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ABSTRACT Missing values are very prevalent in real world; they are caused by various reasons such as
user mistakes or device failures. They often cause critical problems especially in medical and healthcare
application since they can lead to incorrect diagnosis or even cause system failure. Many of recent impu-
tation techniques have adopted machine learning-based generative methods such as generative adversarial
networks (GANs) to deal with missing values in medical data. They are, however, incapable of reproducing
realistic time-series signals preserving important latent features such as sleep stages that are important
context in many medical applications using electroencephalogram (EEG). In this study, we propose a
novel GAN-based technique generating realistic EEG signal sequences which are not only shown natural
but also correctly classified with sleep stages by implanting the latent features in the synthetic sequence.
By experiments, we confirm that our model generates not only more realistic EEG signals than a recent
GAN-basedmodel but also preserve auxiliary information such as sleep stages. Furthermore, we demonstrate
that existing machine learning methods based on EEG data still work well without sacrificing performance
using the imputed data by using our method.

INDEX TERMS Missing data imputation, electroencephalogram (EEG), generated adversarial
network (GAN).

I. INTRODUCTION
In most of time series data analysis, missing values coming
up by various reasons such as user mistakes or device failures
lead to performance degradation or even cause system failure.
Recent imputation techniques have adopted not only tradi-
tional statistical imputation but also machine learning based
generative method to deal with missing values. These meth-
ods, however, are incapable of generating realistic time-series
signals involving important latent information which is nec-
essary for being exploited in the target application such
as sleep disorder diagnosis based on electroencephalogram
(EEG).

Having complete dataset in real world is unfortunately
almost impossible [1]. Especially, inmedicine and healthcare,
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it was also reported that the majority of records contains a
large number of missing values [2], [3]. The failed record-
ing is possibly because of a malfunction of the recording
device, lost records or a mistake in electrode attachment [4].
In addition, it is difficult to record complete EEG data,
because of the strict requirements of recording environments
or for the subjects [5]. Accordingly, most of applications
utilizing such medical datasets suffer from missing values
so that they may make wrong alerts or incorrect diagnoses
[6], [7]. Furthermore, doctors or clinicians may also have
trouble scoring sleep stages or diagnose sleep disorders due
to such missing data because they need to consider the con-
text through the precedent and following signal sequences
according to [8]. To make matters worse, a missing value
in such circumstances is usually occurred repeatedly until
the cause is removed since recording lasts long time without
frequent monitoring. Thus, existing imputingmethods cannot
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handle such cases effectively even if they can reconstruct for
a single or short-term missing values by interpolation based
on adjacent non-missing values.

A. OUR CONTRIBUTION
In this paper, we develop a novel deep neural network-based
technique to complete the missing EEG signals which not
only look natural, but also preserve contextual informa-
tion well that is significant for the analysis of the data.
In detail, we assume that our dataset includes the sequences
of EEG signals and annotations of sleep stages period-
ically labelled in the sequences. The sleep stage is a
category of 5 types indicating REM, Sleeping 1∼3 and
Wake, which is annotated by expertise aiming at diagno-
sis of epileptic, neurological and sleep disorder, measure-
ment of mental health conditions, and psycho-physiological
research [9]. Hence, preserving such characteristics in the
created EEG signals is an important goal in our work, and
there does not exist a technique completing missing values
with the consideration of the contextual features to our best
knowledge.

To generate realistic EEG signals to replacemissing values,
we adopt a generative adversarial networks (GAN). Due to
its successful applications in image generation, GAN has
been widely used in the imputation for image and time series
data as well. Image inpainting which fills missing pixels of
a picture also has achieved remarkable performance by using
GANs [10]–[13], however, all the techniques are based on
the assumption that they are available with complete dataset,
that is, image without missing parts. Furthermore, a recent
work [14] utilizes GAN to generate fake EEG signals for data
augmentation but the model does not consider any context
at all. Therefore, we adopt GAN for not only EEG signal
generation but also acquiring contextual information for data
augmentation. The contribution of our work can be summa-
rized as follows:

• We suggest a novel GAN-based technique to generate
synthetic EEG signals which looks realistic as well as
retains important features in the medical context called
sleep stage.

• In experiments, we confirm that our proposed model
generates realistic EEG signals by showing the sim-
ilarity between real and fake ones in both time and
frequency domains as well as evaluating the accuracy
of classifying sleep stages of generated signals. Further-
more, we also show that applications based on EEG data
still work well without sacrificing performance using the
imputed data by replacing missing signals with synthe-
sized ones.

We have evaluated our generative model mainly focused
on EEG signals with sleep stage labels in this work,
but the model can be easily extended to learn and
generate any time series data such as electrocardio-
gram (ECG) signals with types of arrhythmia for heart disease
diagnosis.

II. RELATED WORK
A. IMPUTATION OF MISSING VALUES
Missing values in a dataset largely can be tackled with two
strategies; the inherent consideration of missing values by
developing robust models or algorithm which is not affected
by missing values and the explicit modification of dataset by
imputation or deletion to obtain a complete dataset without
missing values. Deletion, which simply removes all records
or even columns which including any missing values, and
simple statistical imputation, which replaces missing values
with mean, median or the most frequent value, have been
used traditionally [2]. However, deletionsmay lead to lose too
much information in a dataset and simple imputations usually
fail to produce plausible data that look realistic considering
context.Moreover, the first strategy to develop a robust model
handling missing values inherently has a limitation that we
have to devise a separate technique for every application with
the dataset.

Recent development in machine learning techniques has
enabled us to replace missing values with realistically gen-
erated one. The imputation methods for time series in [15]
and user-rated movie scores in [16] formulated their data as a
user-item matrix and utilized matrix factorization to estimate
the missing entries. As early recurrent neural networks had
been used for imputing missing values in time series data
in [17] and recent generative models such as auto encoder
and generative adversarial network also exploited to deal with
missing values; for example, both models are extended to
guess missing entries in tabular datasets in [1], [18] and espe-
cially, GANs were adopted extensively for the application
called image inpainting, which completes missing part of an
image, in [10]–[13], [19]. In [20], an imputation technique
for time-series sensor data was developed using the sequence-
to-sequence network, which is suitable for discrete time-
series data. Moreover, [21] and [22] acquire auto encoder and
transformer to reconstruct missing regions in input frames
respectively.

These state-of-the-art techniques have shown a remark-
able performance, however, they require complete data sets
for training. In fact, most of dataset obtained in real world
inevitably suffered from missing values such as EEG sig-
nals collected from medical devices, seismic signals from
distributed sensors and many other observation in nature.
Image inpainting works well using GANs since we can obtain
images without missing values without difficulties. These
works also are adopting GAN architectures like as we are, but
based on the assumption that complete instances are available
for training.

B. GENERATIVE ADVERSARIAL NETWORK (GAN)
As mentioned before, we adopted GAN for generate the
missing values in this paper. GAN is a framework intro-
duced by [23]. It trains a generator G and a discriminator D
together; G generally maps a noise signal to a fake sample
which is indistinguishable from real imageswhileD classifies
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between real and fake samples. GANs have been approved to
be effective in various problems and domains such as image
generation [24], [25], image translation [26], [27], audio syn-
thesis [28], [29], image resolution enhancement [30], [31],
image de-noising [32], [33] and feature generation [34].

When certain labels for context such as categories for any
purpose are available in training data set, we can vary GAN to
exploit such information to generate more realistic instances
using auxiliary classifier [35]. As auxiliary classifier learns to
classify the additional label correctly, generator is trained to
generate samples holding characteristics which look naturally
when considering the labels. We also adopt the auxiliary
classifier to generate realistic EEG signal considering sleep
stages available in the data set.Moreover, as several optimiza-
tion techniques such as Wasserstein GAN (WGAN) [36] and
gradient penalty [37] have been developed due to its inborn
instability in training [38], we also exploit these techniques
in our model to stabilize training process of GAN.

C. MACHINE LEARNING FOR EEG SEQUENCE
GENERATION
In medicine and healthcare, machine learning has also been
widely adopted to complete the missing values [2], [39].
While these works had been based on traditional approaches
such as PCA/ICA, multilayer perceptron, random forest and
SVM, GAN is also being hired recently in many applications
of the area. For example, it is used for generating synthetic
EEG signals in [14], [40], and [41] in the purpose of data
augmentation. Other traditional techniques, SMOTE [42] and
ADASYN [43] which had been proposed to alleviate class
imbalance, have also been exploited to enhance an automated
classifier of EEG signals [44]. However, those techniques
are not adequate to generate realistic EEG signals. Another
variation of GAN was introduced in [45] to up-sample EEG
signal with a higher resolution. In addition, [5] discovered
that DCGAN outperforms the traditional methods to augment
EEG signal such as geometric transform, auto encoder and
variational auto encoder.

These works have shown to successfully generate EEG sig-
nal and be exploited for improving classification. However,
they neither consider missing values of EEG sequence for
training nor create realistic and practically useful samples
exhibiting contextual features such as sleep stages.

In spite of recurrent neural network (RNN) based model
is capable for handling sequences, running long short-term
memory (LSTM) networks on a long sequence fails such as
480 points of a sequence [46]. Because a sequence of EEG
signal is usually equal to and more than 3000 points, we do
not consider RNN as well as LSTM based model.

III. SIG-GAN: GENERATIVE ADVERSARIAL NETWORKS
FOR SIGNAL SEQUENCES
In this section, we define notations for describing data and
models and then, introduce our proposed SIG-GAN, a GAN-
based network for imputing missing signal sequence in EEG
data.

A. DATA DESCRIPTION
Let S = {S1, . . . , Sn} be a collection of n sequences of
signal segments where Si denotes a sequence {si1, · · · , siti}
of ti signal segments sij (i ∈ [1, n] and j ∈ [1, ti]). Each
sequence of signal segments Si contains EEG signals, (e.g.,
3, 000 times recorded signal during 30 seconds with 100 Hz
sampling frequency), collected through a medical test called
polysomnography (PSG) study using electronic devices, and
has a label ci which is one of 5 types of sleep stages annotated
by medical doctors or technologist. The notation ci is used
interchangeably to denote the sleep stage name or indicate
a one-hot encoded vector in this paper. Note that a signal
segment in the dataset may be a segment with missing values
as our assumption.

To tell the process of data collection in PSG test briefly,
it is performed overnight with a patient while the body
functions of the subject such as brain activity (EEG), eye
movement (EOG) and heart rhythm (ECG) are continuously
recorded, i.e., those signals represent the electrical activity
for each organ. Furthermore, as the technicians monitor the
subject, they periodically score a – usually, 30 seconds long
– signal segment as one of 5 sleep stages, which represent
the stages of sleep cycles including W, N1, N2, N3 and R,
following scoring manuals such as the American Academy of
Sleep Medicine (AASM) [8]. Accordingly, each sequence Si
corresponds to a sequence of 30-second long signal segments
collected through a night from a patient.

B. MOTIVATION AND PROBLEM DEFINITION
In a PSG test, occasionally recording failure can be caused
by various reason such as the malfunction of the elec-
trodes. Since the recoding error can last long time until its
cause is corrected by technicians, the failure may result in
a long sequence of missing signals over several segments.
According to the sleep stage scoring manual in [8], a prac-
titioner needs to consider the context through the precedent
and following signal segments to determine sleep stages of
given segments. For example, let a precedent sequence S1 of
30 seconds signal segments is annotated as stage N1 and it
contains K complex which is a strong evidence of stage N2 at
the last 10 seconds. Then, the following sequence S2 is scored
as stage N2 unless there is evidence of shifting to another
sleep stage [8]. As stated by the manual, we assume the
contextual information can be preserved during a sequence
just after the precedent one at least. Therefore, we consider
the case that a sequence (30 seconds long) can be lost given a
precedent one. Furthermore, computer aided diagnosis based
on EEG signals also depends on the context of sequences
for decision making. Thus, such missing segments may cause
critical failure in diagnosis.

Hence, we suggest a generative method based on GAN for
imputing missing signal segments which creates fake EEG
signal segmentations that look natural as well as preserve
contextual information like sleep stages. Fig. 1 illustrates the
architecture of our proposed network. To trace the context
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FIGURE 1. Overview of proposed model which contains training and test phase.

changing along the EEG signal segmentation, we adopt a gen-
erator G in the manner of auto-encoder. It takes a signal seg-
ment as input and generate a segment which can be expected
to follow the next. The discriminator determines if the input
segmentation is fake or real. The auxiliary classifier C infers
the sleep stage of a given signal segmentation as AC-GAN
does in [35], which is proven that it stabilizes training well
so that the output of G follow the real input distribution.
Naturally, C and D share the convolutional layers since they
should utilize common local features for their own decisions
in each downstream network.

C. FORMULATION FOR TRAINING PHASE
For training, we define three types of losses and select train-
ing samples for each loss as follows:

• Adversarial loss: It leads G to output a realistic fake
signal segment given a preceding segment as input while
D to distinguish between real and fake segments. Com-
puting this loss requires a single signal segment and the
training set Si of segments sampled from S is referred to
as Sadv.

• Reconstruction loss: This is for fitting G to imitate the
following signal segments as much as possible. To cal-
culate the loss, we sample a set Srec of pairs 〈Si−1, Si〉 of
adjacent two non-missing signal segments from S.

• Prediction loss: It enables G to be aware of the contex-
tual information of sleep stage ci as well as shepherds
C and D to catch the real data distribution stably. The
training datasets for computing the loss are split into
two cases: Spred,0 = {〈Si−1, ci〉} when computing the

loss and learn the parameters for G with a fake segment
G(Si−1) which estimates Si, and Spred,1 = {〈Si, ci〉} for
training D with a real non-missing segment Si.

1) ADVERSARIAL LOSS
To compute the adversarial loss of G and D, the training set
Sadv of segment samples Si ∈ S is utilized. By adopting
the adversarial loss of WGAN [36], we can formulate its
corresponding optimization problem as below

min
θG

max
θD

∑
Si∈Sadv

DθD (Si)−
∑

Si−1∈Sadv

DθD
(
GθG (Si−1)

)
, (1)

where θG and θD are trainable parameters of generator G
and discriminator D respectively. While D is trained to
tell the observed segment Si as real and forged segment
G(Si−1) as fake,G becomes to outputG(Si−1) which deceives
D to answer it is real by minimizing the second term in
Eqn. (1). Furthermore, since adversarial loss suffers from
unstable training [37], we add the gradient penalty loss

−EŜ∼P(Ŝ)
[( ∣∣∣∇DθD (Ŝ)∣∣∣2− 1

)2] into the objective in Eqn. (1),
where Ŝ is a sampled segment from linear interpolated distri-
bution P(Ŝ) between the real and generated data [36].

2) RECONSTRUCTION LOSS
To obtain G which imitates the next signal segments given
a sample segment, we impose the reconstruction loss which
is defined as L1 distance between a sample segment Si in
Srec and G(Si−1). Its related optimization can be shown
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as following

min
θG

∑
〈Si−1,Si〉∈Srec

∣∣Si − GθG (Si−1)∣∣1 . (2)

Moreoever, we inject reparameterization trick as suggested
in [47]. Therefore, our model maps the distribution of signal
generation into Gaussian distribution with mean µcurr and
variance σcurr as shown in Fig. 1. We omit the part of repa-
rameterization trick in Eq.2 for readability.

3) PREDICTION LOSS
To achieve our goal that G outputs a fake signal whose
sleep stage is correctly recognized, we exploit the auxiliary
classifier C as [35]. With each sample Si−1 from a sample set
Spred,0 = {〈Si−1, ci〉}, we define the prediction loss so that G
learns to generate G(Si−1) whose desired sleep stage is ci as
follows

min
θG

∑
〈Si−1,ci〉∈Spred,0

L(ci,C(GθG (Si−1)) (3)

where C(G(Si−1)) is the sleep stage predicted by C with the
input segmentG(Si−1), and L(·, ·) indicates the cross entropy
between two distributions. Furthermore, the prediction loss is
also utilized for training C with samples Spred,1 = {〈Si, ci〉}
to predict the correct sleep stage with a real signals Si as the
following:

min
θC

∑
〈Si,ci〉∈Spred,1

L(ci,CθC (Si)) (4)

where θc is the learnable parameters for C .

4) OVERALL OBJECTIVE
Our full optimization problem is

min
θG,θC

max
θD

∑
Si∈Sadv

DθD (Si)−
∑

Si−1∈Sadv

DθD
(
GθG (Si−1)

)
(5)

− λ1EŜ∼P(Ŝ)
[( ∣∣∣∇DθD (Ŝ)∣∣∣2 − 1

)2] (6)

+ λ2
∑

〈Si−1,Si〉∈Srec

∣∣Si − GθG (Si−1)∣∣1 (7)

+ λ3

( ∑
〈Si−1,ci〉∈Spred,0

L(ci,CθC (GθG (Si−1)) (8)

+

∑
〈Si,ci〉∈Spred,1

L(ci,CθC (Si))
)

(9)

where λ1, λ2 and λ3 are the hyper-parameters to control the
relative importance of gradient penalty, the reconstruction
and prediction losses respectively.

D. FORMULATION FOR TESTING PHASE
With missing segment Si whose preceding one Si−1 is present
in S, G(Si−1) simply is used to impute the missing segment.
In a real application to use our method, however, detecting
missing segments from a sequence of signals is another issue.
Fortunately, we can simply utilize the discriminator D to find

the missing segments. In our evaluation, we find that D often
fails to detect missing intervals if the signals definitely do not
look like EEG at all, for instance, simple uniform values or
random values. Thus, we additionally trainedD to detect such
cases as missing segments with synthetically generated non-
EEG signals.

IV. IMPLEMENTATION DETAILS
We implemented SIG-GAN using the machine learning
framework TensorFlow [48].

A. NETWORK ARCHITECTURE
For the encoder of generatorG, we borrow the architecture of
DeepSleepNet [49] which employs two sequences of convo-
lutional layers in parallel. As shown in Fig. 1, the encoder of
G takes the input signal through two different 1-dimensional
convolutional neural networks Encshort and Enclong whose
filter sizes are 11 and 101 respectively. This architecture aims
to capture the features that appear with high and low frequen-
cies adaptively. Each segment of signal involves 3, 000 EEG
signals since the sequence is split by every 30 seconds where
the data was sampled at 100Hz.

The detailed structure of SIG-GAN is shown on Table 1
and Table 2. A signal segment with 3, 000 dimensional vector
is fed into the encoder and we set same padding for the
dimension of time-axis to keep 3, 000 dimensionality while
the channel-axis is decreased from 32, 16 and 8 in both
Encshort and Enclong, i.e., the encoder has 64, 32 and 16 chan-
nels at each layer. The outputs of each encoder Encshort
and Enclong are then concatenated along channel-axis. After
that, we exploit reparameterization trick which is proposed
by [47]. Then, we put two layers of transpose CNNs for the
decoder.

TABLE 1. Network architecture of generator.

TABLE 2. Network architecture of discriminator/auxiliary net.

The discriminator D and auxiliary network C are simply
stacks of convolutional layers.They share the first three layers
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FIGURE 2. Classification accuracy with generated EEG signals with varying hyperparameters λ1, λ2 and λ3 with isolated other
variables.

whose channel-axis are varied from 8 to 32. Then, D and
C consist of fully-connected layer with a single and five
output nodes respectively. Remind that D is for judging a
segment real or fake and C classifies a segment into the five
sleep stages. We leverage ReLU activation function [50] in
the encoder to allow the model to learn fast, and we adopt
LeakyReLU activation function [51] to force the decoder to
generate high quality of the signal [24]. Moreover, we adopt
batch normalization [52] with every layer to relieve the prob-
lem of poor initialization [24].

The numbers in parentheses in Table 1 and Table 2 are the
number of filters, filter size and strides, e.g., (32, 11, 1) in the
second row means that the layer is structured with 32 filters,
11 sized filter and 1 stride.

V. EXPERIMENTS
In this section, we empirically evaluate the performance of
our proposed networks. We implement all deep neural net-
works using TensorFlow 2 on python 3.7. All experiments
reported in this section are performed on the machines with
Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz and 128GB
of main memory running Ubuntu 16 OS. We also utilize a
single GPU card NVIDIA GeForce GTX 1080 Ti equipped
with 11GB of memory.

A. TRAINING DETAILS
We utilize Adam optimizer [53] and set the batch size and
learning rate to 16 and 0.0001 respectively. We empirically
select the weights for gradient penalty, reconstruction and
prediction losses in Eqn. 5 as: λ1 = 10, λ2 = 100 and
λ3 = 1. Fig. 2 shows the performance evaluationwith varying
the loss weights; we tested the sleep stage classification with
DeepSleepNet [49] using a dataset with 12%missing values.
The graph shows the accuracy of classification with varying
λ1 from 0.1 to 1, 000, λ2 from 1 to 10, 000 and λ3 from 0.01 to
100 respectively. The performance does not differ much with
varying the weights and we determined the default setting
accordingly.

B. IMPLEMENTED ALGORITHMS
For comparative performance evaluation, we implemented
threemodels that impute missing data by generating synthetic
EEG signals as follows:

• RANDOM: This method imputes missing signals with
randomly sampled signals whose values are between−1
and 1. There are three strategies for sampling signals:
i) sampling a constant value repeatedly, ii) sampling
with a linear function, and iii) independently sampling
random value following a uniform distribution. To sam-
ple a constant value, it selects a random number in
range [−1, 1], and replace all missing signals with the
selected value. Linear signal sampling is to substitute the
missing part with a line whose slope and intercept are
randomly determined. Finally, the last method samples
random values in range of [−1, 1] following a uniform
distribution independently and identically as many times
as the number of missing signals. In our experiments,
we tested all three strategies for evaluation but they show
similar performance, and thus provide the result by using
the last method for RANDOM.

• EEGGAN: It is a GAN-basedmodel presented in [14] to
synthetically generate EEG signals. The model of EEG-
GAN adopts the progressive GAN [54] for its generator
based on the vanilla GAN model in [23] which does
not exploit auxiliary information such as sleep stages.
Thus, it does not utilize the sleep stage labels that are
available in our training datasets. EEGGAN consists
of 391,506 parameters in the generator and 303,461 in
the discriminator while it takes 0.14 G FLOPs for the
forward computation.

• SIGGAN: This represents our proposed model
described in Section III. SIGGAN is built with 90,345
and 58,462 weight parameters in the generator and
discriminator respectively, which requires much smaller
memory space than EEGGAN. For the time complexity,
it costs 0.54 G FLOPs.

1) EVALUATION TOOLS FOR GENERATED EEG SIGNALS
Note that the purpose of our technique is to replace missing
EEG signals with synthetically generated ones so that med-
ical software or devices dealing with EEG signals operate
normally without sacrificing performance much. Thus, in our
experiments, we assume automatic sleep stage scoring for
such application and utilize two deep learning-based classi-
fiers, which are DeepSleepNet [49] and SleepEEGNet [55].
These classifiers and the GAN-based EEG signal generators,
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FIGURE 3. Time-frequency representation visualization of real and generated signals.

SIGGAN and EEGGAN, are trained separately and their
synthetic signals are input to the classifiers to test if they still
work well. We implement both classifiers in TensorFlowwith
hyperparameters presented in each paper.

• DeepSleepNet [49]: It is a classifier that determines the
sleep stage with 30-second long EEG signal. It includes
two sequences of convolutional layers with different-
size filters, similar to our SIG-GAN model, for feature
recognition. To classify by considering preceding and
following signals, it also adopts the bi-directional long
short-term memory (LSTM) network.

• SleepEEGNet [55]: This is another classifier that scores
sleep stages, whose architecture is similar to that of
DeepSleepNet, but it adopts sequential encoder-decoder
structures using bi-directional LSTMand employs atten-
tion mechanism as well.

C. DATASET
For the training and test dataset, we downloaded a pub-
licly available Sleep-EDF database [56], which includes
153 recordings obtained from 44 healthy people and
22 patients who had mild difficulty falling asleep. Each
recording has as long as about 8 hours and sampled with
100 Hz frequency. Furthermore, the sleep stage of every
30-second long segment is scored manually by well-trained
practitioners according to R&K rule [57] and AASM [8]
which categorizes a segment into 5 classes (W, N1, N2, N3,
REM). For preprocessing, we normalize the data to be ranged
in [−1, 1].
In training phase, since our SIG-GAN takes two segments

each of which is sampled for 30 seconds as inputs, we sam-
pled 6,000 pairs of two segments from the downloaded Sleep-
EDF database. For validation in the training phase, we uti-
lize Monte Carlo cross-validation [58]; the data is split into
training, validation and test sets, which are 50%, 25% and
25% respectively. Moreover, in our training set, the sleep
stage ratio of segments in W, N1, N2, N3 and REM are
21%, 6%, 41%, 14% and 17% respectively. To mitigate the

problem of suffering from class imbalance, we oversampled
minor classes to balance their ratio as other works handling
EEG data did [49], [59], [60]. For all performance evalua-
tion, we repeated Monte Carlo cross-validation 10 times and
average the quality measures to show the performance.

D. REPRODUCIBILITY OF EEG SIGNAL FEATURES
We first test if the implemented EEG signal generators repro-
duce the realistic ones similarly to the real EEG signals.
For case study, we plot some selected real and synthetic
time series signals as well as spectrograms showing them
in the time-frequency domain. To figure out that the gener-
ated signals show similar distributions in their frequencies,
we examine the energy density over frequency by using band
pass filters.

1) SIGNALS IN TIME SERIES
In Fig. 3, we plotted some randomly selected samples for both
targeted and generated EEG signals. To see if we can obtain
the signals using SIGGAN showing the characteristics of
sleep stages appropriately, we show real and synthetic signals
labelled as W and N2. To select the 30-second segments
of SIGGAN for W and N2, we sampled pairs of segments
classified as the corresponding sleep stage by DeepSleepNet.
Due to the limit of space, we show only two pairs of samples
but we can see in the figures that the generated signal is quite
similar to the real one and they also mimic distinguishable
features in EEG signals according to the sleep stages.

2) QUALITY AND DIVERSITY
Evaluation of the performance of generative models is open
problem. To evaluate quality and diversity of generated
signal, we measure inception score (IS) [61] and Frechet
inception distance (FID) [62]. IS measures the quality and
diversity based on computing KL-divergence between the
class distribution given generated sample and marginal class
distribution using the pre-trained inception networks [63].
IS is formulated as IS = exp

[
ExDKL

(
p(y|x)||p(y)

)]
where
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FIGURE 4. Time-frequency representation of real and synthetic signals.

TABLE 3. Quality and diversity.

x is generated sample by a GAN model and y is predicted
class by the pre-trained inception model. Since we cannot
directly exploit pre-trained inception networks using Ima-
geNet dataset, we train only sub-part of DeepSleepNet which
consists of convolutional neural networks instead. Similarly,
various GAN based works apply well known classifiers rather
than inception networks to evaluate IS and FID for each
domain such as audio synthesis [64], [65] and EEG sig-
nal generation [14]. We calculate and compare our IS with
real signal, RANDOM and EEGGAN at second column in
Table 3. At the first row, the score 2.53 indicates upper bound
of IS. The results prove that our method is comparably higher
than baselines. It indicates that generated signal by SIGGAN
has better quality and diversity than baselines.

Although IS has been the first popular metric to eval-
uate GANs, it does not utilize any ground truth samples.
Therefore, FID [62] has been proposed to capture the sim-
ilarity of generated samples to real ones. FID embeds gen-
erated samples and real ones into feature space respectively
using the pre-trained inception network. Then the embedded

features are estimated as continuous multivariate Gaussian.
FID measures distance between those two Gaussian distri-
butions using formula such as FID(r, x) = |µr − µx |22 +
Tr(6r + 6x − 2(6r6x)

1
2 ) where (µr , 6r ) and (µx , 6x) are

the mean and covariance of the samples of real ones r and
generated ones x respectively. In Table 3, we produce FID
between real signal and others. Since real signal has zero dis-
tance between itself, FID of real signal is 0 and it is the lower
bound of FID. The results show that generated signal using
ours is the closest distance whereas FID of RANDOM and
EEGGAN are way more higher. It proves that the suggested
model generates the most similar signal to real signal.

3) TIME-FREQUENCY REPRESENTATION
By simply plotting the EEG signals in time domain, it is
hard to find characteristics of them in terms of frequency.
To represent signals over time and frequency simultaneously,
we show time-frequency representation (TFR) of the selected
ones in Fig. 4. In Fig. 4(a) and Fig. 4(b), we plotted the
real (left) and generated (right) signals of sleep stage N2
and N3 respectively. The TFRs also show that the generated
signals closely resemble the real EEG signals.

In addition, we also select two segments by EEGGAN
randomly and show their TFRs in Fig. 5. Note that because
EEGGAN does not take any auxiliary inputs such as sleep
stages, we cannot choose the segments with a specific sleep
stage. We discover that almost TFRs of the signals by EEG-
GAN show the similar patterns shown in Fig. 5 and they

151760 VOLUME 9, 2021



W. Lee et al.: Contextual Imputation With Missing Sequence of EEG Signals Using GANs

FIGURE 5. Examples of two segments generated by EEGGAN.

FIGURE 6. Magnitude distribution over frequency with real signals and those generated by SIGGAN.

do not preserve the features of real EEG signals as shown
in Fig. 4.

4) BAND PASS FILTER
In Fig. 6, we plotted the magnitude distribution over fre-
quency domain with the real and synthetic signals generated
by SIGGAN. To see if the generated ones reproduce the con-
textual features of EEG signals shown in frequency domain,
we calculated the distribution with three sleep stages W, N3
and REM separately. For the analysis, we utilized 10 band-
pass filters whose bands of frequencies are ranged from 0Hz
to 30Hz by interval of 2Hz. According to AASM sleep stage
scoring manual in [8] and the research on brain waves about
sleep stages [66], it is known that EEG signals labelled W
show relatively high magnitude in high frequencies including
alpha (8–12Hz) and beta (12–30Hz) waves while those are
recorded in N3 and REM. It also states that when people fall

in deep sleep, the signals in low frequencies become stronger
than other frequencies. The graphs in the first column of
Fig. 6 show that the average andmaximummagnitude in each
band has a peak in high freqencies at about 16–22Hz in both
the real and synthetic EEG signals similarly. Furthermore,
as known as that REM shows typically large amounts of theta
(4–8Hz), the graphs in the last column of Fig. 6 also confirm
that the signals generated by our SIGGAN look very realistic
similarly to the real world EEG signals. Most of distribution
with fake signals generated by EEGGAN, however, shows
similar one to the graph in Fig. 7 without varying in sleep
stages.

E. EVALUATION BY SLEEP STAGE SCORING
Our SIGGAN model aims to impute missing EEG signals
with the realistic synthetic data generated based on the pre-
ceding signals so that any devices and software utilizing
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FIGURE 7. Magnitude distribution over frequency with signals generated
by EEGGAN.

TABLE 4. Classification accuracy with individual segments.

EEG signals measured by polysomnography (PSG) study.
Thus, it is desirable that the segment generated to impute the
missing part preserves the correct sleep stage score if it was
correctly measured without failure. In our experiment, we test
if the generated signals are correctly classified to preserve the
quality of data in EEG applications.

1) CLASSIFICATION WITH INDIVIDUAL SEGMENTS
To evaluate the performance in EEG applications, we sam-
pled a test dataset by sampling 5,762 pairs of adjacent
30-second segmentations as ground truth, and tested if the
applications such as DeepSleepNet and SleepEEGNet can
identify the sleep stages of the generated EEG segments,
which are output by SIGGAN based on the first 30-second
signals, correctly as the same labels as the ground truth
segments have. Note that we selected the test dataset to be
evenly distributed over sleep stages.

Overall, DeepSleepNet classifies the signals generated by
SIGGAN into its correct sleep stage scores with 65.67%
of accuracy in average while it is 82.85% for real signals
as shown in Table 4. In Fig. 8, we depict the confusion
matrices that DeepSleepNet produces with the test dataset.
In each matrix, a row represents the ratio of each sleep stage
which are classified into each sleep stages by DeepSleepNet.
The results show that DeepSleepNet achieves about 80% of
accuracy with the ground truth dataset as shown in Fig. 8(a).

Fig. 8(a) indicates us that since the real EEG signals of
N1 and R stages look similar (e.g., they typically have a large
amount of low frequency such as alphawaves),DeepSleepNet
often confuses them as demonstrated in the second and last
rows. Similarly, for the synthetic EEG signals by SIGGAN,
the classification tends to be wrong with the stage R as shown

FIGURE 8. A comparison of confusion matrices between real signal and
generated signal using a deep learning classifier trained by real signal.

in Fig. 8(b), but it still obtains reasonably high accuracy for
the signals of N1 and R. For sleep stages N2 and N3 which
are characterized by slow frequency and high amplitude such
as delta waves, we can find that the classifier shows quite
low accuracy with real EEG signals, and hence becomes
to confuse the segments of N2 and N3 with the generated
signals as shown in the third row of the confusion matrix
in Fig. 8(b). The reason why the missing part of N3 stage
is largely misclassified into N2 is that in the original training
data used for fitting our GANmodel, the signals of N3, which
represents the deepest stage of sleep, was not long enough.
Thus, SIGGAN tends to generate signals of N2 instead
of N3.

2) CLASSIFICATION WITH EEG SIGNAL SEQUENCES
With varying the ratio of missing data in the signal sequences
(missing from 0% to 50%), we tested the accuracy of sleep
stage scoring byDeepSleepNet and SleepEEGNet and plotted
the results in Fig. 9. We evaluated the performance with
three EEG signal generators RANDOM, EEGGAN and SIG-
GAN. For RANDOM and EEGGAN, we cannot force them
to consider the preceding signals for imputing the missing
data with considering the context, the missing segments were
replaced with the one generated by them independently and
individually. For SIGGAN, we generated segments for the
missing ranges by providing the previous measured EEG
signals. Since the segments are randomly dropped each the
selected probability when we create the test dataset, we
simply generate the next segment using the previous one
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FIGURE 9. Classification with EEG signals imputed by SIGGAN, EEGGAN
and RANDOM; The black line indicates the best accuracy we can achieve
with the ground truth.

which is also an output of SIGGAN if missing segments
are located continuously. Both graphs confirm that SIGGAN
outperforms significantly the other methods with all ranges
of missing data ratios; DeepSleepNet does not suffer from
performance degradation much using ours, even we remove
the segments by 48% where it shows 75.75% of accuracy.
Note that the classifier achieves the accuracy of 82.94% with
the ground truth dataset. For the other application SleepEEG-
Net, the accuracy of the algorithm with imputed signals using
SIGGAN is only decreased by 1.47% for 50% of missing data
ratio.

3) DISCOVERING EFFECTS OF EACH COMPONENT
We have designed experiments to explore effect of each
component in our model. Hence, we train SIGGAN without
each component and evaluate the performance as we have
done in the previous section Classification with individual
segments.

We first train SIGGGAN without adversarial loss which
are GAN loss (Eqn. 5) and gradient penalty loss (Eqn. 6).
In Table 4, the result shows that the model achieves only
45.05% accuracy without adversarial loss. Although the
model still acquires reconstruction loss and prediction loss,
it does not properly learn and generate signals. It means
that GANs are the essential part of the model. Moreover,
we investigate how the auxiliary classifier affect the model
performance in Table 4. The results shows that our model
with auxiliary classifier is better than without it. In addition,
we reveal the contribution of each loss function in Table 4

FIGURE 10. Comparison between target signal and without
reconstruction loss. The first row shows the target signal. The second row
represents generated signal without reconstruction loss. Without
reconstruction loss, the generated signal includes high frequency noise.

such as gp-loss and prediction loss. Without each loss func-
tion, the generated signal does not work well with a classifier
as proposed one. Without gp-loss, the accuracy is 62.61%,
and without prediction loss, the accuracy is only 24.29%.
It shows that for each component in the model and loss
function are required to perform the best result. Moreover,
we train the model without reconstruction loss and evaluate
the performance. The accuracy is 71.52% as we can see in
Table 4. It is the best classification performance. However,
our goal is to generate realistic signal whereas the generated
one without reconstruction loss is not as shown in Fig 10. The
figure shows that generated signals contain high frequency
noise. We compare distance between real (targeted) signal
and generated signal using suggestion as well as generated
one without reconstruction loss. The average L2 distance
from ours is 6.53 and generated without reconstruction loss
is 7.00. We obtain that the p-value between two distances is
0.0034 (<0.5) using t-test. Therefore, generated signal using
ours is significantly similar to real signal than generated one
without reconstruction loss. We analyze that the reconstruc-
tion loss boosts the model to generate signals to be realistic
as target signals, however without the reconstruction loss, the
model focuses on prediction loss. Consequently, the model
produces high accuracy but unrealistic signals without recon-
struction loss.

VI. CONCLUSION
In this paper, we developed SIG-GAN, a GAN-based deep
neural network to impute missing data in the sequences of
EEG signals. The proposed model was devised to acquire
the context from precedent signals and create realistic signals
using auxiliary labels such as sleep stages. In the experiments,
we validate that the proposed model not only generates real-
istic EEG signal compared with real signal but also the pro-
duced signals reproduce sleep stages, which is an important
characteristic of EEG signals, better than the recent GAN-
based model. Using existing automatic sleep stage scoring
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models, we demonstrate that the models still work correctly
with the imputed dataset, and our model generates missing
EEG signals realistically in terms of sleep stages.
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