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ABSTRACT Efficient modeling and forecasting of electricity prices are essential in today’s competitive
electricity markets. However, price forecasting is not easy due to the specific features of the electricity price
series. This study examines the performance of an ensemble-based technique for forecasting short-term
electricity spot prices in the Italian electricity market (IPEX). To this end, the price time series is divided
into deterministic and stochastic components. The deterministic component that includes long-term trends,
annual and weekly seasonality, and bank holidays, is estimated using semi-parametric techniques. On the
other hand, the stochastic component considers the short-term dynamics of the price series and is estimated
by time series and various machine learning algorithms. Based on three standard accuracy measures, the
results indicate that the ensemble-based model outperforms the others, while the random forest and ARMA
are highly competitive.

INDEX TERMS Electricity prices, forecasting, semi-parametric, IPEX, autoregressive.

I. INTRODUCTION
Before the liberalization of the electricity sector, the electrical
industry was fully controlled by utility companies, generally
state-owned. These utility companies were responsible for
the generation, transmission, distribution, and retailing of
electricity. In the early 1980s, the global electric industry
underwent major changes. The monopolistic electric sector
was restructured into a deregulated competitive electricity
market. The Public Utility Regulatory Policies Act of 1978
(PURPA) was enacted following the energy crisis of the
1970s to encourage cogeneration and renewable resources
and promote competition for electric generation [1]. Soon
after, the deregulation process started in Chile in 1982 by
introducing the electricity act that dissolved the state-owned
monopolistic structure by commercialization and part privati-
zation, followed by large-scale privatization in 1986. In 1990,
the British electricity sector started its liberalization process,
followed by Norway in 1992. Nowadays, many countries in
the world have their own liberalized electricity market.

Liberalization brought important benefits to end con-
sumers such as low prices, more choices, reliable and
secure electric supply. However, modeling and forecasting of
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different variables related to electricity market became chal-
lenging due to the specific features introduced to this market.
As electricity is a commodity that is different from other
commodities in terms of its natural and physical qualities [2],
electricity price forecasting is very complex due to many
characteristics, including non-constant mean, high volatility,
spikes or jumps, also known as extreme values [3]. In addi-
tion, electricity price prediction is generally required into
three time horizons: short, medium, and long-term price
prediction [4]. Price prediction for a few hours to a week
is generally classified as short-term forecast (STF) which
is essential for different market participants. STF helps the
producers to plan the electric generation more efficiently.
Other market participants require STF to develop superior
bidding strategies and maximize profits in day-to-day mar-
kets [5]. A medium-term forecast (MTF) refers to a forecast
made over a period ranging from a few weeks to several
months. The electricity market participants require MTF for
a variety of tasks, including maintenance scheduling, genera-
tion growth planning, designing investment, fuel contacting,
and hedging plans [6]. The long-term price forecast (LTF)
generally covers a period ranging from a few months to many
years and is commonly used for site planning and selection,
investment profitability analysis, and inducing power plant
fuel sources [7].
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The electricity prices exhibit specific characteristics that
include seasonality, volatility, trend, jumps or spikes, etc. [8]
and forecasting is more difficult in the presence of these
unique characteristics. Due to the highly unpredictable
and uncertain nature of the electricity price series, in the
past, extensive studies have been made on the problem
of electricity prices forecasting using different modeling
techniques and procedures. To forecast electricity prices,
statistical models such as regression models, time series
models, and probabilistic models are commonly used. In the
literature, there are a variety of time series models, such as,
autoregressive (AR), moving average (MA), autoregressive
moving average (ARMA), autoregressive integrated mov-
ing average (ARIMA), vector autoregressive (VAR), vector
autoregression moving-average (VARMA), seasonal autore-
gressive integrated moving-average (SARIMA), seasonal
autoregressive integrated moving-average with exogenous
regressors (SARIMAX), autoregressive conditional het-
eroskedasticity (ARCH), and generalized autoregressive con-
ditional heteroskedasticity (GARCH) are commonly used
for a day-ahead electricity price forecasting [9]–[13]. For
next-day electricity prices forecasting, [11] used a nonlin-
ear classical time series model, GARCH, and compared the
results to the ARIMA model. They evaluated the proposed
methodology on Spanish and California data for hourly elec-
tricity prices and observed that the GARCH is significantly
more accurate than the ARIMA. One of the most signifi-
cant steps in power prediction is the shift from a determin-
istic view to a probabilistic view [14]–[18]. For example,
to forecast next-day electricity prices, [17] proposed two
modeling strategies, i.e., dynamic regression and transfer
function. They used Spanish and Californian market data
to evaluate the performance of their proposed methodology.
For both markets, the average errors for the weeks analyzed
were very low, i.e., approximately 3% and 5%, respectively.
Artificial intelligence (AI) models are used to address non-
linear price forecasting issues that are not properly captured
by linear time series approaches. The AI or machine learn-
ing (ML) approaches have been applied to forecast electricity
prices and demand. Artificial neural networks, support vector
machine, and long-short term memory (LSTM) models are
widely used for electricity price forecasting problems in the
literature [19], [20]. For instance, [20] proposed four differ-
ent deep learning models, i.e., deep neural network (DNN),
LSTM, gated recurrent unit (GRU), and convolutional neural
network (CNN) for electricity price forecasting. To access
the accuracy of these models, they set up a large benchmark
study. The results showed that the proposed four models
provide the best results with DNN ismore accurate among all.
In the literature, a combination of different models and algo-
rithms are used to improve forecast accuracy. Multivariate
models including functional models are used to forecast one-
day-ahead electricity prices [21]–[24]. For instance, [25] used
parametric and nonparametric functional models to forecast
one-day-ahead electricity prices for five different electricity
markets. The results indicated that functional modeling is

more efficient in predicting electricity prices than classical
univariate and multivariate models. Forecast combination
is often described as one of the most effective forecasting
strategies. Ensemble modeling is a process in which many
individual models are built to predict an outcome, either
using a variety of modeling algorithms or different training
data set [26]. Nowadays ensemble-based modeling frame-
work is commonly used in the literature to improve forecast
accuracy [27]–[32]. For example, [29] proposed an ensemble
method which is a combination of empirical mode decom-
position(EMD), support vector regression (SVR), and kernel
ridge regression (KRR), for forecasting electricity prices in
the short-run. Data from the Australian Energy Market Oper-
ator (AEMO) is used to access the performance of the EMD-
KRR-SVR method. Six benchmark learning algorithms were
used to check the accuracy of the proposed method. The
results showed that the suggested approach is more efficient
and accurate than the benchmark.

Although different models and techniques have been pro-
posed in the literature for electricity price forecasting, none
consistently provide accurate forecasting results. In addition,
none of these works apply the ensemble approach in the
context of component estimation techniques. Furthermore,
in general, they do not provide any inferential analysis to test
differences in the prediction accuracy of the considered mod-
els. Therefore, the main contribution of this research work
is the investigation of the ensemble-based approach in the
context of component estimation techniques. Furthermore,
the forecasting performance is evaluated on a whole year,
and the significance analysis of the differences in prediction
accuracy is also investigated. In addition, the proposed model
can capture the specific features of the electricity price series,
leading to higher forecasting accuracy gain.

The rest of the article is organized as follows: Section II
describes the methods and models used in this study. The
description of the data and an application of the proposed
methods and models to the Italian electricity market is given
in Section III. The conclusion is given in Section IV.

II. GENERAL MODELING PROCEDURE
The main aim of this research is to forecast one-day-ahead
electricity prices by using an ensemble-basedmodeling struc-
ture. As stated, the power price series exhibits a set of dif-
ferent features, and to accurately capture them in a model,
the deterministic component filters the price series first, and
then the residual component is simulated using a combination
of time series and different machine learning algorithms.
Once both the components are estimated separately, the final
forecasts are obtained by combining the estimates of both
deterministic and stochastic components.

Let Pd,j denotes the price series for the d th day and jth hour.
Then, the price dynamics of Pd,j can be described as follows:

Pd,j = ϕd,j + δd,j (1)

In other words, the price series Pd,j is divided into
two major components: ϕd,j and δd,j, which represent the
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deterministic and stochastic components, respectively. The
short-run dynamic is accounted by the component δd,j. On the
other hand, the long-run dynamics, different periodicities
(yearly and weekly cycles), and calendar influences are all
included in the ϕd,j component. When they are taken into
account, ϕd,j is modeled as follows:

ϕd,j = td,j + ad,j + wd,j + cd,j (2)

where td,j represents the long-trend, ad,j and wd,j are the
annual and weekly cycles, respectively, and cd,j is the calen-
dar effects. Instead of accounting for the daily periodicity in 2,
each load period is modeled separately. Finally, the stochastic
component δd,j (residuals) is modeled as

δd,j = Pd,j − ϕ̂d,j
δd,j = Pd,j − (t̂d,j + âd,j + ŵd,j + ĉd,j) (3)

which is modeled by different linear and non-linear models.

A. MODELING AND FORECASTING DETERMINISTIC
COMPONENT
The estimation and forecasting of the deterministic com-
ponent ϕd,j is explained in this section. To capture the
different components described in 2, this study considers
a semi-parametric approach using the generalized additive
modeling technique. That is, penalized smoothing splines
are used to model the long-run component (trend) td,j and
the yearly component ad,j, with the series of td,j and ad,j
considered as a functional objects of the time and yearly
cycle. Dummy variables are used to describe weekly cycle
wd,j and bank holidays cd,j. In the case of weekly periodicity,
seven dummy variables are required, i.e., wd,j=

∑7
i=1γiId,j

where Id,j= 1 if d is the ith day of the week, and 0 otherwise.
In the case of bank holidays, only two dummy variables are
used, i.e., cd,j=

∑2
k=1αk Id,j, where Id,j = 1 if d indicates a

bank holiday and 0 otherwise. The parameters γi and αk are
estimated using the ordinary least squares (OLS) methods.
Once these components are estimated, their one-day-ahead
forecasts are straightforward as all these components are the
deterministic functions of time or calendar conditions.

B. MODELING AND FORECASTING STOCHASTIC
COMPONENT
Following the estimation of the deterministic components
using a semi-parametric approach, the stochastic (residual)
component δd,j is modeled using a combination of autoregres-
sive moving average (ARMA) and different machine learning
models, such as neural network auto-regressive (NAR), ran-
dom forest (RF), support vector regression (SVR), gradient
boosting machine (GBM), and an ensemble model based on
these methods. Once these models are estimated and a one-
day-ahead forecast is obtained for each model, the final one-
day-ahead out-of-sample forecast is obtained by combining
both the deterministic and stochastic components as follows.

P̂d+1,j = (t̂d+1,j + âd+1,j + ŵd+1,j + ĉd+1,j + δ̂d+1,j)

P̂d+1,j = ϕ̂d+1,j + δ̂d+1,j (4)

The details about each model used for the estimation of the
stochastic component is given in the following.

1) AUTOREGRESSIVE MOVING AVERAGE (ARMA) MODELS
A powerful tool for modeling univariate time series is an
autoregressive moving average (ARMA) model. In general,
an ARMA model is a combination of autoregressive (AR)
and moving average (MA) models. The mathematical form
for an ARMA of order (s, r), abbreviated as ARMA(s, r), is as
follows.

δd,j = β + (
s∑
i=1

ψiδd−i,j)+ (
r∑

k=0

ϑkζd−k,j) (5)

where β represents the constant term (intercept), ψj (j =
1, 2, · · · , s) and ϑi (i = 0, 1, 2, · · · , r) are the AR and
MA parameters, respectively, and ζd−r,j is a white noise
series with zero mean and variance σ 2

ζ . In general, different
information criteria or auto-correlation function (ACF) and
partial auto-correlation function (PACF) are used to specify
the order of s and r .

2) ARTIFICIAL NEURAL NETWORK AUTOREGRESSIVE (NNAR)
Generally, a neural network is a network or circuit of neurons.
An artificial neural network is made up of artificial neurons
or nodes. Modeling complex nonlinear relationships between
the response variable and its predictors are possible using
neural network models. A feedback neural network is assem-
bled with delayed time series values as input and a hidden
layer with dimension nodes. There are at least three layers of
nodes in an autoregressive neural network (NNAR): an input
layer, a hidden layer, and an output layer. The outputs of one
layer are used as inputs to the next. The nonlinear autore-
gressive neural network can be trained to forecast a time
series δd,j given its previous values δd−1,j, δd−2,j, · · · , δd−p,j,
which are referred as feedback delays, with d is the time delay
parameter. The termNNAR(p,k) implies that the hidden layer
contains p delayed inputs and k nodes. An NNAR(p,0) is the
same as an ARMA(p,0), but it does not include the limita-
tions of the parameters that ensure stationarity. A nonlinear
autoregressive neural network used for time series prediction
can be described as follows.

δd,j = γ (δd−1,j, δd−2,j, . . . , δd−p,j)+ ζd,j (6)

Since the γ (.) function for the next day is unknown, the
neural network training aims to approximate it by optimiz-
ing the network weights and neural bias. Consequently, the
following equation precisely specifies an NNAR model.

δd,j = α +

p∑
i=1

αiθ (
q∑

k=1

φkiδd−k,j + φi)+ ζd,j (7)

where q is the number of entries, p is the number of hidden
layers with activation function θ , and φki is the parameter
corresponding to the weight of the connection between the
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FIGURE 1. Flowchart of the proposed modeling framework.

input unit k and the hidden unit i, αi is the weight of the
connection between the hidden unit i and the output unit, and
φi and α are the constants that correspond to the hidden unit i
and the output unit, respectively. In this work, NNAR(2,3) is
used which implies that the hidden layer contains 2 delayed
inputs and 3 nodes.

3) RANDOM FOREST (RF)
Random decision forests, often known as random forests,
are ensemble learning methods for classification and regres-
sion that work by training a large number of decision trees.
Breiman et al. [33] presented the procedures of random for-
est (RF), classification and regression tree (CART). In 1996,
Breiman proposed another significant RF technique called
Bagging [34]. The RF is awell-knownmachine learning algo-
rithm that falls within the supervised learning category. The
RF algorithm is applied in a wide range of areas, including
finance, stock trading, health care, and e-commerce. It pro-
duces a forest out of a collection of decision trees that are
often trained using the bagging method. The RF algorithm
determines the outcome based on the decision trees’ predic-
tions. It forecasts by averaging the output of various trees.
The precision of the result improves as the number of trees
grows. The higher the number of trees in the forest, the more
accurate it is and the problem of over-fitting is avoided.

The random forest training algorithm uses the common
technique of bootstrap aggregation, or bagging, to train tree
learners. Bagging repeatedly (M times) takes a random sam-
ple with replacement of the training set and fits trees to these

samples given a training set Y = y1, . . . , yn with responses
X = x1, . . . , xn. For m = 1, . . . ,M , the algorithm works as
follows.

1. Sample m training data points from X and Y with
replacement and denote them Ym and Xm.

2.Train a classification or regression tree fm on Ym and Xm.
After training, summing the predictions from all the vari-

ous regression trees on y′ can be used to make predictions for
unseen samples y′.

f̂ =
1
M

M∑
m=1

fm(y′) (8)

By reducing the variance of the model without increasing
the bias, this bootstrap approach improves the performance
of the model. In the case of classification trees, the majority
vote is used.

4) GRADIENT BOOST MACHINES (GBM)
The gradient boost machine (GBM) is a type of ensemble
learning that uses a sequential learning process to create a
good classification or regression model. Initially, the data
are fitted to a regression tree, and predictions and the initial
residual are produced based on this information. A newmodel
is fitted to the previous residual, followed by a new forecast,
which includes the initial forecast and finally a new residual.
This procedure is continued iteratively until a convergence
condition is satisfied. At each iteration, a new model is fitted
to the data to compensate for the deficiencies of the prior
model.
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The GBM algorithm works best when the contribution of
the additional decision tree is minimized at each step of the
iteration by using shrinkage parameter β, also known as the
learning rate. In the GBM, the idea behind the shrinkage
procedure is that more small passes provide greater precision
than fewer large passes. The learning parameter β has a
range of values between 0 and 1; the smaller the value, the
more accurate the model. However, because the value of β is
inversely proportional to the number of iterations, choosing
a stronger shrinkage (smaller β) implies a higher number
of iterations to achieve convergence. The following steps
provide a simplified illustration of this algorithm:

1. Sets the hyper parameters of GBM: depth of the decision
trees τ , the number of iterations p, the shrinkage parameter β,
and the fraction of the subsample, n.

2. Set ζ0 = x and f = 0 for the residual. The mean value of
x has also been proposed as an initial estimate of f .

3. For p = 1,2,. . . ,P, follow:
a. Select a subsample {xi, yi}N

∗

at random from the
entire training dataset, where N ∗ is the number of data points
corresponding to the fraction n.

b. Fit a decision tree f p of depth τ to the residual ζp−1
value using {xi, yi}N

∗

.
c. Add the decision tree to the model to update f .

f (y)← f (y)+ βf p(y) (9)

d. Update the residual

ζp← ζp−1 − βf p(Y ) (10)

There are four hyperparameters in the GBM: (1) decision
tree depth (τ = 1), which also affects the model’s maximum
interaction order, (2) number of iterations (p), which is same
as the number of decision trees, (3) learning rate (β = 0.001),
which is normally a small positive value between 0 and 1, (4)
fraction of the subsample (n), which is the percentage of data
used in each iteration step.

5) SUPPORT VECTOR REGRESSION (SVR)
Support vector machine can also be applied as a regression
approach while retaining all of the algorithm’s key properties
(maximal margin) [35]. With a few minor exceptions, the
support vector regression (SVR) uses the same classification
concepts as the SVM. The SVR involves finding support vec-
tors adjacent to a hyperplane that optimizes the gap between
two-point classes based on the difference between the target
and a threshold. The SVR uses kernel functions to calculate
the similarity between two observations to handle non-linear
situations. The capability of the SVR to capture predictor
non-linearity and then use it to improve forecasting situations
is one of the key advantages of using it. The SVR helps to
determine howmuch error is acceptable in themodel. Support
vector regression equation with kernel function can bewritten
as

δt,j =

P∑
i=1

(βi − β∗i )K (yi, y)+ α (11)

The kernel function, K (yi, y), represents the inner product,
while α is accommodated within the kernel function.

K (yi, yk ) = exp

(
−
‖yi − yk‖2

2σ 2

)
(12)

where ‖yi − yk‖2 is the Euclidean distance between the two
feature vectors squared.

6) ENSEMBLE MODEL
Ensemble methods are strategies that combine multiple
models to achieve better results. In most cases, ensemble
approaches providemore accurate results than a singlemodel.
In many machine learning competitions, the winning solu-
tions used ensemble approaches. In this work, five models
are used to make an ensemble namely, autoregressive moving
average (ARMA), neural network auto-regressive (NAR),
random forest (RF), support vector regression (SVR), and
gradient boosting machine (GBM). To make an ensemble
model weighting scheme is applied. A weighted average
ensemble is a method for allowing different models to con-
tribute to a forecast in proportion to their level of confidence
or estimated performance. The contribution of each member
to the final forecast is weighted by the model’s performance
in a weighted ensemble, which is an extension of a model
averaging ensemble. The model weights are small positive
values and the sum of all weights equals one, indicating
the percentage of trust or expected performance from each
model.

7) NAÏVE MODEL
This study used the benchmark model proposed by [36].
Although it is a naïve model, the forecasting accuracy of this
approach is much better when compared with other naïve
models. This method forecasts a day based on the information
contained in all the preceding days. For example, if we are
interested in predicting a Saturday, we select the day before
Saturday, i.e., Friday. We then compare this Friday with all
available Fridays in the training set and calculate their errors.
Based on the error, we decide which Friday is more similar
to the current Friday. Once a similar Friday is identified,
we select the next day to the selected Friday, i.e., Saturday,
and use it as a forecast for the Saturday we are interested in.
We do the same procedure for all days of the week and for the
whole year.

III. OUT-OF-SAMPLE PRICE FORECASTING
The electricity price data from the Italian electricity mar-
ket (IPEX) is used in this work to evaluate the forecasting
performance of different models. The IPEX is an important
electricity market that is fully liberalized since 2007. For this
study, the data includes 52584 observations over 2191 days,
ranges from January 1st, 2014 to December 31st, 2019. The
data collection contains 24 observations for each day corre-
sponds to a load period and the prices are given in Euro/MWh.
The descriptive statistics for the data under study are given
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FIGURE 2. IPEX: Electricity price time series from January 1st, 2014 to December 31st, 2019.

TABLE 1. IPEX: Descriptive statistics for electricity price time series for
the period January 1st, 2014 to December 31st, 2019.

in Table 1. The table provides the minimum, the maximum,
and the mean prices as well as the standard deviation of
the weekdays’ prices. The table shows that the minimum
price reaches 0.10 for Wednesday and Sunday while the
maximum price is 324.20 for Tuesday. The mean prices for
the weekdays range from 48.70 to 59.34. The last column
provides the standard deviation values for each day of the
week, while the last row describes the descriptive statistics
for the whole electricity price time series. For modeling and
forecasting, the data set is divided into two groups: For model
identification and estimation, we used data from January 1st,
2014 to December 31st, 2018 (43824 hourly observations/
1826 days), and January 1st, 2019 to December 31st, 2019

TABLE 2. Electricity Prices: Mean absolute error (MAE), root mean square
error (RMSE) and Person correlation coefficient (R) for one-day-ahead
out-of-sample forecast.

(8760 hourly observations/ 365 days) for analyzing the mod-
els’ one-day-ahead out-of-sample forecasting accuracy using
the expending window technique. The electricity price time
series is plotted in Figure 2 where the vertical red dotted
line divided the estimation and out-of-sample forecasting
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TABLE 3. P-values for the DM test. Null hypothesis: equal prediction accuracy, alternative hypothesis: model in the row is more accurate than model in
the column (squared loss function used).

periods. The main reason for using a whole year as an out-
of-sample forecasting period is to assess the performance of
each model in every type of situation during a year. Since
the prices vary throughout the year, with some periods pro-
ducing extreme prices, evaluating models’ performance on a
complete year is a more realistic approach. The deterministic
component is first estimated and forecasted to obtain the
stochastic (residual) part. For the stochastic component, all
the models are used to estimate and forecast the stochastic
component. This study considers three standard accuracy
measures, namely mean absolute error (MAE), root mean
squared error (RMSE), and Pearson correlation (R), to assess
the model’s forecasting performance. Mathematically, they
are defined as

MAE = mean(|Pd,j − P̂d,j|)

RMSE =
√
mean(Pd,j − P̂d,j)2

R = corr(Pd,j, P̂d,j).

The observed and forecasted prices for the dth day (d =
1, 2, . . . , 365) and the jth load period (j = 1, 2, . . . , 24) are
Pd,j and P̂d,j, respectively.
Table 2 shows the out-of-sample one-day-ahead forecast

findings for the entire year 2019. The models used to estimate
the stochastic component are listed in the first column. The
MAE, RMSE, and R are the accuracy measures listed in
the second, third, and fourth columns, respectively. From the
table, it is clear that the ensemble-based model outperforms
the individual models in terms of forecasting. The ensemble
model produced 5.05, 6.66, and 0.85 values for the MAE,
MSE, and R, respectively. Second, the ARMA with MAE
5.18 and RF with MAE 5.23 achieved slightly better results
suggest that they are strong competitors. The results of the
NNARwithMAE 5.29, GBMwithMAE 5.30, and SVRwith
MAE 5.39 are also good, but not satisfactory as compared to

the MAE of the ensemble model. Moreover, the forecasting
accuracy of the naïvemodel is much lower than all other mod-
els used in the study. This shows that the current modeling
framework is efficient in predicting one-day-ahead electricity
prices.

Several methods are available in the literature to com-
pare the performance of different forecasting models [37].
In this work, the Diebold and Mariano (DM) [38] test is
used to determine the significance of the differences between
the results reported in Table 2, and the results are listed in
Table 3. The null hypothesis of the DM test corresponds
to equal forecast accuracy, while the alternative hypothesis
states that the model in the row is more accurate than in the
column. The DM results listed in Table 3 indicate that the
proposed ensemble model is statistically significant than all
other models. In addition, the proposed modeling structure is
also statistically significant than the naïve model.

Finally, the obtained results are compared with the results
provided in the literature and found to be highly comparative.
It is worth mentioning that such comparisons are very diffi-
cult as different authors use different indicators, forecasting
periods, and forecasting horizons. For example, the work
of [39] reported anMAEof 8.58, whereas we obtained a value
of 5.05with the ensemblemodel. Ref. [40] reported an RMSE
of 11.58 obtained with an ARX-EGARCH model, whereas
we obtained 6.66with the ensemblemodel. Ref. [41] obtained
an RMSE of 16.72 and 15.79 using ARMA and GARCH
models, respectively, which is considerably higher than our
value of 6.66.

IV. CONCLUSION
The forecasting problem of electricity prices in the recently
liberalized market is analyzed in depth in this work. In com-
petitive electricity markets, efficient modeling and forecast-
ing of electricity prices are essential as forecasts are necessary
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for risk management, trading, and future planning because
prices and demand are determined one day before physical
delivery. However, price forecasting is not easy as electric-
ity prices can have complex characteristics, such as high
volatility, seasonality, calendar impact, non-stationarity, non-
linearity, mean reversion, etc. Thus, this research work aims
to propose an ensemble-based technique to improve predic-
tion accuracy by combining time series and different machine
learning algorithms. To this end, the deterministic component
filters the price series first, and then the residual component is
modeled using an ensemble-based method to accurately cap-
ture the specific properties of electricity prices in the model.
The deterministic component that includes long-term trends,
annual and weekly seasonality, and bank holidays, is esti-
mated using a semi-parametric approach. The stochastic com-
ponent, on the other hand, considers the short-term dynamics
of the price series and is modeled by the autoregressive mov-
ing average (ARMA), and various machine learning algo-
rithms, including neural network autoregressive (NNAR),
random forest (RF), support vector regression (SVR), gra-
dient boosting machine (GBM). After modeling the deter-
ministic and stochastic components individually, the final
prediction is obtained by combining the estimates of both
components. The proposed modeling approach is presented
together with an application to the Italian electricity market
(IPEX). To evaluate the performance of ourmodels, data from
the period January 1st, 2014 to December 31st, 2019 is used,
whereas from January 1st, 2014 to December 31st, 2018 is
used for model estimation while the entire 2019 year is for
the one-day-ahead out-of-sample forecast. Themean absolute
error (MAE), root mean square error (RMSE), and Pearson’s
correlation coefficient (r) are used to assess the effectiveness
of the ensemble-based methodology.

The results suggest that the proposed ensemble method is
efficient in predicting electricity prices. The ensemble model
produced the MAE value of 5.05, whereas the ARMA and
RF produced 5.18 and 5.23, respectively. The results of the
NNARwithMAE 5.29, GBMwithMAE 5.30, and SVRwith
MAE 5.39 are also good, but not satisfactory as compared to
the MAE of the ensemble model. Moreover, the forecasting
accuracy of the nav̈e model with the MAE of 6.66 is much
lower than all other models used in the study. The DM test
validated the significance of the ensemble model compared
to the rest. Lastly, as the ensemble-based model outperforms
the others, the RF and ARMA produce better results than
other models used in this study. In conclusion, the proposed
modeling framework is statistically significant in forecasting
electricity prices. As the current study considers only the
IPEX, in the future, it can be extended to other markets to
assess the performance of the proposed models.
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