysis of
user-role and topic-influence. Thus, it has better results than
TPP, which also proves the advantage of dynamic analysis.

TABLE 7. Average error rates between the prediction results and actual
data.

In addition, both TPP-DA and TPP incorporate behav-
ior probability, relationship probability and time probability
to build a weighted probability model that predicts topic
propagation. They can handle multiple peaks in the topic
propagation process. For example, there are approximately
four peaks at days 11, 15, 21, and 24 on the spreading of the
1-1st topic. At these peaks, both TPP-DA and TPP can obtain
similar prediction topic propagation trends. Because TPP-DA
obtains the weights of the probability model based on the
dynamic analysis of user-role and topic-influence, it can
adjust these weights with time to adapt to the changeability
dynamically. Therefore, TPP-DA has more accurate results
than TPP. The experimental results in Fig. 4 and Table 7 show
the effectiveness of TPP-DA on topic propagation prediction
in social networks.

2) COMPARISON RESULTS WITH OTHER METHOD
In this subsection, TPP-DA is compared with another infor-
mation diffusion method called temporal dynamics of infor-
mation diffusion (TDID) [20], which was also compared with
TPP in our previouswork. According to [20], the total number
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FIGURE 5. The comparison results of TPP, TPP-DA and TDID on
1-3rd topic.

of infected users at time t can be obtained by:

I (t) = N +
B(N − I (1))tB

−B− A(N − I (t))+ A(N − I (t))tB
(24)

where A = (K out
avgλ1(t)−λ2(t))/N (t) and B = −(K out

avgλ1(t)+
λ2(t)). K out

avg is the average out-degree of users, and λ1(t) and
λ2(t) denote the probability/rate that an infected or suscepti-
ble user would publish a tweet with the particular hashtag of
interest.

In this experiment, we use the same parameter settings
used in our previous work. That is, N = 862 (the number
of users on the 1-3rd topic), λ1(t) = 0.2

1+1/t
, λ2(t) = 0.1

1+1/t
, and

K out
avg = 4.

Furthermore, we record the set of users who discuss the
topic at each time t as Nt ∈ U . Next, we aggregate them as
Ntotal =

∐t
1 Nt to obtain the total number of users discussing

the topic from the start time to time t . The actual results are
obtained by analyzing the date set. The comparison results of
TPP-DA, TPP, TDID and the actual data on 1-3rd topic are
shown in Fig. 5.

The actual total number of infected users reaches its max-
imum (862 users) on the 10th day, and it will not change
over time; therefore, the results for only the first 10 days are
shown. TPP-DA performs the best among the three meth-
ods, and TPP has the second-best results. This is because
both TPP-DA and TPP consider user-role analysis in topic
propagation, while TDID develops only an epidemic model
of the temporal dynamics of information propagation for
specific topics, which proves that user-role analysis is helpful
for topic propagation. Moreover, TPP-DA performs slightly
better than TPP, which shows that the dynamic analysis of
user-role and topic-influence used in TPP-DA is better than
the static user-role analysis used in TPP.

In addition, we compare TPP-DA and TPP with TDID
using the MAE (mean absolute error), RMSE (root mean
square error) and R2 (R-squared, i.e., the coefficient of deter-
mination), and the results are listed in Table 8. TPP-DA
has the smallest average errors (MAE and RMSE) and the
largestR2. For example, the R-squared of TPP-DA is 0.948 on
the 1-1st topic, which is higher than those of TPP and TDID,

TABLE 8. Average error rates of prediction results of TPP-DA, TPP and
TDID of different topics.

and theMAE and RMSE of TPP-DA are smaller than those of
TPP and TDID. These results mean that TPP-DA is closest to
the actual results on topic propagation, which also proves that
introducing dynamic analysis of user-role and topic-influence
is more suitable for topic propagation prediction in social
networks.

VII. CONCLUSION
In this paper, we analyzed the shortcomings of both the
existing works and our previous work. Then, we applied
dynamic analysis of user-role and topic-influence to pro-
pose the TPP-DA method, which can predict topic propaga-
tion considering both users’ and topics’ perspectives. First,
TPP-DA introduces a temporal perspective to static user-
role analysis to analyze user-role dynamically and accurately,
which is helpful for topic propagation. Second, the topic com-
petition and topic-influences in social networks are consid-
ered when studying topic propagation. TPP-DA also utilizes
a metric called the topic heat to calculate the topic-influences
on a single user and social group. Third, TPP-DA combines
the dynamic analysis of user-role and topic-influence with
a weighted probability model to predict topic propagation.
Last, two datasets are crawled from Sina and Twitter, and
experiments are conducted to evaluate TPP-DA on these two
datasets. The experimental results show that TPP-DA per-
forms more effectively and efficiently than others. Moreover,
the average error rate of TPP-DA is 33% lower than that of
the TPP, which also proves the effectiveness of the dynamic
analysis of user-role and topic-influence in topic propagation.

Although the TPP-DA can get better results than the oth-
ers, it is a probability-based prediction model. In the future,
we will consider how to utilize deep learning method to
predict topic propagation. Moreover, we also should crawl
more data to verify our method.
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