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ABSTRACT This paper investigates design of robust hierarchical control for linear multi-agent sys-
tems (MAS) subject to polytopic uncertainty and external disturbance. Each agent of MAS is described
by a homogeneous linear time-invariant dynamic model. The control structure has two layers, namely,
an upper layer and a lower layer. Local actions are executed in the lower layer. Each agent shares information
through an undirected graph with neighboring agents in the upper layer to achieve the global stabilization
and disturbance attenuation. We employ a parameter-dependent Lyapunov function to formulate the robust
control design of the local and global feedback in terms of bilinear matrix inequalities and incorporate
constraints on disturbance attenuation. We propose the sufficient condition, where system matrices and
Lyapunov variables are separated. The parameterization of the controller depends on a common slack
variable instead of the Lyapunov matrices. We develop an iterative approach based on the coordinated
optimization to solve sub-problems over linear matrix inequalities. Numerical examples are provided to
demonstrate the effectiveness of the proposed robust control designs. It is shown that our proposed robust
control designs outperform other robust control designs in terms of achievable disturbance attenuation and
maximum admissible uncertainty bound.

INDEX TERMS Multi-agent systems, polytopic uncertainty, disturbance attenuation, hierarchical control,
parameter-dependent bilinear matrix inequality.

I. INTRODUCTION
In recent years, there have been researches investigating the
hierarchical control of multi-agent systems (MAS) because
of its wide applications in various areas containing bio-
logical networks, energy management systems, transporta-
tion networks, etc. The key concept of hierarchical control
framework is to attain certain global objectives by using
local measurements of subsystems (i.e., agents) and inter-
agent cooperation via information exchange. Various classes
of network systems were effectively coped with by this
framework [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiguang Feng .

In general control systems, uncertainties and external dis-
turbances are known sources of stability and performance
degradation [2]. It is thus worth investigating the problem
of disturbance attenuation for uncertain MAS. The robust-
ness of MAS against disturbance and uncertainties can be
handled in terms of H∞ and H2 norms [3]. One common
approach for robust analysis and synthesis is Lyapunov the-
ory. Finding a Lyapunov function which guarantees robust
stability for all admissible systems is the main task. There
are two main types of Lyapunov functions. The first type,
referred to as quadratic function, is a common parameter-
independent Lyapunov function (PILF) which explicitly
depends on time. A sufficient condition to guarantee stability
of MAS is derived in terms of linear matrix inequalities and
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then is called parameter-independent linear matrix inequal-
ity (PILMI) approach. This approach gives conservative
results due to the following causes [4]. First, it utilizes only
a fixed Lyapunov function for stability and performance for
the entire uncertain domain. Second, design specifications
use a common Lyapunov matrix and it is difficult to search
the solution due to the product between the Lyapunov matrix
variable and systemmatrices. The second type is a parameter-
dependent Lyapunov function (PDLF) whose matrix variable
depends on uncertain parameters. PDLF can reduce the con-
servatism of robust stability and performance [5], [6]. There-
fore, this approach has gained notable attractions recently.
When utilizing this approach, robust analysis and control
conditions are formulated in terms of parameter-dependent
bilinear matrix inequalities (PDBMIs) involving uncertain
parameters [7].

There has been a number of studies dealing with
single uncertain and perturbed systems using PDLMIs,
e.g., [8]–[12]. However, only a few works have been existed
for uncertain and perturbed MAS. For example, [13] inves-
tigated the leader-follower consensus of higher order MAS
with directed and switching topology. A PDLF sufficient
condition for obtaining consensus was formulated as a
PDLMI. [14] addressed the stabilization and disturbance
attenuation for homogeneous MAS with the norm-bounded
uncertainty. The formulation incorporatesH∞ andH2 design
criteria on disturbance attenuation. A quadratic Lyapunov
function is employed, and robust design of feedback con-
trollers is given in terms of LMI. The limitation of this
approach is a common Lyapunov function for entire uncer-
tainty domain. In addition, [15] addressed the design of
robust consensus controllers for homogeneousMAS in which
agents contain polytopic uncertainty and external disturbance
and inter-agent communications are subject to uncertainty.
Then, a robust H∞ stabilization was formulated by a PDLF
and a sufficient condition was derived as a PDLF. Nev-
ertheless, the controller parameterization depends on the
Lyapunov matrix variable and the obtained result may be
still conservative. To obtain a robust controller independent
of uncertain parameters, it is possible to find a parameter-
independent Lyapunov matrix variable utilizing the PILMI
approach. An effective way to overcome this conservative-
ness is to separate the Lyapunov function with system matri-
ces by introducing additional slack variables. This is called
the dilated approach.

To our best knowledge, there has not been any work using
the dilated approach for the robust hierarchical control of per-
turbed and uncertain MAS. This motivates us to investigate
the dilated BMI for attaining specific disturbance attenuation
of uncertain MAS by using an affine PDLF with respect to
uncertain parameters. The derived controller is independent
of non-common Lyapunov matrix variables but is dependent
of a common slack variable [16]. Moreover, robust hier-
archical controllers can be designed using the new dilated
BMI conditions to improve system performance specified
by disturbance attenuation. More specifically, we propose

a systematic design approach of hierarchical H∞ and H2
controllers for linear MAS subject to polytopic uncertainty
using the dilated BMI conditions. Our contributions are as
follows.
• New robust design conditions are derived using PDLF,
which includes quadratic PILF as a special case. The
BMI design criteria are then determined and effectively
solved by an iterative approach based on the coordi-
nated optimization of sub-problems over linear matrix
inequalities.

• We compare the proposed BMI method with the PILMI
method and the previous robust control method [14]
to show the performance improvement in our proposed
design. In particular, our proposed robust controllers
give the upper bound of disturbance attenuation less
than that obtained by other approaches. In addition, the
proposed robust controllers yield stabilization of MAS
with a larger maximum admissible bound of uncertainty.

The organization of this paper is as follows. We intro-
duce problem formulation in Section II. Robust hierarchi-
cal H∞ and H2 state feedback control laws are proposed
in Section III. Section IV illustrates numerical examples.
Finally, conclusions are given in Section V.

II. PROBLEM FORMULATION
A. MODEL OF AGENTS
The dynamics of agents considered in the current work con-
sists of polytopic uncertainty and external disturbance as
follows.{

ẋi(t) = A(δ)xi(t)+ B(δ)ui(t)+ Bd (δ)di(t),
yi(t) = C(δ)xi(t)+ D(δ)ui(t),

(1)

where xi(t) ∈ Rn, ui(t) ∈ Rq, yi(t) ∈ Rm, and di(t) ∈
Ll2[0,∞) represent the state vector, control input vector, mea-
sured output, and external disturbance input of the i-th agent,
respectively. Here, δ =

[
δ1, . . . , δM

]T is the time-invariant
polytopic uncertain vector which belongs to the unit simplex
2 given by

2 ,

{
δ ∈ RM

:

M∑
k=1

δk = 1, δk ≥ 0, k = 1, . . . ,M

}
, (2)

where M is the number of vertices. The matrices A(δ) ∈
Rn×n, B(δ) ∈ Rn×q, C(δ) ∈ Rm×n, Bd (δ) ∈ Rn×l , and
D(δ) ∈ Rm×q, 0 < q ≤ n denote uncertain system matrix,
input matrix, output matrix, disturbance input matrix, and
direct transition matrix, respectively. Those uncertain matri-
ces are of polytopic type, which are represented in term of the
uncertainty vector δ as follows,

A(δ) =
M∑
k=1

δkAk , B(δ) =
M∑
k=1

δkBk , Bd (δ)=
M∑
k=1

δkBdk ,

C(δ) =
M∑
k=1

δkCk , D(δ) =
M∑
k=1

δkDk , (3)
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where Ak , Bk , Bdk , Ck , and Dk are known constant matrices.
Then the overall homogeneous MAS composing of N identi-
cal dynamical agents is represented by{

ẋ(t) = Ã(δ)x(t)+ B̃(δ)u(t)+ B̃d (δ)d(t),
y(t) = C̃(δ)x(t)+ D̃(δ)u(t),

(4)

where

Ã(δ) = IN ⊗ A(δ), B̃(δ) = IN ⊗ B(δ),

B̃d (δ) = IN ⊗ Bd (δ),

C̃(δ) = IN ⊗ C(δ), D̃(δ) = IN ⊗ D(δ),

x(t) ,
[
x1(t)T · · · xN (t)T

]T
∈ RnN ,

u(t) ,
[
u1(t)T · · · uN (t)T

]T
∈ RqN ,

y(t) ,
[
y1(t)T · · · yN (t)T

]T
∈ RmN ,

d(t) ,
[
d1(t)T · · · dN (t)T

]T
∈ RlN . (5)

The notation ⊗ denotes the Kronecker product.
The following reviews some basic concepts of graph the-

ory. An undirected graph G = {V, E} stands for communi-
cation topology of MAS where V = {v1, v2, . . . , vN } and
E = {(vi, vj) : vi, vj ∈ V} ⊆ V × V are the sets of

vertex and edge, respectively. Next, Ni
1
= {j : (vi, vj) ∈ E}

represents the set of neighbors of the i-th agent. The graph G
is connected if there exits a path between any two vertices.
A = [aij] denotes an adjacency matrix of G where aij = 0
if (vi, vj) /∈ E and aij = aji > 0 if (vi, vj) ∈ E . In addition,
D = diag{degi}i=1,...,N indicates degree matrix of G in which

degi
1
=
∑
j∈Ni

aij is degree of i-th vertex. Laplacian matrix L of

G is derived byL = D−A. Note thatL is symmetric positive
semi-definite, i.e., L = LT � 0, and L1N = 0.
The following assumptions will be employed.
Assumption 1: (Ak ,Bk ),∀k = 1, . . . ,M is stabilizable.
Assumption 2: Graph G is fixed, undirected, and

connected.
TheH∞ andH2 norms of the closed-loop transfer function

Gyd (s, δ) from d(t) to y(t) of system (4) [3] are utilized to
assess the effect of parametric uncertainty and exogenous
disturbance.

‖Gyd (s, δ)‖∞
= sup

υ∈R, δ∈2
σ̄ (Gyd (jυ, δ))

= sup
δ∈2, 06=d(t)∈LlN

2 [0,+∞)

‖y(t)‖2
‖d(t)‖2

, (6)

‖Gyd (s, δ)‖22

= sup
ω∈R, δ∈2

1
2π

+∞∫
−∞

trace(Gyd (jω, δ)TGyd (jω, δ))dω, (7)

where σ̄ (.) indicates the largest singular value of a matrix.
The objective of this work is to design a hierarchical feed-

back controller for the perturbed uncertain MAS (4) such
that a given constraint on inter-agent information exchange

depicted by graph G is satisfied. The control input of network
system consists of two terms, i.e., the local control input ul(t)
and the global control input ug(t),

u(t) = ul(t) + ug(t) = −Fcx(t), (8)

where

ul(t) = −(IN ⊗ Fl)x(t), and ug(t) = −(L⊗ Fu)x(t).

Fl ∈ Rq×n and Fu ∈ Rq×n indicate the local and global
feedback controller gains, respectively. It is proven from
[1], [17] that the information exchange among agents can
be assured by using the hierarchical feedback gain Fc which
belongs to the following class

F , {Fc ∈ R(Nq)×(Nn)
|Fc = IN ⊗ Fl + L⊗ Fu}. (9)

Subsequently the controller structure modified from [1],
[17], [18] is exhibited in Figure 1.

FIGURE 1. Hierarchical control structure of the i -th agent.

In this paper, we employ the design approach of the nom-
inal MAS in [1], [17], [18] and propose the robust design to
handle the model uncertainty of MAS and the influence of
input external disturbances to output performance. In addi-
tion, we improve the robust control in [14] which is developed
for homogeneous MAS with the norm-bounded uncertainty.
The new robust design ensures the robust stabilization and
reduces disturbance attenuation for homogeneous MAS with
the polytopic uncertainty. The proposed approach constitutes
a significant improvement over the previous works [1], [14],
[17], [18].

Let 3 = diag{λ1, . . . , λN } with diagonal elements being
eigenvalues of L. Since the Laplacian matrix L is positive
semi-definite [19], it can be diagonalized with an orthogonal
matrix U ∈ RN×N , i.e., UTLU = 3. The following changes
of variables are made,

x̄ = (UT
⊗ In)x, ȳ = (UT

⊗ Im)y, d̄ = (UT
⊗ Il)d .

(10)

Next, substituting controller (8) into MAS model (4)
and then multiplying the term (UT

⊗ In) to both
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sides of (4) yields{
˙̄x(t) = Ā(δ)x̄(t)+ B̃d (δ)d̄(t)
ȳ(t) = C̄(δ)x̄(t),

(11)

where Ā(δ) , IN ⊗ (A(θ )− B(δ)Fl)−3⊗ (B(δ)Fu), C̄(δ) ,
IN ⊗ (C(δ)− D(δ)Fl)−3⊗ (D(δ)Fu). It is obvious that the
system (11) is decomposed into N independent subsystems
as follows, {

˙̄xi(t) = Āi(δ)x̄i(t)+ Bd (δ)d̄i(t),
ȳi(t) = C̄i(δ)x̄i(t),

(12)

where Āi(δ) , A(δ) − B(δ)(Fl + λiFu), C̄i(δ) , C(δ) −
D(δ)(Fl + λiFu). It is obvious that performance of (11)
can be simultaneously synthesized through those N sub-
systems (12). Let Gȳd̄ (s, δ) , C̄(δ)(sIN×n − Ā(δ))−1B̃d (δ)
and Gȳid̄i (s, δ) , C̄i(δ)(sIn − Āi(δ))−1Bd (δ) be the transfer
function from d̄(t) to ȳ(t) of system (11) and from d̄i(t) to
ȳi(t) of system (12), respectively. Similarly to [19], [20], it is
followed from (10), (11), and (12) that

Gȳd̄ (s, δ) = diag {Gȳid̄i (s, δ)}i=1,...,N

= (UT
⊗ Il)(Gyd (s, δ))(U ⊗ Im). (13)

B. DESIGN PROBLEMS
In this research, we investigate two control design problems.
First, the robust H∞ control design problem is described in
the following.
Problem 1 (RobustH∞ Control Design): Design a con-

troller (8) such that the closed-loop system (1) satisfies the
performance criterion given by ‖Gyd (s, δ)‖∞ < γ∞, ∀δ ∈ 2
when d(t) 6= 0,∀d(t) ∈ LlN2 [0,∞), where γ∞ > 0 is a given
disturbance attenuation level.

Second, the robustH2 control design problem is presented
below.
Problem 2 (RobustH2 Control Design): Let γ2 > 0 is

a given disturbance suppression index, synthesize a con-
troller (8) to assure the closed-loop system (1) performance
indicated by ‖Gyd (s, δ)‖2 < γ2, ∀δ ∈ 2 for any disturbance
with infinite energy d(t) 6= 0, d(t) ∈ RlN .

III. MAIN RESULTS
This section first provides sufficient conditions for robust
H∞ control design and robust H2 control design and then
presents their design procedures.

A. ROBUST H∞ CONTROL DESIGN
Theorem 1: Given γ∞ > 0, the robust H∞ control design
problem is solved if there exist symmetric positive definite
matrices Xik ∈ Rn×n, i = 1, . . . ,N , k = 1, . . . ,M , G1,G2 ∈

Rq×n, G ∈ Rn×n, and a scalar number α∞ > 0 such that
sym(A∞i) 412 Bdk C∞iT

421 −α∞(G+ GT ) 0n×l α∞C∞
BTdk 0l×n −γ 2

∞Il 0l×m
C∞i α∞C∞i 0m×l −Im×m

 ≺ 0,

∀i = 1, . . . ,N , k = 1, . . . ,M , (14)

where A∞i = AkG − Bk (G1 + λiG2), C∞i = CkG −
Dk (G1 + λiG2), 412 = Xik − GT + α∞A∞i, and 421 =

Xik −G+α∞A∞iT . The local and global controller gains are
then computed by Fl = G1G−1 and Fu = G2G−1.

Proof: See Appendix A for the proof.
Finally, let γ̄∞ = γ 2

∞. The upper bound for robust H∞
control can be found by solving the following optimization
problem,

min
γ̄∞,α∞,G1,G2,G,Xik

γ̄∞

s.t. γ̄∞ > 0, α∞ > 0, Xik � 0,

(14) is satisfied. (15)

It is worth noting that because there exist product terms
between decision variables α∞ and (G1,G2,G), the condi-
tions (14) are BMIs. Thus, global minimization γ̄∞ in (15)
cannot be found generally by utilizing convex optimiza-
tion algorithms. However, it can be observed that the con-
ditions (14) become LMIs in (Xik ,G1,G2,G) if α∞ is
fixed. Furthermore, if (Xik ,G1,G2,G) are fixed, then condi-
tions (14) become LMIs in α∞. On the other hand, a possible
way to solve this kind of optimization is to use the coordinate
optimization [21], [22]. The main idea of this technique is
solving LMIs optimization problems in each coordinate alter-
natively to achieve suboptimal controller. Let us explain how
to apply the iterative approach for (15) as follows. We first
start with a given α∞ and a corresponding γ̄∞. Then by fixing
decision variables either α∞ or (G1,G2,G), we alternatively
solve minimization problems over LMI constraints.When the
number of iterations increases, the value of γ̄∞ is monotoni-
cally decreasing. The stopping criteria of this process is either
the improvement in the value of γ̄∞ is less than the desired
absolute tolerance or the LMIs minimization problems are
infeasible.

Algorithm 1: Iterative LMI of Robust Parameter-
DependentH∞ Control (RPHIC)
Input: the system matrices
(Ak ,Bk ,Bdk ,Ck ,Dk ), k = 1, . . . ,M , Laplacian matrix
L, and chosen absolute tolerance ε∞.
1. Let j = 0 where j is the iteration index.
2. Initialize α∞,0 > 0.
3. Fix α∞ at α∞,0.
Solve (15) to find (Xik ,G1,G2,G) and γ̄∞. Then set
γ̄∞,0 = γ̄∞.
for j := 1 to itermax do

(i) set j = j+ 1;
(ii) solve (15) to compute (α∞,Xik ) and γ∞ where
(G1,G2,G) are fixed at previous most value. Then
set α∞,j = α∞;
(iii) solve (15) to derive (Xik ,G1,G2,G) and γ̄∞
where α∞ is fixed at α∞,j. Then set γ̄∞,j = γ̄∞;
Until either |γ̄∞,j − γ̄∞,j−1| ≤ ε∞ or LMIs
minimization problem in (ii) or (iii) is infeasible.

end
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Next, we propose the procedure of the robust H∞ control
design composing of three main steps.

1) Derive Laplacian matrix L ∈ RN×N of graph G.
2) Solve the optimization problem (15) by utilizing Algo-

rithm 1 to obtain solution in terms of (γ̄∞, G1, G2, G,
α∞, Xik ) in robustH∞ control design.

3) Compute hierarchical state feedback controller (8).
Remark 1: We will compare the proposed RPHIC with a

robust quadratic H∞ control (RQHIC) that guarantees the
H∞ performance of the uncertain MAS (12). Design of
RQHIC is based on a common quadratic Lyapunov function.
Denote γ∞,q be the disturbance attenuation of RQHIC. Let
γ̄∞,q = γ

2
∞,q. We find the Lyapunov function candidate

Vi(xi(t)) = xi(t)T P̄xi(t), i = 1, . . . ,N

where P̄ = P̄T ∈ Rn×n, P̄ � 0. Let X = P̄−1. We adopt
similar steps in the proposed robust H∞ control design to
determine minimization of γ∞,q which can be found by solv-
ing the following optimization problem. Let γ̄∞,q = γ 2

∞,q.

min
γ̄∞,q,X ,G1,G2

γ̄∞,q

s.t. γ̄∞,q > 0, X � 0, (16a) sym(A∞i,q) CT
∞i,q Bd

C∞i,q −Im 0m×l
BTd 0l×m −γ̄∞,qIl

 ≺ 0,

∀i = 1, . . . ,N . (16b)

whereA∞i,q = AkX−Bk (G1+λiG2),C∞i,q = CkX−D(G1+

λiG2). The state-feedback gain of RQHIC has the form

Fc∞,q = IN ⊗ Fl∞,q + L⊗ Fu∞,q, (17)

where Fl∞,q = G1X−1 and Fu∞,q = G2X−1.
It is noted that our design conditions using the parameter-

dependent Lyapunov function is less conservative than that
using a common quadratic Lyapunov function for the entire
uncertain domain.

B. ROBUST H2 CONTROL DESIGN
The following theorem provides a sufficient condition to
design of robustH2 control design.
Theorem 2: Let γ2 > 0 be given. Denote A2i = AkG −

Bk (G1 + λiG2) and C2i = CkG−Dk (G1 + λiG2). The robust
H2 control design problem is solved if there existXik = XTik ∈
Rn×n, Xik � 0, G1,G2 ∈ Rq×n, Eik = ETik ∈ Rl×l , Eik �
0, i = 1, . . . ,N , k = 1, . . . ,M , and α2 > 0 satisfying the
following LMIs sym(A2i) Xik − GT + α2A2i C2i

T

Xik − G+ α2A2iT −α2(G+ GT ) α2C2i
T

C2i α2C2i −γ 2
2 Im


≺ 0, ∀i = 1, . . . ,N , k = 1, . . . ,M , (18a)[

Xik Bdk
BTdk Eik

]
� 0, ∀i = 1, . . . ,N , k = 1, . . . ,M , (18b)

N∑
i=1

trace(Eik ) < 1, ∀k = 1, . . . ,M . (18c)

The hierarchical feedback gains are calculated by Fl =
G1G−1, and Fu = G2G−1.

Proof: See Appendix B for the proof.
Lastly, denote γ̄2 , γ 2

2 , then the smallest disturbance
attenuation level can be found by solving the following min-
imization problem,

min
γ̄2,α2,G1,G2,G,Xik ,Eik

γ̄2

s.t. γ̄2 > 0, α2 > 0, Xik � 0, Eik � 0,

(18) is satisfied. (19)

Note that the conditions (18a) are BMI constraints
due to the existence of product terms including deci-
sion variables α2 and (Xik ,G1,G2,G). Nevertheless, it can
be seen that the conditions (18) become LMI conditions
either in (Xik ,G1,G2,Eik ) if α2 is fixed or in (α2,Eik ) if
(Xik ,G1,G2,G) are fixed. It then allows us to apply iterative
approach [21], [22] for minimization problems (19) with LMI
constraints to attain desired sub-optimal controller. Let us
provide the following algorithm.

Algorithm 2: Iterative LMI of Robust Parameter-
DependentH2 Control (RPH2C)
Input: the system matrices
(Ak ,Bk ,Bdk ,Ck ,Dk ), k = 1, . . . ,M , Laplacian matrix
L, and chosen absolute tolerance ε2.
1. Let j = 0 where j is the iteration index.
2. Initialize α2,0 > 0.
3. Fix α2 at α2,0.
Solve (19) to compute (Xik ,G1,G2,G,Eik ) and γ̄2. Then
set γ̄2,0 = γ̄2.
for j := 1 to itermax do

(i) set j = j+ 1;
(ii) solve (19) to compute (α2,Xik ,Eik ) and γ̄2 where
(G1,G2,G) are fixed at previous most value. Then
set α2,j = α2;
(iii) solve (19) to determine (Xik ,G1,G2,G,Eik ) and
γ̄2 where α2 is fixed at α2,j. Then set γ̄2,j = γ̄2;
Until either |γ̄2,j − γ̄2,j−1| ≤ ε2 or LMIs
minimization problem in (ii) or (iii) is infeasible.

end

Next, a procedure of robust H2 control design is given,
which contains three main steps.

1) Determine Laplacian matrix L.
2) Solve the optimization problem (19) using Algorithm 2

to attain solution in terms of (γ̄2, α2, G1, G2, G, Xik ,
Eik , i = 1, . . . ,N , k = 1, . . . ,M ) in robustH2 control
design.

3) Calculate hierarchical state feedback controller (8).
Remark 2: We will compare the proposed RPH2C with a

robust quadratic H2 control (RQH2C). Design of RQH2C
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is based on a common matrix variable that guarantees the
H2 performance of the uncertain MAS (12). We find the
Lyapunov function candidate

Vi(xi(t)) = xi(t)T P̄xi(t), i = 1, . . . ,N

where P̄ = P̄T ∈ Rn×n, X̄ � 0. Let X̄ = P̄−1. The following
optimization problem is proposed to find the minimum dis-
turbance attenuation obtained by RQH2C. A comparison in
terms of minimum disturbance attenuation γ2 to illustrate the
improvement of our proposed design is given in the numerical
example. Denote γ̄2,q = γ 2

2,q.

min
γ̄2,q,G1,G2,X̄ ,Eik

γ̄2,q

s.t. γ̄2,q > 0, X̄ � 0, Eik � 0, (20a) sym (A2i,q) Bdk

BdkT −Il

 ≺ 0,

∀i = 1, . . . ,N , k = 1, . . . ,M , (20b) Eik CT
2i,q

C2i,q X̄

 � 0,

∀i = 1, . . . ,N , k = 1, . . . ,M , (20c)

N∑
i=1

trace(Eik ) < γ̄2,q,

∀k = 1, . . . ,M , (20d)

where A2i,q = Ak X̄−Bk (G1+λiG2),C2i,q = Ck X̄−Dk (G1+

λiG2), Then the nominal hierarchical state-feedback gain of
RQH2C is in the form

Fc2,q = IN ⊗ Fl2,q + L⊗ Fu2,q, (21)

where Fl2,q = G1X̄−1, and Fu2,q = G2X̄−1.
It is noted that our proposed synthesis conditions use

the parameter-dependent Lyapunov function which leads to
PDBMI conditions. It allows us to use multiple Lyapunov
matrix variables for different vertices of uncertain agents.
Hence, PDBMI design approach is less conservative than
that using a common quadratic Lyapunov function for entire
uncertain domain.

IV. NUMERICAL EXAMPLES
In this section, numerical examples are given to show effec-
tiveness of the proposed robust control designs. We make
comparison between results obtained from our proposed
designs with those attained from other robust control designs.
For reference in the numerical results, we shall refer the

robust H∞ control of polytopic MAS as robust parameter-
dependent H∞ control (RPHIC) and robust H2 control of
polytopic MAS as robust parameter-dependent H2 control
(RPH2C). Let us refer the previous robust H∞ control and

robust H2 control of MAS subject to norm-bounded uncer-
tainty in [14] as RHHIC and RHH2C, respectively.
We shall compare the design results between RPHIC and

RHHIC and between RPH2C and RHH2C in the first and
second examples, respectively. We first describe the dynamic
model of MAS subject to norm-bounded uncertainty and
show the equivalent MAS subject to polytopic uncertainty.
Then we apply the proposed RPHIC and RPH2C for the
polytopic models and compare the computed upper bound
of disturbance attenuation and maximum admissible bound
of uncertainty. Subsequently, we will compare the design
results between RPHIC and RQHIC and between RPH2C and
RQH2C in the third and fourth examples.
We utilize a notebook computer with Intel Core i7 2.6 GHz

processor, 16 GB of RAM, and 64-bit operating system to
solve Example 1-3. The design in Example 4 employs a
desktop computer with Intel Core i7 3.20GHz processor and
32GB of RAM.
Example 1: This example aims to compare maximum

uncertainty bound of two design methods, RPHIC and
RHHIC. Three homogeneous dynamical agents having norm-
bounded uncertainty are given [14].

A =
[
0.8 −0.25
1 0

]
, B =

[
0.1
0.03

]
, Bd =

[
0
0.1

]
,

C =
[
0.1 0.15

]
, D = 0.05, V =

[
0 0
0.1 0.1

]
,

W =
[
0.4 0
0 0.5

]
, 1i =

[
δ1 0
0 δ2

]
,

where δk , k = 1, 2 satisfy |δk | ≤ θ , in which θ is norm-
bounded uncertain parameter. An equivalent polytopic uncer-
tainty form of this dynamic model is as follows.

A(δ) =
[
0.8 −0.25
1 0

]
+ δ1

[
0 0

0.04θ 0

]
− δ2

[
0 0

0.04θ 0

]
+ δ3

[
0 0
0 0.05θ

]
− δ4

[
0 0
0 0.05θ

]
B =

[
0.1
0.03

]
, C =

[
0.1 0.15

]
, Bd =

[
0
0.1

]
,

D = 0.05,
4∑

k=1

δk = 1, δk ≥ 0.

FIGURE 2. Undirected topology and Laplacian matrix of MAS.

The inter-agent communication described by triangle
graph G and its Laplacian matrix L are depicted in Figure 2.
The external disturbances di(t) are any finite-energy signals,
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e.g., band-limited signals. We will compare the disturbance
attenuation between RPHIC and RHHIC.

FIGURE 3. Upper bound of H∞ disturbance attenuation versus
uncertainty bound θ .

Figure 3 displays the computed γ∞ when varying θ on the
interval (0, 19.05] for both RPHIC and RHHIC. It can be seen
that when θ is larger, γ∞ increases. The smaller value of γ∞
means better performance. Obviously, our proposed RPHIC
attains significantly lower disturbance attenuation than that of
RHHIC with the same value of θ . In addition, our proposed
design conditions of RPHIC are still feasible with θ = 19.05
whereas the design condition of RHHIC is feasible up to the
maximum θ = 13.436.

Table 1 summarizes the upper bound of γ∞ from various
design conditions. It is shown in Figure 3 and Table 1 that
the proposed design condition RPHIC in Theorem 1 allows
for a wider range of maximum admissible uncertainty bound
θmax and provides smaller disturbance attenuation γ∞ than
that of RHHIC [14]. Especially, θmax is increased by 41.78%,
and γ∞ is decreased by 89.85% when θ = 13. Therefore,
design condition of RPHIC gives less conservative design
results than the RHHIC in [14].

TABLE 1. Upper bound of H∞ disturbance attenuation versus θ .

Note that the optimization problem (15) whose constraints
are BMIs has the higher computational complexity when
solved by Algorithm 1. This means that the achievement of
less conservativeness is attained at the higher computational
complexity.
Example 2: This example aims to compare the disturbance

attenuation and the maximum achievable uncertainty bound
between RPH2C and RHH2C. The MAS composes of three
homogeneous dynamical agents having the following modi-
fied dynamic model [14] in which δk , k = 1, 2 satisfy |δk | ≤
θ where θ denotes norm-bounded uncertain parameter.

A =
[
−0.3 −0.4
0.2 0.5

]
, B =

[
0.5
0.7

]
, Bd =

[
0.2
1

]
C =

[
0.2 0.25

]
, D = 0.2, V =

[
0 0
0.2 0.3

]

W =
[
0.1 0
0.3 0.2

]
, 1i =

[
0 δ1
δ2 0

]
.

The model of MAS can be expressed by MAS subject to
polytopic uncertainty as follows.

A(δ) =
[
−0.3 −0.4
0.2 0.5

]
+ δ1

[
0 0

0.06θ 0.04θ

]
− δ2

[
0 0

0.06θ 0.04θ

]
+ δ3

[
0 0

0.03θ 0

]
− δ4

[
0 0

0.03θ 0

]
, B =

[
0.5
0.7

]
,

C =
[
0.2 0.25

]
, Bd =

[
0.2
1

]
, D = 0.2,

4∑
k=1

δk = 1, δk ≥ 0.

TABLE 2. Upper bound of H2 disturbance attenuation versus θ .

Figure 2 depicts the inter-agent communication G and its
associated Laplacian matrixL. The external disturbance di(t)
can be persistent signal such as white noise. We compare dis-
turbance attenuation γ2 obtained from RPH2C and RHH2C.
The computed γ2 as the upper bound of uncertainty θ is varied
on the interval (0, 17.2] is illustrated in Figure 4. It is observed
that γ2 of RPH2C is significantly smaller than that of RHH2C
when θ is gradually enlarged. With a fixed θ , our proposed
RPH2C yields a much lower disturbance attenuation than that
of the RHH2C. Furthermore, with θ = 17.2, our proposed
RPH2C design still find robust state feedback, whereas the
synthesis condition of RHH2C becomes infeasible. In fact,
RHH2C can work with maximum uncertainty bound θ =
9.773. The upper bound of γ2 from different design condi-
tions are given in Table 2. Figure 4 and Table 2 indicate that
the proposed design condition RPH2C in Theorem 2 allows
for a larger maximum admissible uncertainty bound θmax and
provides a lower disturbance attenuation γ∞ than those of
RHH2C in [14]. In particular, θmax is improved by 75.995%,
and γ2 is decreased by 28.19% as θ = 4. RPH2C effectively
finds γ2 for a wider parametric uncertainty range than the
existing design condition and hence makes improvement over
RHH2C.

Since the optimization problem (19) solved by using Algo-
rithm 2 is subjected to BMI constraints, it has the higher
computational complexity than RHH2C. Thus, at the higher
cost of computational complexity, the less conservative result
is achieved.
Example 3: This example aims to compare γ∞ obtained by

RPHIC and RQHIC and γ2 obtained by RPH2C and RQH2C.
Consider three homogeneous dynamical agents whose
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FIGURE 4. Upper bound of H2 disturbance attenuation versus
uncertainty bound θ .

system matrices are given below.

A(δ) = δ1

 0 10 2
−1 1 0
0 2 −5

+ δ2
 0.5 8 1
−1.2 1.5 0
0 3 −4


+ δ3

 0 5 4
−1.5 0.3 0.1
0.5 1.5 − 3

+ δ4
 0.3 2 2.5
−0.5 0.4 0.2
0.7 1.3 − 2.4


+ δ5

 0.5 2.3 4.5
−0.3 0.5 0.15
0.65 1.4 −2.2


+ δ6

 0.35 2.2 4.4
−0.25 0.45 0.1
0.35 1.3 −1.7


B(δ) = δ1

 0
1
0

+ δ2
 0.2

1.5
0.3

+ δ3
 0.2

0.6
0.8


+ δ4

 0.25
0.35
0.65

+ δ5
 0.3

0.45
0.75

+ δ6
 0.12

0.35
0.65


C(δ) = δ1

[
1 0 0

]
+ δ2

[
0.3 0 0.2

]
+ δ3

[
0 0.5 0.3

]
+ δ4

[
0.3 0.25 0.5

]
+ δ5

[
0.2 0.45 0.65

]
+ δ6

[
0.15 0.25 0.4

]
Bd (δ) = δ1

 1
0
1

+ δ2
 1.2

0.1
0.5

+ δ3
 1.1

0.2
0.5


+ δ4

 1.2
0.3
0.45

+ δ5
 0.9

0.2
0.55

+ δ6
 0.5

0.1
0.25


D(δ) = δ1 + 0.5δ2 + 0.6δ3 + 0.7δ4 + 0.75δ5 + 0.55δ6,
6∑
i=1

δk = 1, δk ≥ 0.

We will compare RPHIC with robust quadratic H∞ con-
trol (RQHIC) using a common Lyapunov variable. Figure 2
demonstrates the inter-agent communication described by
triangle graph G and its associated Laplacian matrix L.
State-feedback gains of RPHIC are computed by Theo-

rem 1 using Algorithm 1. The initial parameters α∞,0 is set
to be 0.01. The desired absolute tolerance ε∞ is selected to

be 10−6. Then, we yield feasible solutions after 18 iterations.
Table 3 gives state feedback gains and obtained disturbance
attenuation of both aforementioned controllers. Obviously,
comparing the computed γ∞, our proposed RPHIC pro-
vides significantly lower disturbance attenuation than that of
RQHIC. However, RPHIC spends more computational time
than RHHIC.
Subsequently, we design RPH2C and compare with

RQH2C. By Theorem 2, state- feedback gains of RPH2C are
computed using Algorithm 2. The initial parameters α2,0 is
set to be 0.02. The tolerance ε2 is selected to be 10−6. Then,
feasible solutions are found after 38 iterations. These results
are summarized in Table 4. It is observed that our proposed
RPH2C yields a much lower disturbance attenuation than that
of the RQH2C. RPH2C spends more computational time than
RQH2C.
Example 4 (Vehicle Suspension Systems): The objective of

this example is to illustrate effectiveness of proposed robust
control design for a homogeneous MAS consisting of four
active vehicle suspension systems.
Consider a vehicle suspension composing of one-fourth

of the vehicle body mass, suspension components, and one
wheel. This model with two degrees of freedom (2DOF)
involving only the vertical motion of sprung and unsprung
mass caused by the vertical ground displacement zr arising
from road irregularities [23], [24] captures many essential
features of a real suspension system. Note that the sprung
mass ms represents the chassis at one corner of the vehicle.
Unsprung mass mu corresponds to the wheel and axle assem-
bly at one corner of the vehicle. The suspension stiffness ks
and damping rate of suspension cs stand for passive spring
and shock absorber. kt is tyre stiffness. zs and zu are vertical
displacement of the sprung mass and unsprung mass. The
actuator force fs severs as a control input to eliminate the
vibration of the vehicle chassis. The dynamic equation on
vertical motion of a vehicle suspension model is obtained by
Newton’s second law as follows.

msz̈s(t)+ cs[żs(t)− żu(t)]+ ks[zs(t)− zu(t)] = fs(t),

muz̈u(t)+ cs[żu(t)− żs(t)]+ ks[zu(t)− zs(t)]

+ kt [zu(t)− zr (t)] = −fs(t). (22)

The following assumptions are used.
• Damping of tyres and dynamic of the hydraulic actuator
can be ignored.

• States zs(t) and zu(t) are measurable.
• Tyres of vehicle continuously contact with road.
Define x1(t) = zs(t) − zu(t), x2(t) = zu(t) − zr (t),

x3(t) = żs(t), x4(t) = żu(t), u(t) = fs(t), where x1(t) stands
for the suspension deflection, x2(t) represents tyre deflec-
tion, x3(t) and x4(t) denote sprung mass speed and unsprung
mass speed, respectively, and u(t) is control input. The ride
comfort relates to the vertical acceleration z̈s(t) encountered
by the vehicle body. To reduce the vertical acceleration of
the vehicle chassis, the vehicle’s structural characteristics
impose stiff limit on suspension deflection x1(t). Hitting the
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FIGURE 5. Vehicle suspension systems.

TABLE 3. Robust H∞ feedback gains and corresponding γ∞.

TABLE 4. Robust H2 feedback gains and corresponding γ2.

TABLE 5. Parametric uncertainty and M of vehicle suspension systems.

deflection limit causes uncomfortable for passengers and
increases vehicle wear [25], [26]. To guarantee driving safety,
the vehicle wheels need to contact continuously with road.

TABLE 6. Parameters of vehicle suspension system and uncertainty
bound.

A good road holding has good correction with tire deflec-
tion z2(t). Thus, the output performance which satisfies the
objectives can be defined by y(t) =

[
ẋ3(t) x1(t) x2(t)

]
.
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TABLE 7. State feedback gains and γ∞ of robust H∞ control when varying M.

TABLE 8. Computational time of robust H∞ control design versus M.

Let z(t) =
[
x1(t) x2(t) x3(t) x4(t)

]T . Denote d(t) =
żr (t) the external disturbance. The state-space model of each
vehicle suspension system can be written by

ż(t) =


0 0 1 −1
0 0 0 1

−
ks
ms

0 −
cs
ms

cs
ms

ks
mu

−
kt
mu

cs
mu

−
cs
mu

 z(t)

+


0
0
1
ms

−
1
mu

 u(t)+


0
−1
0
0

 d(t)

y(t) =

 −
ks
ms

0 −
cs
ms

cs
ms

1 0 0 0
0 1 0 0

 z(t). (23)

In this example, we consider 4 active suspension systems.
Each active suspension system is cast as an agent connecting
to its neighbors by a square graph. When carrying out experi-
ments, we vary the number of uncertainty parameters in affine
model in 5 cases as given in Table 5. The uncertainty bound
is caused by discrepancy around the nominal value and spec-
ified by the percentage of the nominal value. The parameters
of active suspension system are assumed in Table 6.
Theorem 1 is employed to find state-feedback controller

stabilization gains using Algorithm 1. These controller gains
are synthesized with varying the number of vertices M and
initial α∞,0. We choose ε∞ = 10−5. To this end, we select the
best obtained γ∞. Table 7 and Table 8 summarize the results.

Figure 6 illustrates the γ∞ obtained by the proposed
RPHIC and the RQHIC when varying the number of vertices
M from 2 to 32. Overall, γ∞ is increased as M increases.
Obviously, RQHIC gives larger disturbance attenuation γ∞

FIGURE 6. Upper bound of H∞ disturbance attenuation versus M.

than that of RPHIC. The smaller value of γ∞ is, the better
performancewill be. Therefore, RPHIC outperformsRQHIC.

FIGURE 7. CPU time of robust H∞ control design versus M.

Figure 7 shows CPU time of RPHIC and RQHIC designs
with varying number of vertices M . It is seen that RPHIC
spends more time than those of RQHIC. AtM = 4, CPU time
of RPHIC is higher than that of RQHIC since it requires many
iterations. Nevertheless, the proposed RPHIC gives lower γ∞
as illustrated by Figure 6.

Next, we design RPH2C for the active suspension systems.
By Theorem 2, state-feedback gains of RPH2C can be com-
puted using Algorithm 2. The initial parameter α2,0 is varied
and ε2 is selected to be 10−5. The design results are sum-
marized in Table 4. It is observed that our proposed RPH2C
yields much lower disturbance attenuation gains than that
of RQH2C. However, RPH2C requires more computational
time than RHH2C.

We employ Theorem 2 to design state-feedback controller
by Algorithm 2. These controller gains and γ2 are computed
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TABLE 9. State feedback gains and γ2 of robust H2 control when varying M.

for variousM by varying α2,0. The results are given in Table 9
and Table 10.

TABLE 10. Computational time of robust H2 control design versus M.

FIGURE 8. Upper bound of H2 disturbance attenuation versus M.

Figure 8 shows the value of γ2 obtained by the proposed
RPH2C and the RQH2C when varying the number of ver-
tices M . In general, RPH2C gives a smaller value of γ2
than RQH2C. The condition of RPH2C design is capable
of finding γ2 for all various value of M , whereas RQH2C
design is infeasible at the value of M of 16 and 32. When
M increases, γ2 of RPH2C is increased. In contrast, γ2 of
RQH2C is increased for M = 4 and then decreased for
M = 8. The RQH2C has a drawback due to a common
Lyapunov matrix when designing robust control for the entire
uncertainty domain. RPH2C gives a smaller value of γ2 than
RQH2C. Thus, it can be concluded that the RPH2C is less
conservative than the RQH2C.

CPU time used by both the proposed RPH2C and RQH2C
when varying the number of verticesM is shown in Figure 9.
It is observed that RPH2C requires more time than those of
RQHIC. There is no data of CPU time utilized by RQH2C
at M of 16 and 32 since the RQH2C condition is infeasible.
RPH2C is still capable of finding γ2 for M = 16, 32. Note
that the proposed RPH2C gives significantly lower γ2 as
depicted by Figure 8.

FIGURE 9. CPU time of robust H2 control design versus M.

V. CONCLUSION
We present the designs of robust hierarchical H∞ and H2
control for multi-agent systems subject to polytopic uncer-
tainty and external disturbance. The design criteria are based
on the novel sufficient conditions in terms of BMI with spec-
ified upper bound of disturbance attenuation. We develop the
iterative method of the coordinated optimization to solve sub-
problems over LMIs to determine the robust state feedback
gains. The numerical results reveal that the novel robust
control designs significantly give lower disturbance attenu-
ation than that of the other robust controllers. In addition,
the proposed designs guarantee the robust stability of MAS
for a larger maximum admissible bound of uncertainty. The
ongoing work is to extend the robust design of hierarchical
control for heterogeneous polytopic uncertain MAS.

APPENDIX A
Note that G + GT � 0 in (14) guarantees the existence
of G−1.

Consider the following parameter-dependent Lyapunov
function candidates

Vi(xi(t)) = xi(t)TPi(δ)xi(t), (24)

where Pi(δ) =
M∑
k=1

δkPik � 0, i = 1, . . . ,N , k = 1, . . . ,M ,

δ ∈ 2. It can prove that ‖Gȳid̄i (s, δ)‖∞ < γ∞, ∀δ ∈ 2 of
system (12) if the following inequalities hold

Pi(δ)Āi(δ)+ Āi(δ)
TPi(δ)+

1
γ 2
∞

Pik (δ)Bd (δ)Bd (δ)TPi(δ)

+ C̄i(δ)
T C̄i(δ) ≺ 0, i=1, . . . ,N , k = 1, . . . ,M . (25)
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Therefore, it makes

V̇i(xi(t))+ ȳTi ȳi − γ
2
∞d̄

T
i d̄i < 0,

i = 1, . . . ,N , k = 1, . . . ,M . (26)

In fact, the condition (26) can be verified as follows. It fol-
lows from (12) that

V̇i(xi(t))+ȳTi ȳi−γ
2
∞d̄

T
i d̄i =

[
x̄i
d̄i

]T
ϒ∞

[
x̄i
d̄i

]
,

i = 1, . . . ,N , k = 1, . . . ,M ,

where ϒ∞ =

[
ϒ∞,11 Pi(δ)Bd (δ)

Bd (δ)TPi(δ) −γ 2
∞I

]
, ϒ∞,11 =

Āi(δ)TPi(δ) + Pi(δ)Āi(δ) + C̄i(δ)T C̄i(δ). Applying Schur’s
complement for the above equations, the condition (26)
holds if (25) is satisfied. By definition (6), it obtains
‖Gyd (s, δ)‖∞ < γ 2

∞, ∀δ ∈ 2. Subsequently, pre- and post-
multiplying Pi(δ)−1 and Pi(δ)−1 to (25), respectively, yields

Āi(δ)Pi(δ)−1 + Pi(δ)−1Āi(δ)T +
1
γ 2
∞

Bd (δ)Bd (δ)T

+P(δ)−1C̄i(δ)T C̄i(δ)Pi(δ)−1 ≺ 0,

i = 1, . . . ,N , k = 1, . . . ,M . (27)

Let Xi(δ) = Pi(δ)−1, the inequalities (27) are equivalent to

Āi(δ)Xi(δ)+ Xi(δ)Āi(δ)T +
1
γ 2
∞

Bd (δ)Bd (δ)T

+XC̄i(δ)T C̄iXi(δ) ≺ 0,

i = 1, . . . ,N , k = 1, . . . ,M . (28)

Applying Schur’s complement [27] for (28), the following
conditions are yielded sym(Āi(δ)Xi(δ)) (C̄i(δ)Xi(δ))T Bd (δ)

C̄i(δ)Xi(δ) −Im 0
Bd (δ)T 0 −γ 2

∞Il

 ≺ 0,

∀i = 1, . . . ,N , k = 1, . . . ,M . (29)

Next, we will show that (29) obtains once the following
condition holds

sym(Ā∞i(δ)) 4∞,12 Bd (δ) C̄∞i(δ)
T

4∞,21 −α∞(G+ GT ) 0n×l α∞C̄∞i(δ)
Bd (δ)T 0l×n −γ 2

∞Il 0l×m
C̄∞i(δ) α∞C̄∞i(δ) 0m×l −Im


≺ 0, ∀i = 1, . . . ,N , k = 1, . . . ,M , (30)

where Ā∞i(δ) = Ai(δ)G and C̄∞i(δ) = Ci(δ)G, 4∞,12 =
Xi(δ)−GT + α∞Ā∞i(δ), 4∞,21 = Xi(δ)−G+ α∞Ā∞i(δ)

T ,
and α∞ is an arbitrarily prescribed number. The condi-
tion (30) is PDBMI.

Let T∞ =

 I Āi(δ) 0 0
0 C̄i(δ) 0 I
0 0 I 0

. Pre- and post- multiply-

ing (30) by T∞ and T T∞, respectively, yields (29). On the other

hand, multiplying δk to both sides of (14) obtains
δk sym(A∞i) δk412 δkBdk δkC∞iT

δk421 −δkα∞(G+ GT ) 0n×l δkα∞C∞
δkBTdk 0l×n −γ 2

∞δk Il 0l×m
δkC∞i δkα∞C∞i 0m×l −δk Im×m


≺ 0, ∀i = 1, . . . ,N , k = 1, . . . ,M , (31)

where A∞i = AkG−Bk (G1+λiG2), C∞i = CkG−Dk (G1+

λiG2), 412 = Xik − GT + α∞A∞i, and 421 = Xik − G +
α∞A∞iT . Then summing up side by side of (31) yields (30)
according to (2) and (3).

APPENDIX B
Note G + GT � 0 in (18a) ensures the existence of G−1.
Recall that Āi(δ) = A(δ)− B(δ)(Fl + λiFu), C̄i(δ) = C(δ)−
D(δ)(Fl + λiFu). As shown in [3], the system (12) guarantee
‖Gȳid̄i (s, δ)‖2 < γ 2, ∀δ ∈ 2 if following inequalities hold

Āi(δ)
TPik + Pi(δ)Āi(δ)+ C̄i(δ)

T C̄i(δ) ≺ 0,

∀i = 1, . . . ,N , k = 1, . . . ,M . (32a)

trace(Bd (δ)TPi(δ)Bd (δ)) < γ 2
2 , (32b)

where Pi(δ) = Pi(δ)T =
M∑
k=1

δkPik � 0, i = 1, . . . ,N , δ ∈ 2

given in (2) is the matrix of parameter-dependent Lyapunov
function candidates

Vi(xi(t)) = xi(t)TPi(δ)xi(t). (33)

Pre- and post- multiplication of (32a) with Pi(δ)−1 gets

Pi(δ)−1Āi(δ)
T
+ Pi(δ)−1C̄i(δ)

T C̄i(δ)Pi(δ)−1

+ Āi(δ)Pi(δ)−1 ≺ 0, ∀i = 1, . . . ,N , k = 1, . . . ,M .

(34)

Let Xi(δ) = γ 2
2 Pi(δ)

−1. Then (34) is equivalent to

1

γ 2
2

Xi(δ)Āi(δ)
T
+

1

γ 2
2

Xi(δ)C̄i(δ)
T C̄i(δ)

1

γ 2
2

Xi(δ)

+ Āi(δ)
1

γ 2
2

Xi(δ) ≺ 0, ∀i = 1, . . . ,N , k = 1, . . . ,M .

(35)

Applying Schur’s complement [27] for (35) obtains[
Āi(δ)Xi(δ)+ Xi(δ)Āi(δ)

T (C̄i(δ)Xi(δ))T

C̄i(δ)Xi(δ) −γ 2
2 Im

]
≺ 0,

∀i = 1, . . . ,N , k = 1, . . . ,M . (36)

Subsequently, we show the condition (36) holds if the
following inequalities are satisfied. sym(A2i(δ)) 912 C2i(δ)T

921 −α2(G+ GT ) α2C2i(δ)T

C2i(δ) α2C2i(δ) −γ 2
2 Im

 ≺ 0,

∀i = 1, . . . ,N , k = 1, . . . ,M , (37)
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where A2i(δ) = Ai(δ)G, C2i(δ) = Ci(δ)G, 912 = Xi(δ) −
GT+α2A2i(δ),921Xi(δ)−G+α2A2i(δ)T , andα2 is an arbitrar-
ily prescribed number. The condition (37) is called PDBMI.

Let T2 =
[
I Āi(δ) 0
0 C̄i(δ) I

]
. Pre- and post- multiplying (37) by

T2 and T T2 , respectively, we obtain (36).
Multiplying (18a) by δk obtains sym(A2iδ) δk (Xik − GT+ α2A2i) δkCT

2i
δk (Xik − G+ α2AT2i) −δkα2(G+ GT ) δkα2CT

2i
δkC2i δkα2C2i −δkγ

2
2 Im


≺ 0, ∀i = 1, . . . ,N , k = 1, . . . ,M , (38)

where A2iδ = δk (AkG − Bk (G1 + λiG2)) and C2i = CkG −
Dk (G1 + λiG2). Then summing up side by side of (38)
gets (37) because of the property given in (2) and (3).

Suppose there exist Ei(δ) =
N∑
i=1
δkEik � 0, ∀i =

1, . . . ,N , k = 1, . . . ,M , such that

Bd (δ)TPi(δ)Bd (δ) ≺ Ei(δ), (39)

Substituting Pi(δ) = γ 2
2 Xi(δ)

−1 into (39) obtains

γ 2
2 Bd (δ)

TXi(δ)−1(δ)Bd (δ) ≺ Ei(δ). (40)

Applying Schur’s complement [27] for (40) gets[
Xi(δ) Bd (δ)
Bd (δ)T Ei(δ)

]
� 0, ∀i = 1, . . . ,N , k = 1, . . . ,M ,

(41)

which are satisfied if (18b) hold from numerical view point.
A necessary and sufficient condition to ensure∥∥∥Gȳd̄ (s, δ)∥∥∥22 ≤ γ 2

2 is that
N∑
i=1
‖Gȳid̄i (s, δ)‖

2
2 ≤ γ 2

2 holds.

It follows from (32) that this condition is held if (36), (41)
hold, and the following condition is satisfied,

N∑
i=1

trace(Ei(δ) < 1, ∀k = 1, . . . ,M . (42)

Substituting
M∑
k=1

δk = 1 into the right side of (42) yields

M∑
k=1

δk (
N∑
i=1

trace(Eik )) <
M∑
k=1

δk . (43)

Then isolate all term involving δk in (43). It is sufficient
to guarantee (43) by checking the sign of the finite number

of coefficients δk ((
N∑
i=1

trace(Eik )) − 1) < 0, k = 1, . . . ,M .

We eventually assure (43) if (18c) is satisfied.
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