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ABSTRACT In recent years, autonomous vehicles (AVs), which observe the driving environment and
lead a few or all of the driving tasks, have garnered tremendous success. The field of AVs has been
rapidly developing and has found many applications. As a safety requirement established by policymakers,
these vehicles must be evaluated before their deployment. The evaluation process for AVs is challenging
because crashes are rare events, and AVs can escape passing predefined test scenarios. Therefore, capturing
crashes and creating real test scenarios should be considered in order to develop an evaluation approach
that represents real-world scenarios. One evaluation approach is based on the naturalistic field operational
test (N-FOT), in which prototype AVs are driven on roads by volunteers or test engineers. Unfortunately,
this approach is time-consuming and costly because thousands of miles need to be driven to experience a
police-reported collision and nearly millions of miles for a fatal crash. Another approach is the accelerated
evaluation method. The core idea of the accelerated evaluation approach is to modify the statistics of
naturalistic driving so that safety-critical events are emphasized. This paper presents a brief survey of
the advances that have occurred in the area of the evaluation of partially or fully autonomous vehicles,
starting with naturalistic field operational tests (N-FOTs). The review covers the test matrix evaluation,
worst-case scenario evaluation (WCSE), Monte Carlo simulations, and accelerated evaluation (AE). We also
present all the simulation-based and agent-based modeling approaches that do not follow any evaluation
protocol listed above. This study provides a scientific analysis of each evaluation techniques, focusing on
their advantages/disadvantages, inherent restrictions, practicability, and optimality. The results reveal that
the accelerated evaluation approach outperforms naturalistic field operational tests (N-FOTs), test matrix
evaluation, worst-case scenario evaluation (WCSE), and Monte Carlo simulation methods in some of the
car-following and lane-change studies when using specific models. Moreover, the agent-based model and
augmented and virtual reality approaches show promising results in AV evaluation. Furthermore, integrating
machine and deep learning into the available AV evaluation methods can improve their performance and
generate encouraging outcomes.

INDEX TERMS Accelerated evaluation, agent-based modeling, autonomous vehicles, evaluation, mod-
eling, Monte Carlo simulations, N-FOTs, safety, simulation, simulation-based model, test matrix, testing,
worst-case scenario, augmented reality, virtual reality.

I. INTRODUCTION
Decades-long mobile robot navigation and more recent
artificial intelligence (AI) and wireless communication
advances have created technological possibilities to make the
semi-autonomous road vehicles of today possible and have

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiangxue Li.

brought the fully autonomous intelligent transportation sys-
tems (ITS) of tomorrowwithin reach. This body of research in
AI also offers excellent potential to substantially increase the
efficiency and safety of future transportation. Autonomous
vehicles (AVs) can help to save fuel, decrease traffic crashes,
reduce traffic congestion, and provide better transporta-
tion services to older people and people with disabili-
ties [1]. There are many legal challenges in developing AVs,
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TABLE 1. AV readiness index results [7], [294].

and efforts are being made to remove these challenges.
Since 2012, at least 41 states and D.C. have considered legis-
lation related to AVs [2]. Twenty-nine states have proceeded
with laws authorizing the testing of AVs on public roads [2].
In Arizona, Delaware, Hawaii, Idaho, Illinois, Maine, Mas-
sachusetts, Minnesota, Ohio, Washington, and Wisconsin,
executive orders have been issued regarding AVs [2]–[4],
as shown in Figure 1.

FIGURE 1. States with AV legislation [2].

In Europe, the United Kingdom allowed the testing
of AVs on public streets beginning in January 2015 [5].
On February 6, 2019, a formal statement issued by the
Department for Transport (DfT) said that the UK is ‘‘on track
to meet its commitment to have fully self-driving vehicles
on UK roads by 2021’’ [6]. Table 1 shows the AV readiness

index for 30 countries [7], [294]. This index shows the level
of preparedness for AVs [7]. It is a compound index that
combines 28 individual measures from various sources into
a single score [7].

As shown in Table 22, up to 30 countries have evaluated
AV readiness, based on 28 measures collected into four
pillars: policy and legislation, technology and innovation,
infrastructure, and consumer acceptance [7], [294]. These
references rely on public data, such as media reports, press
releases, and other materials. All measures are given equal
weight in computing the index, except for the mobile con-
nection speed and broadband measures in the infrastruc-
ture pillar [294]. These two measures have half the weight
of the other measures. The collected data were normal-
ized before being combined using the min-max approach.
The normalization makes all the measures within a range
between 0 (worst) and 1 (best) [294]. Figure 2 shows the
pillars and the associated measures.

As the pace of AV innovation increases, cities have become
the proving grounds of choice. Tech giants, automakers, and
startups alike are focused on cities because that is where
future customers live and work [8]–[13].

Manymajor car companies have begun research and devel-
opment programs for AVs. Table 2 presents the reported
AV production schemes [14], [15]. Three features are con-
sidered, namely traffic jam assist (TJA), autonomous park-
ing assist (APA), and automated highway driving (AHD).
On October 14, 2015, Tesla operated the autopilot function
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TABLE 2. Announced autonomous vehicle technologies until 2016 [14], [15].

FIGURE 2. AVs readiness index pillars and the associated measures [294].

on the model S through an over-the-air software update [16],
enabling features such as adaptive cruise control, lane-
keeping, auto lane change, autopark, and automatic emer-
gency steering [17].

After 2016, a large number of companies entered the AV
industry, such as Amazon, Apple, Microsoft, Nvidia, Tesla,
Toyota, Uber, Volvo, Huawei, and many more [18], [19].
Recent developments in the area of advanced driver assis-
tance systems (ADAS) have shown vast improvements
in the accessibility of autonomous driving. Many compa-
nies have raised their levels of autonomy over the last
few years. Several projects are targeting SAE level 4 or
higher. A list of the definition of SAE levels of AVs is
explained in [20] and is shown in Figure 3. Advancements
in autonomous driving require high-level algorithms that are
efficient enough to solve complicated scenarios, especially
urban scenarios, such as intersections with multiple pedes-
trians, pedestrians with unknown intent, traffic lights, cars,
and bicycles, which are a real challenge to predict. These
high-level algorithms include pattern recognition (classifica-
tion) [232], [233], [297]-[299], clustering [236], [237], [238],

decision matrix algorithms [239], [240], [296], pedestrian
intention prediction [234], [235] and many other algorithms.

Driving in urban environments has been both a potential
and a hot area of research due to the high density of vehicles
and many obstacles that must be avoided. There have been
several in-depth efforts to study this problem, such as the
DARPA Urban Challenge [21], the V-Charge Project [22],
and at least three US military applications—urban operations
(UO), manned-unmanned teaming (MUM-T), and AGR [23].
The challenge of driving in an urban environment is complex
because it considers increasing the speed of AVs and environ-
mental complexity [24].

By increasing the level of automation, the evaluation
process becomes challenging because the AV system will
become more complex. An AV may have 100 million
lines of code, while Boeing 787 has only 6.5 million [28]
(Figure 4). It is a real challenge for a company and also
for evaluation authorities, such as the National Highway
Traffic Safety Administration (NHTSA) [30], to check every
line of code. Many problems may be uncovered after
product release, which could cost the company a lot of
money [31], [32]. Therefore, it is necessary to evaluate the
AV system during the design process. In this paper, we focus
on the evaluation of AVs in level 3 to level 5.

The term ‘‘autonomous vehicle’’ is used in this article
instead of ‘‘automated vehicle.’’ We have chosen to utilize
‘‘autonomous’’ because it is a common term, and the general
public is familiar with it. However, the term ‘‘automated’’
implies control or operation by a machine and refers to
connected vehicles, while ‘‘autonomous’’ implies more intel-
ligence than the term ‘‘automated’’ and suggests that the
vehicle is acting independently [295]. The following sections
describe several AV evaluation methods.

II. NATURALISTIC FIELD OPERATIONAL TESTS
Naturalistic field operational tests (N-FOTs) [33] have been
used to evaluate AVs. In this test, several ADAS-equipped
vehicles are deployed on the road and are driven under natural
conditions [34]. During the driving time, the data were col-
lected for evaluation purposes. An advantage of naturalistic
field operational tests (N-FOTs) observation is that it allows
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FIGURE 3. Summary of levels of driving automation for on-road vehicles [20], [26], [27].

FIGURE 4. Aircraft and automobile software code compared [29].

the investigators to directly observe CAVs and AVs in a
natural setting. A naturalistic driving study of 100 vehicles
was conducted by Virginia Polytechnic Institute and Virginia
Tech to investigate the major contributing factors to crashes.
The collected data were used to inspect many factors, such as
driver performance, surrounding environment, driving con-
ditions, and other components that are related to critical
incidents, near collisions, and collisions [35]–[39]. A list of
large-scale N-FOT projects carried out in the United States is
shown in Table 3.

Some companies, such as Waymo (formerly the Google
self-driving car project), have designed several SAE
level 4 AVs [41] and have evaluated the entire autonomous
system on actual roads since 2012. Up to January 2020, the
Waymo AVs logged nearly 20 million miles of self-driven
operation on public roads in 25 cities and tens of billions
of miles through computer simulations, with thousands of
scenarios and different individual test tracks [42], [304].
In the N-FOT test, the drivers were trained and knew where
to drive. Thus, the evaluation process involved non-intrusive
driving conditions. The N-FOT test approach has many
restrictions, such as the time required to conduct this test.
In addition, the probability of expected critical events under
natural conditions is very low. For example, in the U.S.,
the vehicles should travel a total of 0.53 million miles
for a police-reported collision and 99 million miles for
a fatal collision [43]. Therefore, N-FOT projects require
many vehicles, a lot of time, and large budgets. In [44],
it is noted that an N-FOT ‘‘cannot be conducted with less
than $10,000,000.’’ An efficient test approach for AV evalu-
ation is required.

III. TEST MATRIX EVALUATION
A test matrix evaluation is defined as a series of test scenarios
defined at the start of the process. Then, the autonomous
vehicles go through each test and are assessed objectively
or subjectively [40]. Figure 5 shows an example of the test
matrix evaluation process. In Figure 5, the design cycle starts
with the use of specific scenarios or cases. The functional
and technical specifications are then constructed from these
cases. The final design is then verified at the component and
function level. In the evaluation cycle, a function description
is established using the functional and technical specifica-
tions. Three types of tests are then applied to the constructed
function. These tests are potential safety tests, human factors,
and technical tests. At the end of the process, a validation test
and a safety impact analysis were conducted.

FIGURE 5. Test matrix evaluation diagram [45].

Test matrix evaluation scenarios can be applied in field
tests, hardware-in-the-loop (HIL) tests, driving simulator
tests, and computer simulations [40]. All certification author-
ities use field tests [40]. Driving simulator tests and computer
simulations have also been used to decrease the cost and
time. The test matrix evaluations were mainly based on the
crash databases. The pre-crash scenarios were investigated
extensively in many studies [241]–[245]. Figure 6 shows the
General Motors 44-crashes typology. The United States
Department of Transportation designed the pre-crash

151534 VOLUME 9, 2021



H. Alghodhaifi, S. Lakshmanan: AV Evaluation: Comprehensive Survey on Modeling and Simulation Approaches

TABLE 3. Major N-FOT projects in the U.S. [40], [304].

FIGURE 6. Pre-crash scenarios defined by NHTSA [244].

typology based on the NASS crash databases GES (General
Estimates System) [246] and CDS (Crashworthiness Data
System) [247]. The Volpe National Transportation Systems
Center integrated these two typologies to create 37 pre-crash
scenarios and capture the vehicle movements and dynamics
in real-world and pre-crash critical scenarios. The top five
scenario groups, namely, car-following, lane change, left
turn, crossing, and opposite directions, were generated by
Volpe using the GES, NMVCCS (National Motor Vehi-
cle Crash Causation Survey) [248], and EDR (Event Data
Recorder) [249] databases. Table 4 presents the major crash
databases in the USA and Europe.

To learn more about crash analysis, reference [250]
presents extensive reviews and covers all related works.
The test matrix forms scenarios from the data acquired
from the NFOTS and is acquired by technical document
analysis [251], [252], [253]. Several programs and research
projects have begun to develop evaluation policies using the
test matrix technique, such as the collision scenarios designed
in the crash avoidance metrics partnership (CAMP) [252],
the critical scenarios created through the classification tree
method for ADAS [253], and the scenarios constructed based
on ontologies [254]. Table 5 lists all the test matrix projects.
The significant advantages of the test matrix technique are
that the determined test policy is repeatable, well-grounded,
and quick to complete [46]. Nevertheless, several challenges
are encountered, such as predetermined test scenarios. Thus,
the AV control system can attain excellent results in these test
scenarios, but the results under real-life scenarios may not be
satisfactory. In an analogy, ‘‘Having a standard test is akin
to holding an SAT exam for students with all problems pre-
announced. Students do well in the test, but the score may tell
very little about how much they learn’’ [45].

In addition, the test matrix scenarios are usually chosen
from collision databases in which most of the collisions are
caused by human-controlled vehicles (HVs). Therefore, the
test scenarios and evaluation processes applied to AVs may
not accurately capture the safety-critical events of AVs [40].
Moreover, according to the CAMP, ADAS, and ontologies
projects, the results indicated that the test matrix is more
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TABLE 4. Crash databases in the USA and Europe – databases with larger 5000 crashes [40].

TABLE 5. Projects studying the test matrix technique [40].

appropriate for autonomous driving system evaluation with
the availability of low-cost and high-controllability scenar-
ios. However, the generation of test scenarios using the
traditional test matrix approach is usually based on a few

influence factors. These factors are generally integrated
simultaneously to generate the ultimate scenario [252].
The influencing factors are usually taken from the NFOTS
database, WCS database, test standards, and many more.
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The influencing factors then be divided into surrounding envi-
ronment parameters, AV parameters, and road users parame-
ters [131], [132], [40], [255]. Thus, adding additional factors
will show a geometric growth in the number of scenarios and,
as a result, increase the test cost.

An accident analysis report by Tesla revealed that faults in
a critical system might be generated by mixtures of particular
values of some factors. Moreover, test scenarios that integrate
these mixtures of values can help in the evaluation process
by revealing new problems [255]. Therefore, using the tra-
ditional test matrix approach, which is based on exhaus-
tive testing of all the influence factors, is redundant and
ineffective.

Furthermore, specific test scenarios should be generated
using certain influencing factors (elements) to evaluate AV
systems. For example, the generated test scenarios to evalu-
ate the lane departure warning (LDW) system consider the
traffic environment parameters, subject vehicle driver’s
behavior, and traffic participants’ state [263]. The traffic envi-
ronment parameters are subdivided into lighting environment
(weather, time, and rapid changes in light), lane line param-
eters (lane line clarity, lane line integrity, lane line number,
lane line color, etc.), and road parameters (curvature, lane
number, lane marks, slope, and roadside facilities). Every
parameter, such as weather conditions, has many values such
as sunny, cloudy, rainy, and foggy. To design test scenarios
according to ISO 17361, the total number of test scenarios
is only eight [8], which are not sufficient to determine the
system failure. According to the test matrix method using
the exhaustive testing approach, the total number of test
scenarios is 497,664,000 [264]. Assuming an average running
time of 30 s for each scenario, a total time of 473 years is
required to complete all scenarios [263]. That is undoubtedly
an inefficient and unacceptable testing approach.

The authors in [263] proposed a combinatorial testing
scenario generation method based on complexity (CTBC)
to improve the effectiveness of the traditional test matrix
technique. The proposed method considers decreasing the
number of test scenarios and improving the overall com-
plexity of the scenarios. The results revealed that scenarios
with high complexity were effective in finding system fail-
ures. Moreover, the CTBC method reduces the number of
test scenarios and generates more complex scenarios than
the traditional test matrix methods. On the other hand, each
AV system has unique influence elements, and the coupling
relationship between these elements from different systems
has not yet been investigated. Therefore, the defects of the
system under the coupling relationship condition have not yet
been explored by the CTBCmethod. Thus, manyAV systems,
subsystems, and advanced features have not yet been tested
and evaluated by the CTBCmethod and traditional test matrix
methods.

IV. WORST-CASE SCENARIO EVALUATION
Theworst-case scenario evaluation (WCSE) technique is sug-
gested to recognize highly challenging scenarios for any car,

with or without active control systems [40]. In [47] Ma, [48]
Ungoren and Peng, attempted WCSE on rollover (overturn-
ing of a vehicle) and jackknifing of articulated cars using
a dynamic game theory. The term jackknifing refers to the
folding of an articulated vehicle so that it resembles the acute
angle of a folding pocket knife. This approach suggests that
control inputs and disturbance inputs take part in a two-player
game condition. In [49], Ungoren proposed another approach
as a one-player game by considering the car and its con-
trol system as a joint dynamic structure. Then, to solve the
WCSE problem numerically, an iterative dynamic program-
ming technique was applied [40]. This technique was used
in [50] to assess the integrated chassis control (ICC) system.
Therefore, a mathematical model of the vehicle is established,
and the WCSE is defined as a horizon optimization problem
to resolve for a trajectory (e.g., a sequence of steering inputs)
that minimizes or maximizes the cost function (e.g., rollover
index) [50]. A solution for the two different systems is con-
ducted. For a linear system (SISO linear time-invariant and
MIMO systems), the worst-bounded inputs are acquired from
the convolution of the impulse responses [51]. For a nonlinear
system (nonlinear dynamical system for a control problem),
the solution of the Hamilton-Jacobi-Bellman equations is
obtained by the calculus of variations to resolve the optimal
trajectory task [52].

Even though the WCSE approach can recognize the
weakness of a car and a car control system, it does not
consider the occurrence probability of such worst-case sce-
narios [53], [54]. Therefore, WCSE results do not provide
sufficient data on critical real-world situations. Furthermore,
there are some limitations when using complicated con-
trol algorithms or when the control algorithms are not in
numerical form. As a result, the WCSE techniques may
either face difficulties finding the worst scenarios or be
time-consuming.

V. MONTE CARLO SIMULATIONS
Monte Carlo simulation or the Monte Carlo method is a
mathematical procedure utilized to predict the likely results of
an unpredictable event. TheMonte Carlo simulation creates a
model of potential outcomes by leveraging a probability dis-
tribution (uniform or normal distribution etc.) for any variable
with uncertainty [300]. In this approach of AV evaluation,
the N-FOTs data are used to construct stochastic models, and
Monte Carlo simulation is applied to assess partially or fully
autonomous vehicles. Table 6 presents a list of all the papers
related to this method, with the objectives, techniques &
models, and scenarios.

In addition to Table 6, Table 7 presents all the references
with the associated AV tasks.

In [55], collision avoidance systems were evaluated by
establishing an ‘‘errorable’’ driver model to mimic human
distraction based on road-departure crash-warning (RDCW)
FOT and intelligent cruise control (ICC) FOT naturalistic
driving databases. In [56], heavy trucks’ collision warning
and collision mitigation braking technologies were assessed
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TABLE 6. Monte Carlo simulations studies: objectives, techniques and models, and scenarios.

by building 1.5 million forward-collision test scenarios
from naturalistic driving data conflicts. The main advan-
tage of this approach is that naturalistic driving data were
used to create all scenarios/models. Therefore, these scenar-
ios/models represent real-world scenarios. As a result, Monte
Carlo simulation models may decrease the assessment cost

compared to field tests. Moreover, this method evaluates data
collected from human driving databases without any actual
crashes [55], [56]. Therefore, using Monte Carlo simulations
directly may result in an inefficient simulation model because
of the dominance of non-safety-critical portions of naturalis-
tic driving data.
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TABLE 7. Summary of the main Monte Carlo studies and the associated tasks.

In [55], model coefficients are usually acquired by fit-
ting a collection of driving data. Then, the errorable model
can be improved in real-time to achieve a higher level of
false positives and false negatives for better modification
to the driver. However, according to [55] and [56], tuning
the models under open-loop usually yields inefficient results
with human or hardware-in-the-loop. Therefore, when the
hardware or human is in the loop, this method may not speed
up the evaluation procedure.

The security problem in the autonomous driving domain,
especially trajectory planning, has been heavily investigated
in literature reviews. It is essential to estimate the surround-
ing road users and predict the probabilistic occupancy of
each road user to identify any future risk [271]. Achiev-
ing accurate estimations helps the AV navigate to the final
destination with the lowest crash probability. According to
some literature reviews, it is commonly proposed that all
road users maintain their initial motion state [272], [273].
Therefore, the actual motion of the road user might be dif-
ferent from the estimated motion because of the uncertainty
of the road user detection and future intent. In literature
reviews, there are many estimation techniques based on kine-
matic or dynamic models [274] – [276]. Kinematic models
have some limitations in neglecting the forces that influ-
ence road user movement [274]. At the same time, dynamic
models consider various forces that affect driving, such as
tire forces and air friction. The use of dynamic models is
extremely complex. Moreover, it requires having a differ-
ent model for each vehicle [270]. Therefore, Monte Carlo
simulation [55], [56], [265], [266], [268]–[270], [277]–[279],
Gaussian distribution [280], [281], andMarkov chain abstrac-
tion [265], [282], [283] are usually used to tackle the above
issue.

In [270], the motion prediction of road users was stud-
ied. The authors focus on trajectory planning in two typ-
ical lane-change scenarios (lane change on a straight road
and turning at intersections). The Monte Carlo simulation
is used as a safety assessment to estimate the probabilistic
path planning of road users and then produce a map from

probability statistics to actual scenarios. Furthermore, Monte
Carlo simulations have a limitation because of probabilistic
errors from random sampling [265]. According to literature
reviews, the use of more samples is required to achieve accu-
rate outcomes by Monte Carlo simulations. However, using
more samples will result in more errors, and the results will
not be accurate [265], [270]. The outcomes in [270] revealed
that the Monte Carlo simulation is inefficient in real-time
computation.

The authors in [265] compared the Markov chain abstrac-
tion and Monte Carlo simulation for the safety evalua-
tion of fully autonomous vehicles. The two methods have
common differences in terms of their error sources. The
significant errors in the Markov chain approach are only
systematic errors from the discretization of the state and input
space [265]. Moreover, the Markov chain has no probabilistic
errors because random sampling is not implemented [265].
In the Monte Carlo method, the main errors are proba-
bilistic errors from sampling the initial states and input
sequences [265].

Furthermore, the Monte Carlo simulation has no system-
atic errors because each simulation uses the system’s main
dynamical equations [265]. The results show that the Markov
chain resulting probability distributions outperformed the
Monte Carlo simulation approach in terms of accuracy and
simulation speed [265]. On the other hand, the Monte Carlo
simulation produces superior outcomes to the Markov chain
method when computing crash probabilities [265]. Thus, the
outstanding performance ofMonte Carlo simulations in crash
probabilities is due to the absence of systematic errors in the
Monte Carlo simulation.

Koren et al. extended the adaptive stress evaluation
technique that was used to evaluate the aircraft collision
avoidance system to test the AVs [266]. Adaptive stress test-
ing (AST) is an approach used to find critical scenarios using
a Markov decision process (MDP) [266]. The original AST
approach utilizes a Monte Carlo tree search (MCTS) with
double progressive widening (DPW) to explore any failure
in the system [267]. The test scenario in [266] includes an
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TABLE 8. Numerical results from DRL and MCTS methods. Reward with and without noise to show the difficulty MCTS has with reducing sensor noise.
DRL produce a more likely path than MCTS with a less number in calls to STEP [266].

AV with noisy sensors approaching a pedestrian crosswalk.
A deep reinforcement learning solver was used to improve
the efficiency of AST instead of using the Monte Carlo tree
search (MCTS). The authors claimed that the deep reinforce-
ment learning approach is more efficient and can discover
more critical events than the Monte Carlo tree search [266].
The results reveal that both methods can recognize the failure
trajectories in an AV-pedestrian conflict. The two solvers
produce many events in which the AV hits the pedestrian.
A major problem with the MCTS is that the MCTS has
non-zero noise that increases over time. As a result, the
MCTS does not reduce this noise to zero, leading to a con-
siderable probability error with time. Thus, the AV will not
detect and predict the pedestrian and result in a critical colli-
sion in the generated scenarios. Table 8 shows the numerical
results of the two solvers of adaptive stress testing.

In Table 8, the number of calls to STEP for MCTS is
the required number of calls to find a critical accident in
the AV-pedestrian conflict. In other words, it refers to the
algorithm’s computational capability to find a critical con-
flict. Moreover, this number of calls represents the required
number of calls to trust the results. The approach presented
in [266] consists of three scenarios, as shown in Figure 7.
In scenario 1, the event generated by the MCTS and DRL
sends one pedestrian into the scene towards the AV to estab-
lish a conflict. The DRL approach produces a straightforward
path for a pedestrian toward the vehicle, which is better than
theMCTSmethod. In short, according to the results presented
in [266], the DRL solver for AST outperformed the MCTS
solver, especially in higher-dimensional scenarios.

Jönsson and Stenbäck implemented and validated an
autonomous agent based on a Monte Carlo tree search [293].
Three action generators and two reward functions are com-
pared. The outcomes revealed that the MCTS performs well
and converges to a driving agent under static conditions.
Moreover, the results showed that the MCTS succeeds only
at low speeds in real-time driving [293].

Reference [268] investigated the behavior of eight tracking
controllers under extreme situations, uncertain parameters,
and sensor noise. Different tests from the single and double
lane change scenarios were generated to evaluate the tracking
controllers. Monte Carlo simulations and rapid exploring
random trees (RRTs) were utilized to assess the controllers’
average and worst-case performance [268]. The authors state
that most controller properties (e.g., stability, noise rejection,
robustness to model variations) are not strongly compro-
mised during the turning phase [268]. Moreover, the authors
concluded that the outcomes obtained by Monte Carlo

FIGURE 7. The generated scenarios for MCTS and DRL. The collision point
is the point of conflict between the AV and the pedestrian. In scenario 3,
pedestrian 1 trajectory is far from the collision point [266].

simulations and rapid exploring random trees (RRTs)may not
be perfect but can help choose suitable controllers.

In [269], the univariate Gaussian probability density Func-
tions were used to estimate future discrete state transitions
such as the beginning of a turn by other agents. Then, the
outcomes were compared to Monte Carlo simulations. The
results showed a remarkable correlation between the pro-
posed prediction distributions and Monte Carlo simulations,
especially over long prediction horizons [269]. Although the
outcomes revealed an excellent correlation between the two
methods, more investigations and validations are required for
this model.

Reference [278] presents a risk evaluation algorithm for
public road scenes:

1) The driver behavior was modeled as a probabilistic
prior.

2) Monte Carlo sampling was used to approximate the
distribution of future scenarios.

3) Different safety measures were computed based on the
distribution of future scenarios.

4) A variety of techniques were implemented to increase
the performance of this algorithm.

The results showed that the algorithm was tested on sim-
ulated data and sensor data and was able to differentiate
between safe and non-safe road scenes. However, the dataset
used in this study was not sufficient to achieve optimal risk
assessment because the data did not have a lot of variation.
Moreover, this algorithm removes sampleswith conflicts with
other objects and replaces them with non-conflict samples.
Thus, a real-time assessment is required to determine the
efficiency of this algorithm.
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Reference [279] captured the driver behavior of other
vehicles using a random-forests classifier. Then, the likely
future trajectories are computed using a sequential Monte
Carlo simulation followed by a possible risk assessment.
This methodwas tested by conducting numerical simulations.
The simulation results revealed that the algorithm was able
to recognize the driver’s behavior. However, a limitation of
this method is that no real-time deployment or evaluation is
conducted.

Reference [277] presented a reasoning framework for the
future movement of multiple road users. The probability
distribution of every vehicle’s future motion was generated
usingMonte Carlo planning. The synthetic data that are based
on a real-world scenario are used to test this approach. The
suggested approach shows excellent outcomes but requires
more improvements and validation to handle more V2V and
V2P complex scenarios.

Reference [284] developed a reinforcement learning-based
Monte Carlo tree search (deep-MCTS) control technique
for an AV vision-based system. Two deep neural net-
works (DNNs) were utilized to predict action probabilities
and then fed to deep-MCTS to reconstruct multiple future
trajectories. The deep-MCTS method outperforms existing
methods and shows 50.0%, 66.30%, and 59.06% improve-
ment in training efficiency, steering control stability, and driv-
ing trajectory stability, respectively [284]. The deep-MCTS
was evaluated using the USS and Torcs simulators.

In [285], the authors presented a simulation test-
ing platform to evaluate the entire AV system as a
black box. The multilevel splitting method and adaptive
importance-samplingmethodswere used to address the short-
comings of naïveMonte Carlo simulations for estimating rare
event probabilities. The approach in [285] outperforms the
naïveMonte Carlo method for events with a probability lower
than 10−3. Moreover, the variance of the failure probability
is decreased by up to 10x [285]. In contrast, the naïve Monte
Carlo method performs well compared to the above method
in predicting non-rare events [285].

In [286], O’Kelly et al. implemented an end-to-end AV
testing framework using adaptive importance-samplingmeth-
ods to speed up the rare-event probability validation. As a
result, the system validation is accelerated by 2-20 times
compared to naïve Monte Carlo methods and 10-300p times
(where P is the number of processors) over a real-world
evaluation [286].

Reference [287] proposed an enhanced drivermodel (EDM)
that predicts the driver action in an urban environment. The
effects of signal phasing and timing (SPaT) were considered
by presenting the concept of line-of-sight (LOS). Signal
phasing and timing (SPaT) data provide information on the
signal states by motion [288]. Detailed studies on SPaT and
LOS are presented in [288]–[292]. The EDM model was
then validated against data collected from vehicles equipped
with different drivers. Using the EDM model, a Monte Carlo
simulation was used to identify the statistical distribution of
fuel consumption and travel time under other conditions such

as traffic conditions, SPaT, and driver behavior. This study
evaluates the influence of uncertainties related to real-world
driving on fuel consumption in connected vehicles [287].

In short, based on the literature reviews presented in this
section, Monte Carlo simulations performed well in evaluat-
ing AV in some scenarios and failed to produce outstanding
outcomes in other scenarios compared to other methods.
Thus, more improvements are required for this method using
new techniques such as deep learning and reinforcement
learning.

VI. ACCELERATED EVALUATION
In [40], Zhao proposed an accelerated evaluation test. The
main objective of this test is to establish a method that can
speed up the AV evaluation course of action. Moreover, this
method can precisely demonstrate AVs’ real-life safety ben-
efits. The main idea of the accelerated evaluation approach
is to reduce the evaluation process time and eliminate the
safe parts of daily driving by skewing the statistics of the
surrounding vehicles. This process consists of the following
steps.

• Collect a massive amount of real-world driving data.
• Take out events that have possible conflicts betweenAVs
and surrounding human-driven vehicles.

• Model the surrounding human-driven vehicle behaviors
as the main distraction to AVs. Then, a modeling of the
randomness as random variables vector x with proba-
bilistic distribution f (x) is conducted.

• Skew the disturbance statistics to minimize the safe part
of daily driving by replacing f (x) with the accelerated
distribution f *(x).

• Run Monte Carlo tests with the accelerated probabil-
ity density function f *(x). The results will provide
more intense interactions/collisions between AVs and
human-driven vehicles.

• ‘‘Skew back’’ the outcomes of the accelerated tests to
understand the performance of AVs under real-life driv-
ing scenarios using the statistical analysis.

Figure 8 shows the accelerated evaluation procedure.

FIGURE 8. Concept of the accelerated evaluation technique [40].

The proposed method can be used in computer sim-
ulations, human-in-the-loop tests with driving simulators,
hardware-in-the-loop tests, or vehicle tests. Four procedures
were established to shape the foundation of the accelerated
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TABLE 9. Accelerated rates of crash, conflict and injury events – car-following scenarios [59].

TABLE 10. Accelerated rates of crash, conflict and injury events – lane change scenarios [57].

evaluation method. The first technique depends on the likeli-
hood analysis of naturalistic driving. A probabilistic model
approach based on time-series driving data was used to
build the test scenarios. The assessment policy is sped up
by decreasing the relatively safe events that are highly
likely to occur. The second technique gives a mathemat-
ical base for the ‘‘skewing back’’ mechanism depending
on the importance sampling theory, such that the statistical
equivalence between the accelerated tests and the naturalis-
tic driving tests can be rigorously demonstrated. The third
technique is adaptive accelerated evaluation. This technique
shows a policy to recursively discover the best way to skew
the probabilistic density functions of human-driven vehicles
to maximally decrease the evaluation duration. Finally, an
accelerated evaluation method for analyzing the dynamic
interactions between AVs and human-driven vehicles was
established based on stochastic optimization procedures.

In [59], three indicators-crash, injury, and conflict rates
were calculated to test the accuracy and performance of
the accelerated evaluation. The crash and conflict cases are
binary events. The injury event was modeled as a proba-
bilistic function [59]. Two types of simulations were per-
formed: accelerated evaluation and naturalistic driving simu-
lations (non-accelerated, based on Monte Carlo simulation).
Table 9 shows the accelerated rates of crash, injury, and
conflict events in car-following scenarios [59].Nnature,Nacc,
and racc in Table 9 represent the number of naturalistic
driving simulations, the number of accelerated tests, and the
accelerated rate, respectively. In crash and injury events, the
accelerated approach expedites the evaluation by five orders
of magnitude [59]. In a conflict event, the acceleration rate
is 300 times lower [59]. Table 10 shows the accelerated rates
of crash, injury, and conflict events in lane change scenar-
ios [57]. Dnature, Dacc, and racc in Table 10 represent the
driving distance needed in the naturalistic test, the driving
distance required in the accelerated test, and the accelerated
rate, respectively.

The simulation outcomes in car-following and lane change
scenarios in [59] and [57] revealed that the accelerated
tests could decrease the assessment time of the collision,
injury, or conflict events by 300 to 100,000 times. Otherwise
stated, driving for 1,000 miles can show the AVs challenging

scenarios that would take 300 thousand to 100 million miles
to encounter in the real world [57], [59]. As a result, the
development and validation time for AVs will be reduced.

Table 11 presents a list of all the papers related to this
method, with the objectives, techniques &models, and sce-
narios.

Even though accelerated evaluation methods can produce
excellent results and reduce the duration of the evaluation,
they do not consider the following tasks:
• The AVs to AVs and human-driven vehicles to
human-driven vehicles interactions are not studied and
are used only as a benchmark.

• The AV sensors and controls have been suggested to
work accurately. Thus, the measurements, perception
errors, and control are assumed to be accurate.

• AVs are assumed to look like human-driven vehicles.
Therefore, human drivers’ reactions to AVs are the same
as to the other human-driven vehicles.

• The secondary impacts of crashes are not considered in
these methods.

• The human-driven vehicles model is not accurate
enough to mimic real-world scenarios.

• Many real-world scenarios have not been investi-
gated and developed in this technique, such as sens-
ing/detection fail scenarios (e.g., fog, snow, low light),
perception failure scenarios (e.g., hand gesture, eye con-
tact, blinking lights), vehicles/pedestrians/pedal-cyclists
conflict scenarios (e.g., running, red light, cut-in, jay-
walk), making-decisions scenarios (e.g., low confi-
dence, multiple threats), and so on.

Therefore, more improvements for this method are
required to have a well-rounded and efficient technique to
evaluate AVs.

VII. SIMULATION-BASED MODEL APPROACH
The goal of autonomous driving is mainly to decrease the
number of deadly accidents in a highly uncertain environ-
ment as well as to provide a high quality of comfort and
efficiency and create unprecedented intelligent transporta-
tion for individuals within cities. In the interest of get-
ting the AV to navigate safely and dependably in uncertain
environments, many challenges need to be considered.

151542 VOLUME 9, 2021



H. Alghodhaifi, S. Lakshmanan: AV Evaluation: Comprehensive Survey on Modeling and Simulation Approaches

TABLE 11. Accelerated evaluation studies: objectives, techniques and models, and scenarios.

Modeling AVs is one of these challenges and is regarded as
an essential step toward accurately validating AVs in highly
uncertain environments. The interaction between AVs and
surrounding vehicles or vulnerable road users should then
be investigated and validated in various real-world scenarios.
A well-established validation approach is required to fill
many gaps in the AV evaluation process during the design,
pre-deployment, and deployment stages. However, based on
previous AV validation techniques, real-world data are lim-
ited, andmany safety-critical scenarios are difficult to capture
in real life. Therefore, a simulation-based model approach
was introduced to tackle these challenges.

In 1934, Greenshield et al. introduced the first traf-
fic model [307]. Since 1934, three major model classes
have been presented: microscopic, macroscopic, and meso-
scopic models depending on the level of details needed
for network analysis [305]. Microscopic models study
the behavior and interaction of individual vehicles based
on car-following, lane-changing, and gap-acceptance algo-
rithms [305], [306]. Microscopic models are used to model
sophisticated urban street networks, intersections, vulnera-
ble road users (VRU) movements, traffic lights, multi-model
systems, and many more. The macroscopic models represent
traffic as a continuous sequence and are based on the rela-
tionships of flow, speed, and density of traffic stream [306].
Macroscopic models focus on modeling large-scale traffic
networks such as freeways, corridors, surface-street grid
networks, and rural highways on a section-by-section basis

instead of following individual vehicles [306]. Moreover,
the macro simulation-based model approach requires a traf-
fic assignment policy, which can be implemented by utiliz-
ing activity-based models [70]–[73] or modified traditional
four-step models [74]. Finally, mesoscopic models integrate
the properties of micro and macroscopic simulation models
and allow less fidelity than the micro models for individual
vehicles [306]. An example of mesoscopic simulation studies
can be found in [310]–[312].

The focus of this section is mainly on the connected and
AVs’micro simulation-basedmodel studies that consider lon-
gitudinal and lateral dynamic. The micro-simulation-based
model produces valuable data for the future development
of AVs’ based on the level of details in the model. More-
over, the interactions of AVs with human-driven vehicles and
vulnerable road users (VRUs) are presented and discussed.
In addition, an agent-based simulation modeling of AVs is
presented.

A. MICRO-SIMULATION-BASED MODELS
In microscopic simulation models, the behaviors of AV’s
can be modeled by adopting the available human drivers’
models or by inventing new intelligent models that consider
V2X capabilities [110], [313]. Moreover, the car-following
model is required in collaboration with driver models or
any new innovative model for V2X communications to rep-
resent how the simulated vehicles interact with the vehi-
cle ahead [110]. Therefore, the car-following model is an

VOLUME 9, 2021 151543



H. Alghodhaifi, S. Lakshmanan: AV Evaluation: Comprehensive Survey on Modeling and Simulation Approaches

essential part of modeling the behavior of human-driven vehi-
cles (HVs), connected autonomous vehicles (CAVs), and AVs
in micro-simulation modeling [110], [313]. A car-following
model can be designed based on these assumptions by main-
taining a safe distance between the lead and host vehicles and
controlling the vehicles’ speed and accelerations [135].

This section presents all the available car-following mod-
els for CAVs and AVs in micro-simulation modeling in the
lateral and longitudinal directions. Then, the AV simulation
platforms are taken into the spotlight. Finally, the agent-based
modeling studies are presented.

1) CAR-FOLLOWING MODELS FOR HVs, CAVs, AND AVs
The car-following, lane change, and distance headway are the
three significant behaviors of any vehicle in micro-simulation
modeling. Figure 9 illustrates these major behaviors. In addi-
tion, the interaction between vehicles on the road is deter-
mined by many factors such as lateral vehicle maneuvers,
driver behavior, and surrounding vehicle behavior [317]. This
section discusses the longitudinal and lateral dynamics of
human-driven vehicles (HVs), CAVs, andAVs. The following
vehicle will follow the lead vehicle with a proper dis-
tance headway, speed, and intended acceleration or decel-
eration in the longitudinal scenario. In the lateral scenario,
a lane-change maneuver is performed, as shown in Figure
9. This chapter covers all the significant contributions in the
microscopic analysis of traffic flow and safety evaluation,
and how the diverse traffic flow modeling has been presented
and developed from homogeneous microscopic modeling to
mimic the real-world environment.

FIGURE 9. Major behaviors of any vehicle in micro-simulation modeling.

In micro-simulation modeling, all vehicle parameters such
as the maximum, minimum, intended acceleration or decel-
eration, and desired speed values are defined using many sta-
tistical distributions and functions [315]. In 1945, researchers
introduced vehicle trajectories for car-following modeling
instead of using speeds and distances between two vehi-
cles [314]. They proposed the safe driving distance between
the lead and following vehicles that the following vehicle
driver must maintain. The car-following models can then
be applied after determining the safe gap between the lead
and the following vehicle in every scenario. The popu-
lar car-following models are GHR models, safe distance
models, intelligent driver model (IDM), ACC & CACC
models, optimal velocity models, psychophysical models,
fuzzy logic models, and cellular automata (CA) models.
Car-following models are classified into types or categories

depending on the utilized logic [316]. For example, in [318],
the authors presented five different classes while other
researchers, such as [319], suggested three more types to
include the 21st-century models. Figure 10 illustrates the
available car-following models.

FIGURE 10. Car-following models.

The following subsections will describe each type of
car-following model.

a: GHR MODEL
In 1958, Chandler introduced the first version of the
GHR model to determine the relative velocity between two
vehicles, known as a stimulus [324]. In 1961, General
Motors (GM) presented a car-following model using the
acceleration/deceleration values as a stimulus [328], [329].
TheGMmodel used the speed of the leader and follower vehi-
cles to estimate the acceleration/deceleration values. Then,
the estimated acceleration/deceleration values were used to
calculate the driver’s reaction time. The GM model is a
simple linear car-following model with a constant sensitivity
parameter, and the acceleration of the following vehicle can
be approximated [324], [330]. In this model, the gap between
the leader and follower vehicles affects the stimulus, making
the GM linear model impractical [315]. Moreover, this model
does not consider the driver’s acceleration and deceleration
reactions in lane change maneuvers [325]. Furthermore, the
diversity of vehicles on the road is neglected in the reaction
time calculation [326], [327]. Therefore, the GM and GHR
models fail to address the diverse conditions of drivers and
vehicles’ [321]. Other restrictions in these models include
the non-availability of acceleration/deceleration limits [320].
Recently, many researchers have suggested a wide range of
solutions to expand the original models and overcome some
limitations of the GM model. For example, in [322], the
following driver is permitted to accelerate if the relative speed
of the lead vehicle has increased. Moreover, the authors also
introduced various acceleration and deceleration parameters
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TABLE 12. GHR model studies.

TABLE 13. Safety-distance model studies.

to improve the original models in making an efficient deci-
sion. The authors in [323] also proposed an extension to
speed up the driver reaction under deceleration scenarios as
compared to the acceleration cases. Furthermore, the authors
in [331] suggested a critical headway value for estimating
the state of driving behavior. Finally, another extension to
the GM model is presented in [329] to consider the nonlinear
behavior in terms of relative speed and distance between the
lead and following vehicles. Despite all the extensions, the
GM model has its behavioral limitations, such as the drivers’
reactions to random changes in the stimulus, and the actions
of the leader vehicle keep impacting the relative speed and the
driver of the following vehicles even when the gap between
these vehicles is high [315]. Table 12 presents an outline of
the GHR model studies.

b: SAFETY-DISTANCE OR COLLISION AVOIDANCE MODEL
The safety-distance model maintains a safe distance between
the lead and follower vehicles. This model is based on the
fundamental motion equation [318]. Pipes explains the term
of a safety distance in 1953 [112] as ‘‘a good rule for follow-
ing another vehicle at a safe distance is to allow yourself at
least the length of a car (about 15 ft) between you and the
vehicle ahead for every 10 miles of hour speed at which you
are traveling’’. In 1981, Gipps presented the first acceleration
model that documents car-following and non-car-following
maneuvers [339]. However, a limitation of the Gipps model
is that it requires keeping the safe distance headway and not
exceeding the desired speed. As a result, many researchers
have performed extensive extensions, modifications, and cali-
bration studies on the Gipps model [340]-[342]. Table 13 lists
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these studies. Currently, the Gipps model is widely used in
micro-simulations modeling because of its basic calibration
assumptions about human driving behavior [315].

c: PSYCHOPHYSICAL MODELS
The psychophysical or action point model [318] utilizes the
space headway and relative velocity for the following vehicle
as a threshold. Effort are made by the drivers when the thresh-
old values are reached. The threshold values of the spacing or
relative velocity should be reached to obtain a reaction from
the drivers. The psychophysical model also helps to record
if the drivers are paying attention to the small spacing and
the associated effect when there is a large spacing on the
following behavior [330]. In [343], the psychophysical model
was implemented on a simulation platform using a framework
called ‘‘MISSION.’’ Moreover, the interaction between the
lead and follower vehicles was investigated by defining four
thresholds and regimes, as shown in Figure 11.

FIGURE 11. Wiedemann model - thresholds and regimes.

The drivers’ behavior in the psychophysical model is sug-
gested to be naturally distributed and can be represented as
normal distributions [343]. This means that each driver has
unique driving skills for perception, reaction, and predic-
tion of the surrounding environment. The authors in [343]
also proposed that vehicles have different abilities to per-
form simple techniques such as maximum velocity and
maximum acceleration/deceleration values. The Wiedemann
model in [343] presented various ranges of other random
parameters to be used to calculate the threshold values and
driving functions. Examples of these parameters are, namely,
the desired distance (AX), the desired minimum following
distance (ABX), the maximum following distance (SDX), the
perception threshold (SDX), and the decreasing and increas-
ing speed differences (CLDV, OPDV) [315]. More improve-
ments are required in this model because the calibration of
the parameters is challenging [315], [321]. Examples of sim-
ulators that use psychophysical models include VISSIM and
PARAMICS. The VISSIM platform is widely used to model
heterogeneous traffic conditions. However, using VISSIM to
simulate 2D traffic conditions is not recommended because it
produces inefficient outcomes [321].

d: OPTIMAL VELOCITY MODEL (OVM)
The optimal velocity model (OVM) was proposed to model
traffic flow instabilities that cause congestion in public roads.
The OVM model was developed to describe the dynami-
cal behavior of traffic flow using the motion equation of

each vehicle. The model is based on the relative distance to
the lead vehicle. Moreover, the acceleration of the follow-
ing vehicle is controlled in a way that the final velocity is
modified according to the trajectory of the lead vehicle [321].
Several modifications and extensions have been proposed to
overcome some of the limitations of the OVM approach for
modeling mixed traffic conditions. A significant improve-
ment in the OVM approach is the two-velocity difference
model (TVDM) [345]. The TVDM approach was developed
to integrate an intelligent transport system (ITS) with the
OVM approach. The integration of the two models provides
a comprehensive car-following model that incorporates mul-
tiple leading vehicles [321]. Table 14 shows a list of all the
OVM modification and extension studies.

e: INTELLIGENT DRIVER MODEL (IDM), ADAPTIVE CRUISE
CONTROL (ACC), AND COOPERATIVE ADAPTIVE CRUISE
CONTROL (CACC) MODELS
Recently, with the advancement of the intelligent driving
assistance system (IDAS), vehicles have become more intel-
ligent and are expected to perform many driving tasks. The
cruise control (CC) system is an early step in the intel-
ligent driving assistance system of connected AVs. More
improvements are added to the cruise control (CC) sys-
tem to have more advanced methods, such as adaptive
cruise control (ACC) and cooperative adaptive cruise con-
trol (CACC) systems. Intelligent driving assistance systems
such as CC, ACC, and CACC are essential for support-
ing acceleration control for longitudinal motions based on
the gap distance and speed difference between the lead
and host vehicles. Therefore, many researchers have uti-
lized the simulation-based model approach to evaluate and
study the impacts of connected and AVs. Furthermore, the
simulation-based model analysis provides the flexibility to
build safety-critical scenarios and validate the AVs dur-
ing their development to avoid mistakes before public road
deployment. Many of the micro-simulation papers in this
section established their own ACC, CACC, AV, or CAV
car-followingmodels. Furthermore, each article implemented
a unique method and produced distinct performance indica-
tors. Figure 12 presents the four main intelligent vehicle types
and their definitions.

FIGURE 12. AVs definition and their categorizations [101].
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TABLE 14. Optimal velocity model (OVM) studies.

The ACC system extends the existing CC system to incor-
porate a headway sensor that observes the distance between
the host vehicle and the vehicle in front of it. The essential
function of the CC system is to maintain a constant vehicle
speed that is adjusted by the driver. In contrast, the principal
purpose of theACC system is to control vehicle’s acceleration
based on a distance gap and a speed difference between lead
and host vehicles. Moreover, the ACC system can accelerate
or decelerate based on the speed changes of the lead vehicle.
Figure 13 shows the ACC scenario.

FIGURE 13. Adaptive cruise control [103].

Furthermore, communication capabilities are added to the
ACC system. The modified ACC system with V2V and V2I
communications is called the CACC system. The CACC
system shares the acceleration, deceleration, braking capa-
bility, and vehicle positions using V2V and V2I communi-
cations [75], [102]. The communications capabilities of the

CACC provide shorter headway time compared to the ACC.
Figure 14 shows the setup for CACC scenario.

FIGURE 14. Cooperative adaptive cruise control [102].

The ultimate goal of the intelligent driving assistance sys-
tem (IDAS) is to fully control vehicles. Connected AVs have
all the AV functions along with V2V and V2X communi-
cations. Figure 15 shows the CAV and AV scenarios. One
significant difference between CACC and CAV is automated
lateral movement. The standard car-following motions estab-
lished for human-driven vehicles are old-fashioned compared
to CC, ACC, CACC, and CAV. Thus, the literature studies’
related terms and approaches are slightly different and are not
profoundly classified.

Table 15 presents the simulation-basedmodeling studies of
ACC and CACC and their validation analysis. This table pro-
vides the objective of each review, the base model, modeling
and validation scenarios, vehicle types, assessment basis, and
primary outcomes.
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TABLE 15. Simulation-based AVs studies: ACC and CACC studies [101].
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FIGURE 15. CAVs&AVs [308], [350].

According to literature reviews, the IDM and MIXIC
models are widely used as benchmark car-following mod-
els. Some modifications to the IDM [106], [78], [79], [95]
and MIXIC [94], [116], [133] models are added to fully
understand the longitudinal motion of AV. The car-following
model is an essential model that is widely used to simu-
late AVs. Research efforts have been conducted to estab-
lish AV car-following models by improving the traditional
car-following models (IDM and MIXIC). The intelligent
driver model (IDM) [134] is an uncomplicated safety model
that produces practical outcomes [135]. The main goal of
developing an intelligent driver model (IDM) is to tackle
the modeling of mixed traffic conditions. The initial devel-
opment of the IDM was performed by Treiber et al. [134]
for a single-lane scenario. Furthermore, the acceleration is
described as a function of the gap, velocity, and space dif-
ference between the lead and following vehicles [321]. The
maximum acceleration and minimum headway are consid-
ered to maintain the minimum gap and acquire the required
velocity. Additional extensions to the model are required to
cover multilane traffic modeling and consider potential risk
elements [135]. The IDM and linear approaches do not sup-
port themodeling and validation of 2D traffic scenarios [321].
The modified IDM can be used as an ACC model or as
a human-driven vehicle model. Furthermore, the improved
version of the IDM can be utilized to simulate connected
autonomous vehicles (CAVs) [95].

To fully understand and estimate the impact of AVs using
a simulation-based model, autonomous modeling should be
able to examine the performance of the AV under highly
uncertain conditions. Moreover, the model should evaluate
AV safety, fuel consumption and emissions, noise emissions,
and traffic performance. The MICroscopic model for simu-
lation of intelligent cruise control (MIXIC) is then suggested
and developed as a stochastic simulation model to overcome
these challenges. The MIXIC is implemented widely for
cooperative AV simulations because it uses V2V commu-
nication and can optimize traffic capacity under real-world
conditions. The MIXIC allows interaction between the lead
and host vehicles to share the actual speed, acceleration,
maximum potential braking, and warnings. In [94], the CAV
was established based on the MIXIC model. This technique

utilizes a smart-micro automotive radar (UMRR-00 Type 30)
(90 m ± 2.5% detection range and ± 35 horizontal FOV)
as an input for the MIXIC model. The sensor update rate
was 50 ms and could track up to 64 objects. The AV speed
should be low enough to apply a complete stop when the
lead vehicle is detected and has reached a full stop. Using
the maximum deceleration of the AV (host) and lead vehi-
cle, the AV’s maximum safe speed and acceleration and the
minimum safe distance can be calculated. In [89], the authors
presented a hardware-in-the-loop (HIL) testing system for
CAV applications. The results showed the effectiveness of
the CACC in absorbing certain disturbances and oscillations
of speeds. Moreover, the speed oscillation decreased as the
vehicle position in the string increased. In addition, a perfect
communication/radar contributed to string stability.

f: CELLULAR AUTOMATA MODEL
In 1992, Negal and Schrecknberg presented the cellular
automata (CA) model [351]. The road segment in this model
is divided into cells with the same size of almost 7.5 meters
long [351]. Each cell can fit a single vehicle or be unoccupied.
The longitudinal dynamics of the vehicles are integrated into
the CA model by including the acceleration, braking time,
and randomization of vehicle types [321]. The CA model is
then extended to include two-lane traffic conditions [352].
As a result, large-scale dynamic traffic modeling is easily
achieved using this model. A limitation to this model is the
loss of information due to the discretization of cells [321].
Due to the discretization of cells that have the same size, vehi-
cles are required to update their parameters, such as velocity
and acceleration/deceleration in multiple cells. Another limi-
tation is the difficulty in representing all vehicle types within
the cells. Cell size is an essential factor in the CA model.
The representation of all vehicle types cannot be achieved if
a large cell is utilized. Moreover, the computational workload
might be increased when using a small cell. Furthermore,
this model cannot validate the changeability in the headway
distance between the lead and follower vehicles regarding
vehicle velocity due to the same cell size assumption. There-
fore, a wide range of modifications and extensions to the
CAmodel were performed by incorporatingmany parameters
such as vehicle type, vehicle size, mechanical properties, lat-
eral arrangement, lateral gaps between vehicles, flow, veloc-
ity, occupancy of a vehicle in a cell, cell size, and accelera-
tion&vehicle type [353]–[362]. As a result, the improved CA
model utilizes a cell size of 0.5 m in length, a safe gap at the
front and back of vehicles, the relationship area of occupancy,
interaction rate, and structure of vehicles [361], [362]. How-
ever, according to the outcomes presented in [353]–[362],
further validation and investigation of the model in various
traffic conditions and lateral and longitudinal interactions is
required to expand its application.

g: FUZZY LOGIC MODEL
In 1992, Kikuchi et al. incorporated the relative head-
way distribution, velocity, and acceleration into the
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fuzzy model [363]. The development of the fuzzy logic
model continued with time to include the car-following
model [364]–[367]. The generated outcomes show several
issues due to the inadequate establishment of drivers’ percep-
tion. Moreover, the mixed traffic flow in the car-following
behavior in this model was not included [321]. An advan-
tage of the fuzzy logic model in car-following maneuvers
is the ability to determine the lane shifting behavior of
vehicles [368]–[370].

2) OTHER MICRO-SIMULATION STUDIES
Lane-changing models are essential elements for model-
ing HVs, CAVs, and AVs in traffic micro-simulation tools.
In 1978, Sparmanns proposed a lane-changemodel to classify
lane-change behavior as slower-to-faster and faster-to-slower
lanes based on driver needs [321]. In 1986, Gipps presented
a well-known lane-change model for urban driving that con-
siders the effects of elements such as traffic signals, obstruc-
tions, and heavy vehicles in traffic flow [371]. The main
focus of the Gipps model is to investigate the critical inter-
action between vehicle to vehicle, vehicle to obstructions,
and other real-world driving behaviors [371]. More studies
on lane-change modeling in micro-simulation can be found
in [372]-[373].

The intersection is one of the challenging environments for
AVs because of the unpredicted interactions among pedestri-
ans, bicycles, and vehicles and the intersection users’ highly
complicated design and behavior. As a result, many stud-
ies have covered a wide range of research related to inter-
section scenarios. For example, in [123], a turning vehicle
was modeled, and its surrogate safety indicators were inves-
tigated at mixed-flow intersections. The authors in [124]
validated automated intersection traffic management appli-
cations using a vehicle-in-the-loop (VIL) verification envi-
ronment. In [127], Zulkefli et al. evaluated CAV and AV
applications and fuel consumption and emission using a
hardware-in-the-loop testbed. The outcomes showed fast data
transfer every 200 ms, and the optimized engine operating
points and the desired vehicle speed are tracked precisely.
Shao et al. [126] assessed CAVs and AVs using a hardware-
in-the-loop testbed and a living lab, focusing on fuel con-
sumption and emissions. The outcomes revealed that the error
between the virtual vehicle and the actual testing vehicle
was 1%. Thus, the results support the use of the HIL testbed to
evaluate CAVs in real-world scenarios. Furthermore, in [128],
Li et al. presented an advanced intersection control system to
support CAVs and AVs trajectories and validate their safety
and performance at intersections. Table 16 shows a list of
studies related to the modeling and validation of AVs in
different scenarios.

With the advancements toward fully autonomous vehicles,
human drivers will not control and understand the surround-
ing environment. Therefore, AVs should have a social under-
standing of the interaction between their control systems and
road users to ensure a safe driving environment [137]. The
meaning of interaction in driving involves many tasks such

as identifications, behavior analysis, future action prediction,
and so on, and taking the right actions to avoid any severe
collisions. Behavioral psychology studies have investigated
the social aspects of driving and have shown the factors that
can significantly impact road users’ decisions [138]–[140].
These factors include pedestrian demographics [140], road
conditions [139], social factors [139], and traffic characteris-
tics [142]. Thus, a deep understanding of pedestrian crossing
behavior, the extent of these factors, and how they are con-
nected is required.

In the case of autonomous driving, intent prediction algo-
rithms have been established to estimate the next moves of
pedestrians [143] and drivers [144]. A wide range of tech-
nologies has been developed to assist AVs in communicating
with road users, such as V2V [145] and V2P [146] com-
munications. Moreover, visual intent interfaces such as LED
lights [147] or projectors [148] are used. The problem with
all of these studies is that they consider the technologies
a rigid active thing rather than a social interaction [149].
Pedestrian behavior studies are classified into two categories,
classical studies and AV conflicts studies. The traditional
methods focus on studying pedestrian behavior when inter-
acting with human drivers. A wide range of data-collection
methods is used in classical pedestrian behavior studies, such
as observation, police reports, video recording, photography,
simulation, scripted observation, questionnaires, literature
surveys, and interviews. The focus of this section is the
simulation-based method. A study conducted by Caird and
Hancock [151], which involved 48 men and women, showed
that the road users misjudged the vehicle arrival time as the
size of the vehicle increased. In [152], Sun et al. studied the
relationship between pedestrian waiting time before cross-
ing and gap acceptance. The outcomes showed that a long
pedestrian wait time results in a low acceptance gap. Another
study investigated the impact of vehicle size on pedestrian
behavior and showed that pedestrians are more careful when
interacting with a larger vehicle [153]. Wiedemann [154]
showed that pedestrian flow and pedestrian speed have a
linear relationship with no interaction between pedestrians.
Rasouli and Tsotsos [150] classified the factors that impact
pedestrian behavior into two groups: pedestrian and environ-
mental factors. Figure 16 shows a list of these factors and how
they are connected under classical studies.

In contrast, Figure 17 presents a list of factors that impact
pedestrian behavior when facing AVs and how they are con-
nected. Various methods are used to collect data that are used
in pedestrian behavior studies involving AVs, namely, obser-
vation, video recording, photography, simulation, scripted
observation, questionnaires, literature surveys, interviews,
and Wizard of Oz (a research experiment in which subjects
interact with a computer framework that subjects believe to
be autonomous but is actually run or partially run by a hidden
human being).

The simulation data collection methods used in pedestrian
intention studies involving AVs are briefly discussed in this
section. Beggiato et al. [155] investigated the indirect forms
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TABLE 16. Additional simulation-based AVs studies [101].
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FIGURE 16. Factors that impact pedestrian behavior at the time of
crossing. Major factors are represented as large circles. The small circles
that are connected with solid lines are sub-factors. The connection
between various factors is represented by dashed lines [150].

FIGURE 17. Factors that impact pedestrian behavior when facing AVs.
Major factors are represented as large circles. The small circles that are
connected with solid lines are sub-factors. The connection between
various factors is represented by dashed lines. The dim gray drawing in
the background represents the classical studies factors [150].

of communication between vehicle and pedestrian, such as
vehicle speed and distance. The authors claimed that many
factors impacted the interpretation of the signal, such as
vehicle speed, road users’ age, and time of day.

Jayaraman et al. [156] investigated how the availability
of traffic signals at crosswalks slightly influences pedes-
trian crossing behavior while the AV’s driving decisions
significantly impact such behavior. In [157], Chang et al.
suggested a method for intent display by placing moving
eyes at the front part of the vehicles. Based on data col-
lected from 15 participants, the authors concluded that more

participants chose to cross with the availability of rolling
eyes, and increased the number of participants by 20% if the
eyes are staring toward them. Another study by Pillai [158]
suggested that pedestrians’ crossing decisions depend on the
erratic behavior of the vehicle (speed and distance) and that
under specific weather conditions with low visibility, the use
of intent display will be helpful. Finally, Pillai concluded
that culture is an essential factor that should be considered
when designing any intent displays. According to literature
reviews [150], pedestrian behavior under autonomous driving
conditions needs more focus to include signal, location, road
structure, gap acceptance, and social norms factors. More-
over, some elements from classical studies, such as group
size, pedestrian speed, and street width, should be evaluated
under autonomous driving circumstances. These factors are
essential for understanding pedestrian intention to cross the
road. A deep understanding and consideration of these factors
will result in safe autonomous driving. In short, V2V, V2P,
and V2I communications can provide a safe environment for
autonomous driving and road users. However, although using
these technologies is advantageous, several questions have
been raised regarding the sharing of pedestrians’ data via
these technologies [159].

3) AUTONOMOUS VEHICLE SIMULATION PLATFORMS
Simulation and modeling platforms are well-developed
tools for the design and validation of autonomous or
non-autonomous vehicle developments. V-model is one of the
most popular simulation methods used to cover the testing
and design of the entire AV development process [164]. In the
development process of autonomous vehicles, virtual simu-
lation methods are applied at different stages, and various
testing setups are achieved, such as model-in-the-loop (MIL),
software-in-the-loop (SIL), and hardware-in-the-loop (HIL).
ISO 26262 is based on the V-model and does not match
the agile development process. As a result, a wide range of
simulation platforms exist. In [163], Rosique et al. classified
the simulation platforms into four different approaches that
can be considered when selecting a simulator for autonomous
vehicles, namely, vehicle test simulation, games, and physics
engines for simulation, robotics simulators, and perception
simulators.

Autonomous vehicle development is based on the v-model
development. Model v has several phases of development and
testing, such as the model-in-the-loop (MIL) [165], software-
in-the-loop (SIL) [166], hardware-in-the-loop (HIL) [167],
and the vehicle-hardware-in-the-loop (VeHIL) approach. The
vehicle test simulation approach is based on v model cri-
teria. Several factors must be considered when choosing
an autonomous vehicle simulator, such as the availability
and compatibility of models, subsystems that can be tested,
availability of real-time simulation communications proto-
cols, and compliance with ISO 26262 [163]. Table 17 shows
some of the simulation platforms used to validate and test
autonomous vehicles based on the vehicle test simulation
approach.
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TABLE 17. Summary of the main features of simulation platforms for AV [163].

TABLE 18. Summary of the main features of robotic simulator platforms for AVs [163].

TABLE 19. Summary of the main sensors simulated by robotic simulator platforms for AVs [163].

Another ordinary simulator is the use of an available game
engine. A game engine is defined as the software part of a
computer game that has a rendering engine, a physics engine,
collision detection and response, sound, scripting, anima-
tion, artificial intelligence, networking, streaming, memory
control, threading, localization support, and scene graph.
In addition, it might incorporate video support for cinematic
and virtual reality (VR) simulation [163]. Game engines
provide some features that are advantageous for autonomous
vehicles and robotics researchers, such as physical fidelity,
distributed architecture, cutting-edge graphics, and scriptable
environments [163]. The main game engines that are used
widely in the development of autonomous vehicle systems
or subsystems are Unity 3D [174], Unreal Engine [175],
Blender [176], and Cry Engine [177]. The physics engine
is an essential component when simulating an autonomous
vehicle perception system. This engine provides less fidelity
and works according to the detection of collisions. Examples
of high-performance physics engines that are used in AV
simulation include Open Dynamics Engine (ODE) [178],
bullet physics [179], NVidia PhysX [180], and PreScan [231].

Robotics simulation platforms are also used in autonomous
vehicle simulation. Models of all sensors and actuators
should be provided for the effective use of this type of

simulation[181]–[183]. Moreover, a realistic environment
for testing and validating all types of algorithms and sub-
systems should be provided as well. Many features should
be considered when choosing a robotics simulator, such
as 3D rendering, license, external agent support, sen-
sor noise, parallelism/distribution, level of maturity, fault-
tolerance, realistic scenario simulation, and HIL simulation
techniques [163]. Examples of current robotics simulators
that incorporate data simulation sensors are Gazebo [184],
V-REP [185], Webots [186], and Microsoft Robotics Devel-
oper Studio (MRDS). In the robotics domain, USAR-
Sim [187], BlenSor [188], and MORSE [189] are the
three leading simulators that are used extensively for
research. For example, MORSE was used by Ford Motor
Company to test the 2021 Ford Mustang Mach-E [190].
Table 18 presents a broader list of some robotics simulators
that integrate simulation data. Table 19 provides a comparison
between sensors that are simulated using robotics
simulators.

Simulation platforms should mimic real-world environ-
ments to model and validate any perception algorithm.
Therefore, the available simulation platforms tend to have
these features: fast prototyping, physics engines for realistic
motions, realistic 3d rendering, and dynamics with scripting.
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TABLE 20. Summary of the features of specific perception simulation platforms for AVs [163].

TABLE 21. Summary of the main sensors simulated by specific perception simulators for AVs [163].

Tables 20 and 21 show a list of perception algorithms simu-
lation platforms and their features.

B. AGENT-BASED MODELS
Agent-based models integrate activity-based demand gener-
ation and dynamic traffic assignments [204]. This approach
covers all macroscopic four-step procedures, namely, demand
generation, demand distribution, model choice, and traffic
assignment [203]. Agent-based models (ABMs) also utilize
independent agents with a bottom-up technique to simulate
a highly complex system [202]. This type of modeling and
simulation is considered a superior simulation approach com-
pared to other methods in terms of flexibility, hierarchy,
intuition, and dealing with complex systems. For example,
an AV operating on public roads while interacting with
human-driven cars, vulnerable road users, and road net-
works is highly problematic. Within an independent vehicle

system, all subsystems are interconnected and work simul-
taneously. Moreover, a wide range of elements, such as the
diverse behavior of agents (people and vehicles), are inte-
grated within agent-based modeling. With high-end com-
puters, an agent-based modeling approach is used to build
challenging models with more realistic scenarios.

The autonomous-vehicles agent-based modeling studies
are diverse. They include the travel and environmental
impacts of autonomous vehicles [70], [206], the park-
ing requirements with the arrival of autonomous vehi-
cles [207], [208], the traffic congestion caused by
autonomous vehicles [209], the system performance of
the autonomous vehicle [210], [211], [208], [212], [213],
and the autonomous vehicles’ modal share and travel
modes [214], [72], [215]. There are many critical variables
that can impact the system performance of the AV, namely,
fleet size, demand, strategy, ride-sharing, pricing schemes,
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configurations of stations, travel mode, vehicle capacity,
service area, refuel/recharge time, maximum waiting time,
and cruising time [221]. Many researchers consider these
variables in the sensitivity analysis and modeling of var-
ious simulation scenarios. For example, in the literature
review, there are 27 papers related to the fleet-size research
area. In fleet-size studies, regular vehicles are replaced
by autonomous vehicles (AV) [71], autonomous taxis
(ataxi) [216], autonomous mobility on demand (AMOD)
[217], autonomous transit on demand (ATOD) [218], shared
autonomous vehicles (SAV) [70], or shared autonomous
electric vehicles (SAEV) [219].

The fleet size or replacement rate is considered one of
the significant outcomes of the agent-based simulation. The
replacement rate is used as an indicator to show the efficiency
of an autonomous vehicle system. Fagnant et al. [220] argued
that travel demand, average speeds, and average trip distances
impact AV system performance. Moreover, the replacement
rate of the autonomous vehicle was investigated with a case
study in Austin. Fagnant and Kockelman [70] argued that
one autonomous vehicle can replace ten human-driven cars.
In [221], the outcomes showed that the replacement rate
in [70] is 1:11 with link-level travel time and is 1:9 with
constant speed in [220]. In [210], Marczuk et al. showed
that fleet size relies on many factors, such as service area,
average demand, level of service (based on average waiting
time, service and reject rate), routing scheme, relocation plan,
and design of the facility. Moreover, in [206], the fleet size
can be minimized by ride-sharing. Additionally, the average
trip distances data in the survey papers are not precise enough.
Furthermore, environmental scenarios, such as urban areas or
highway, can impact the travel distance. In [221], ride-sharing
was considered as an indicator of the routing scheme. In short,
many major factors can affect the fleet size or replacement
rate, namely, service data, average demand, average speed,
average waiting time, service and reject rate, ride-sharing,
relocation plan, and design of the facility. The replacement
rate in [70], [220], and [216] is the same, considering that one
autonomous taxi can replace ten regular vehicles, excluding
relocation and travel demand. The outcomes show that the
average waiting time is approximately 2.28 minutes, which
is considered too large.

In [162], the authors presented an autonomous intersec-
tionmanagement algorithm called AIM-ped, which considers
vehicles and pedestrians. The total optimal throughput was
calculated when incorporated with maximum pressure con-
trol. Moreover, the conflict region model conducts a stability
analysis of the autonomous intersection management system.
The AIM-ped algorithm is implemented by integrating the
maximum-pressure control with an existing trajectory opti-
mization algorithm to obtain the optimal vehicle trajectories.
The result is that the AIM-ped algorithm can trigger vehicle
movements when there is a change in pedestrian demand. The
simulation outcomes show that pedestrians and vehicle delays
are negatively correlated. In [125], the sequential movements
of vehicles at intersections were modeled as a multi-agent

Markov decision process (MAMDPS). The outcomes show
that the optimal sequential decision from DCL-AIM outper-
forms all the other control policies. In [205], the authors pre-
sented a model to develop the interaction dynamics between
drivers and pedestrians in dense traffic areas where pedestri-
ans and/or drivers do not obey traffic laws and regulations.
This approach can be used in control systems of AVs and
drivers’ onboard alert systems [205]. In [92], the performance
of many SAV fleets and vehicle sizes serving travelers across
France’s Rouen Normandie metropolitan area was evaluated.
Moreover, the effect of ride-sharing and rebalancing strate-
gies on service was studied. This study emphasized that the
performance of SAV is strongly correlated with the fleet size
and the shared rides.

Table 22 presents a summary of the features of specific
agent-based simulation platforms. Most agent-based simula-
tion research papers use the MATSim simulation platform
to model all autonomous vehicle system operations. In the
past, MATSim was used to simulate regular vehicles and not
autonomous vehicles. With the need to validate AVs, [209]
and [222] establish the AV toolkit for MATSim. In the
agent-based simulation, the autonomous vehicles are like-
wise simulated, and the difference between all the simulated
vehicles is the data source. For example, for an autonomous
taxi, taxi data are used, and travel surveys are taken into
account for other car-sharing services. Private AV simulations
in literature surveys are limited. In addition to agent-based
modeling, augmented and virtual reality methods have great
potential as essential methods for AV evaluation. Recent
studies on these methods have been presented in [374]–[377].
In short, the agent-based simulation approach for AVs is in
its infancy stage. More focus on agent-based simulation of
private autonomous vehicles is required for this approach to
compete with other AV validation methods.

VIII. DISCUSSION AND FUTURE RESEARCH DIRECTIONS
Two main tests are currently used to evaluate CAVs and
AVs, namely naturalistic field operational tests (N-FOTs)
and virtual tests. The virtual tests include test matrix evalua-
tion, worst-case scenario evaluation (WCSE), Monte Carlo
simulations, accelerated evaluation (AE), simulation-based
and agent-based modeling approaches. In some cases, both
N-FOTs and virtual tests are combined simultaneously to
evaluate CAVs and AVs. In N-FOTs, vehicles are equipped
with the required sensors and are driven in naturalistic con-
ditions, which is not the case in virtual tests. The N-FOTs
allow the investigators to observe CAVs and AVs in a natural
setting. The data collected from N-FOTs are utilized to inves-
tigate many elements, such as driver performance, surround-
ing environment, driving conditions, and other components
related to critical incidents, near collisions, and collisions.
However, the N-FOTs have many restrictions, such as the
time required to conduct the test, the need for trained drivers,
and the low probability of critical events. Moreover, the test
requires many vehicles, a lot of time, and large budgets.
Therefore, virtual tests are used as an efficient alternative
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TABLE 22. Summary of the features of specific agent-based simulation platforms for AVs [221].

approach to model and validate CAVs and AVs. Many ques-
tions are raised regarding virtual tests and how these tests can
be reliable and replace the naturalistic field operational tests.
For example, urban scenes are essential in virtual tests, which
inevitably involve pedestrians, vehicles, cyclists, motorcy-
clists, etc. Simulating traffic congestion, lane-change sce-
narios, car-following scenarios, pedestrian-vehicle conflict,
vehicle-vehicle conflict, pedestrian behavior, driver behavior,
human-driven vehicle behavior, weather conditions, and so
many scenarios in a large-scale traffic scenario is a compli-
cated multi-layer task. Usually, the resulting movements of
each object in the simulation rarely follow the physical laws.
Moreover, accessing vehicle trajectories and including them
in virtual tests or applications in real-time is challenging.
Furthermore, road networks generation and representation is
also a fundamental task in traffic simulation and modeling.
Several simulation tools support road networks, but the out-
comes do not resemble real-world traffic at the street level.
Therefore, in virtual testing methods, model verification in
terms of the similarity between the simulated traffic model
and real-world scenarios is always a concern. In this review,
we presented the advantages and disadvantages of each eval-
uation method. The review papers presented in this survey
show a clear gap in the research area of CAV and AV eval-
uation. Each method has its own strengths and weaknesses.
For example, many techniques focus on car-following and
lane-change modeling and evaluation and neglect the remain-
ing traffic conditions and the modeling of severe weather
conditions. Furthermore, the V2V, V2P, and V2I technologies
are still under investigation and require more validation.

Moreover, the CAV and AV modeling and evaluation is a
task that requires integrating many models simultaneously
with a wide range of parameters and variables. Choosing
suitable models will produce satisfying outcomes. Based
on our findings, different models related to behavior, car-
following, lane-change, vehicle dynamics, etc. are being used
in every research paper. Therefore, establishing a compar-
ison study is a very challenging task. For example, some
car-following models outperform other models. Using the
superior car-following model in a research paper with a spe-
cific evaluation method will produce promising outcomes for

this method.Moreover, several architecturemodels have been
developed, from completely modular to fully end-to-end,
each with its limitations. The optimal algorithms for local-
ization, mapping, and perception still lack accuracy and effi-
ciency. In short, for safe autonomous driving, a high-fidelity
driving simulator, which includes realistic traffic streams and
complicated traffic conditions, is necessary. Such a simulator
can construct critical training environments in an efficient
and reproducible manner. New evaluation methods need to
be developed for more scenarios to provide a thorough vali-
dation of AVs. The community has not fully understood the
full failure modes of AVs to design a complete list of test
scenarios, but the possible elements to incorporate are as
follows:

1) Challenges in sensing/detection under severe weather
conditions such as heavy snow, rain, fog, etc.

2) Aggression of surrounding vehicles/vulnerable road
users such as running a red light, cut-in, jaywalk, etc.

3) Challenges in making decisions such as under low
confidence, multiple threats at a time, and so on.

4) Challenges due to road types and vehicles types

Moreover, these simulators and evaluation methods should
provide clear answers to the following questions:

1) What are scalable driving policies to control many AVs
in mixed traffic comprised of human-driven vehicles
(HVs), CAVs, AVs, vulnerable road users, etc.?

2) How do we estimate human driver behaviors, pedes-
trian behaviors, surrounding vehicles (HVs, CAVs,
and AVs)?

3) How to ensure that the behaviors of drivers and
pedestrians are accurate and capture the real-world
behaviors?

4) How should the driving behavior of HVs, CAVs, AVs
be modeled in the environment?

5) How are the interactions between human-driven vehi-
cles (HVs) and AVs characterized?

6) How are the interactions between CAVs and AVs
characterized?

7) How are the interactions between pedestrians and AVs
characterized?
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8) How are the interactions between other vulnerable road
users (VRU) and AVs characterized?

9) How should pedestrian behavior be modeled in the
environment?

10) How should the severe weather conditions be modeled
in the environment?

Many methods showed promising outcomes but did not pro-
vide answers to all of these questions.

IX. CONCLUSION
It is critical to evaluate AVs thoroughly before their
release and deployment to the general public. However,
because most trips are not safety-critical in naturalistic
driving, testing AVs on public roads is time-consuming,
inefficient, and expensive. In this study, we surveyed all
evaluation methods. These methods include naturalistic
field operational tests, test matrix evaluation, worst-case
scenario evaluation, Monte Carlo simulations, accelerated
evaluation, and simulation-based model approach. This
survey showed that there is a clear gap in the field
of AV evaluation. Many factors affect our judgment on
what is the best approach to evaluate AVs. These factors
include:

1) The AVs to AVs and HVs to HVs interactions have not
been studied and used only as a benchmark.

2) The AV sensors and controls have been suggested to
work accurately in many papers, and the measurements
are presumed to be accurate.

3) The drivers’ reactions to AVs are assumed to be the
same as to HVs.

4) The vehicle models are not accurate to mimic the
real-world scenarios.

5) Many real-world conditions have not yet been investi-
gated.

6) Different models related to behavior, car-following,
lane-change, vehicle dynamics, etc. are being used in
every research paper.

The accelerated evaluation approach outperforms natu-
ralistic field operational tests (N-FOTs), test matrix evalu-
ation, worst-case scenario evaluation (WCSE), and Monte
Carlo simulations methods in some of the car-following, and
lane-change studies when using specific models in terms of
the assessment time of the collision, injury, or conflict event.
In addition, some studies show that integrating machine and
deep learning techniques with test matrix evaluation, Monte
Carlo simulations, and accelerated evaluation can reveal
significant improvements. In the simulation-based model
approach, the agent-based modeling approach was investi-
gated and shown to be advantageous for AV modeling and
validation. However, more work is needed to implement an
agent-based modeling approach to cover a wide range of
self-driving vehicle research. Another promising approach
for AV evaluation is the augmented and virtual reality meth-
ods. The development of AVs depends on advancements
in scientific disciplines and new technologies. Therefore,
AV research development has a high impact on AV driving

technology by overcoming the weaknesses of the avail-
able evaluation methods and by inventing new evaluation
methods.
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