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ABSTRACT The random fluctuation and non-uniformity of Photovoltaic (PV) power generation greatly
affect the power grids’ stability and operation. This paper addresses the high volatility of PV power by
proposing a precise and reliable ensemble learning model for short-term PV power generation forecasting.
The proposed forecasting tool incorporates a base model and meta-model layers. The first-layer base
learner combines extreme learning machines, extremely randomized trees, k-nearest neighbor, and mondrian
forest models. The meta-model layer exploits deep belief network to generate the final outputs. The
hyper-parameters of the proposed stacking ensemble are carefully tuned using the tree-structured of parzen
estimators algorithm to achieve top-notch predictive performance. The proposed model is thoroughly
assessed through an empirical study using a real data set from Australia. The simulation results confirm
the performance superiority of the proposed model over the existing forecasting models with the lowest
average root mean square error and mean absolute percentage error of 3.88kW and 2.30%, respectively.

INDEX TERMS Deep belief network, PV power forecasting, stacking ensemble, smart grid, power
generation planning.

NOMENCLATURE

Functions:

σ Sigmoid function.
σi Gaussian standard deviation.
D Euclidean distance.
gi Activation function.
H Hidden layer matrix.
RPP Random Position Probability.
SD Standard Deviation.
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Variables:

ℵ Normalizing constant.
βi Output weight.
λ Timestep.
5 Random repartition.
2 network parameter set.
θ Optimal hyperparameter value.
ci Bias.
Wij Weight between visible and hidden

unit.
0TPE Optimizer classification coefficient.
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Abbreviations:

BM Boltzmann Machine.
CNN Convolutional Neural Network.
DBN Deep Belief Network.
DKASC Desert Knowledge Alice Springs Center.
DT Decision Trees .
ELM Extreme Learning Machine.
ET Extremely Randomized Trees.
GRU Gated Recurrent Unit.
HO Hyperparameter Optimization.
HP Hyperparameters.
IMFO Improved Moth-Flame Optimization algorithm.
KNN K-Nearest Neighbors.
LSTM Long-Short Term Memory.
MAE Mean Absolute Error.
MAPE Mean Absolute Percentage Error.
MLP Multi-Layer Perceptron.
PSO Particle Swarm Optimization.
PVPF Photovoltaic power forecasting.
RBFNN Radial Basis Function Neural Network.
RBM Restricted Boltzmann Machine.
RMSE Root Mean Squared Error.
TPE Tree-structured of Parzen Estimators.
WPD Wavelet Packet Decomposition.

I. INTRODUCTION
With the rapid growth of Photovoltaic (PV) capacity,
PV Power Forecasting (PVPF) presents an effective solu-
tion to cope with the unexpected changes of weather con-
ditions [1]. The PV forecasts allow the compensation of
the deficit in PV power generation from alternative sources.
A precise expectation for future PV power generation guaran-
tees a secure and effective system commitment by improving
the energy stability and ensuring the grid’s reliability [2].
More precisely, the PVPF copes with the weather outliers and
provides information integrity to customers and energy sup-
pliers. In addition, accurate forecasting of PV power output
is crucial for energy control and management in smart grid
systems, especially when the well-known concept adopted
by customers is the ‘‘fit and forget’’ approach [1]. Therefore,
PVPF overcomes the lack of coordination between the load
and its variant suppliers. The conditional hierarchical rela-
tions between heterogeneous generation sources and demand
need an accurate forecasting model to prevent blackouts and
system failures [1]. However, the intermittency and random-
ness of meteorological conditions pose great challenges to
the accuracy of PV power production forecasts, especially
during rainy, cloudy, or extreme weather conditions [3].
Consequently, PVPF remains in a theoretical exploration
phase due to the unsatisfactory performance in particular case
scenarios where the Root Mean Squared Error (RMSE) can
exceed 50% [4]. Meanwhile, more sophisticated forecasting
methods are highly needed tomeet the technical requirements
of actual PV plants.

Recently, PVPF has become an attractive research area
for scientists and engineers. Meteorological Data-Driven
Approach (MDDA) is one of the commonly used approaches
in PVPF. This approach deals with the weather parameters
having a direct impact on the PV power production. For
a typical forecasting system, the database collection has a
major impact on the forecasting quality [5], [6]. Moreover,
the forecasting horizon significantly impacts the quality of
the prediction [7], [8]. According to the cut-off time horizon,
the data-driven methods are categorized into short, medium,
and long-term predictions [2]. The Short-Term PVPF (STPF)
ranges fromminutes to hours, themedium horizon from hours
to a few weeks, while the long-term prediction is imple-
mented up to years ahead. Artificial intelligence methods
were frequently adopted to cope with the stochastic interac-
tion of PV systems with their external environment. A recent
selection of these methods is listed in Table 1 [5], [9]–[20].

In [5], a Weighted Gaussian Process Regression (WGPR)
approach has been proposed to alleviate the negative impact
of outliers on the PVPF accuracy. In the latter approach, the
samples with higher outlier have a lower weight. From the
experimental results, the proposed method shows a slight
improvement in terms of RMSE compared to standard Gaus-
sian process regression (GPR). However, the joint distribu-
tion of input features needs to be calculated, which may
lead to poor performance for multidimensional input data.
A deep Residual Network (ResNet) and Dense convolutional
Network (DenseNet) have been proposed in [20]. In these
architectures, shortcut connections were utilized to skip one
or more layers while preventing the learning degradation
problem. It has been found that ResNet achieves higher per-
formance than DenseNet, with a coverage error rate of less
than 1%. Nonetheless, the major limitation of these deep
networks is the long training time and the heavy compu-
tational requirements due to the high complexity with the
increased network depth. In [18], a Support Vector Machines
(SVM)-based Ant Colony Optimization (ACO) approach
has been proposed for PVPF. Although the latter approach
achieved excellent performance with a coefficient of deter-
mination (R2) of 0.997, the scalability to large-scale prob-
lems has not been addressed. Besides, the comparison of
the optimization method with other up-to-date metaheuristic
methods is missed. Some scholars incorporate the persis-
tence model, Auto-encoder, and Long Short Term Mem-
ory (LSTM) into the forecasting process of PVPG [15].

Nonetheless, the training time of LSTM is much longer
than that of other algorithms. Reducing the training time
under the premise of ensuring high accuracy is still a
challenge worth studying. Paper [12] has adopted a solar-
time-based analog ensemble for regional PVPF. In this
specific design, six forecasting engines were fully utilized
to generate the PV installed capacity output, leading to an
impressive performance with a Mean Absolute Error (MAE)
of 54.82MWh. From the employed forecasting engines,
LSTM and Convolutional Neural Network (CNN) were
incorporated, which could entail excessive parameters and
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TABLE 1. Literature review of PV power forecasting methods.

high calculation costs. Unfortunately, the practical applica-
tion of this design may require big data solutions to counter
the additional computational complexity and meet the tech-
nical requirements. Besides, the hyperparameter optimiza-
tion of these algorithms is overlooked. In [11], a novel
long-term PVPF assembled by fusing a hybrid feature selec-
tion approach and stacking ensemble model is explored.
However, the proposed method ignores the impact of histor-
ical trends on the future PV power output. Authors in litera-
ture [19] exploit the LSTM model based on time correlation
modification for PVPF. The LSTM model exhibits the best
performance among benchmarks in solving non-linear and
time-varying problems.

Nevertheless, the comparison with the emerging powerful
Deep Learning (DL) techniques such as Deep Belief Net-
work (DBN) is not considered, making the competitiveness
of the depicted approach with top-level DL models question-
able. In a similar vein, paper [16] adopted LSTM architecture
associated with copula function-based feature extraction to
handle mid-to-long term PVPF. The proposed model effi-
ciently extracts the relevant weather features with a lower

MeanAbsolute Percentage Error (MAPE) of 5.95%, owing to
the strong ability of LSTM in characterizing the dependence
relationship of TS data. It was pointed out that meteorolog-
ical feature extraction is highly recommended for capturing
long-term dependencies. However, the model inputs of the
used data set are limited to five, which poses a question of the
usefulness of feature extraction in such a reduced dimension.
The authors in [10] applied a CNN model for day-ahead
PV power forecasting. However, the proposed model lacks
enough capability to model the complex temporal character-
istics of load series regarding the high error measurement
leading to an unsatisfactory RootMean Square Error (RMSE)
of 163.15W.

The authors in [21] implemented an Extreme Learning
Machine (ELM) for PVPF. The ELM architecture provides
an effective selection of random nodes to determine the out-
put weights to protect the system from slow gradient-based
learning. To validate the competitiveness and feasibility of the
proposed forecasting scheme, SVM and ANN were chosen
as the reference models. From the error measures, it has
been found that ELM provides more precise forecasting
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results at the hourly forecasting horizon, with a MAPE =
3.56%, compared to SVM and ANN with MAPE = 4.56%
and 5.41%, respectively. Besides, the training time of
ELM was the lowest with 0.34 seconds compared to ANN
(0.74 seconds) and SVR (2.91 seconds). However, the ELM
model still has room to improve in terms of higher accuracy
and efficiency since this model faces a complex issue in
computation with a large number of hidden nodes. A recent
work [22] deploys a new model named Expanded
ELM (EELM) for PV power forecasting. The proposed
EELM contributes to the original ELM by an automatic
selection of the hidden layer number and random input
weights. Although the proposed model outperforms ELM
and Functional Link Neural Network (FNLNN), the higher
extrapolation capabilities of EELM have been only demon-
strated for a forecasting horizon of less than 1 hour. Authors
in [23] proposed Kernel Extreme LearningMachine (KEML)
model to predict daily global solar radiation. The supremacy
of the proposed method is verified using different optimal
penalty parameters and kernel width. However, the proposed
KELM does not have a high generalization capability, and
its performance is proved in limited problems. The authors
in [24] implemented a stacked ELM (SELM) model for Time
Series (TS) prediction. Despite the superior performance of
the S-ELM, it has been conducted that S-ELM faces a heavy
computational burden compared to the traditional ELM.
To the best of the authors’ knowledge, Mondrian Forest (MF)
has never been implemented for PV and solar forecasting
purposes yet [25].

In summary, based on the above-mentioned research
works, the effectiveness of the PVPF can be further
enhanced via performing some feasible scenarios. The
main contributions of this paper rely on the following
aspects:
• An effective ensemble learning-based stacked general-
ization approach and an intelligent optimizer are firstly
proposed. The Enhanced DBN (EDBN) model cre-
ates effectively high-level abstractions by leveraging
meta-data solutions.

• A potential application of the proposed model is
appraised for PV power forecasting and assessed
through a real-data set. The proposed method demon-
strates a high extrapolation capability for STPF appli-
cation. The assessment of the proposed model has been
conducted using score metrics and a comparative study
with multiple benchmark models.

• Tree-structured of Parzen Estimators (TPE) algorithm is
employed for Hyperparameters (HP) tuning of machine
learning and DLmodels. It is quite challenging to decide
the initial HP values. The TPE optimizer has provided
an efficient automatic HP selection based on simulation
results.

The remaining parts of this paper are organized as fol-
lows. In section II, a comprehensive overview of the
adopted methodologies and the proposed method is pre-
sented. Section III assesses the proposed method for daily

PV power generation using three real data sets. Finally,
section IV concludes this study.

II. METHODOLOGIES AND PROPOSED APPROACH
This section briefly describes five ML models employed in
this research work, including MF, ELM, KNN, DBN, and
Extremely Randomized Trees (ET). The cited methods have
been optimized based on TPE. Furthermore, the proposed
approach is comprehensively described.

A. MONDRIAN FOREST
Recently, the MF model has been introduced as an enhanced
version of Random Forest (RF). For the conventional RF,
assuming (f̂n)(n > 1) as a randomized estimate, x ∈ [0, 1]d

denotes the query point, {5(m),m ∈ {1, . . . ,M}} denotes
the random partitions of [0, 1]d , and (f̂n(x,5(m)) presents the
prediction output. The RF prediction is computed by [26]:

f̂n(x,5M ) =
1
M

M∑
m=1

f̂n(x,5(m)) (1)

In order to avoid the inconsistency and complexity of RF,
a Mondrian Process (MP) has been applied for MF in a
scaled time domain. A family distribution {MFt , t ∈ [0,∞)}
makes hierarchical replications {MFs, s ∈ [0,∞)} with an
accuracy enhancement for each s > t . MFs are shaped
recursively according to an improved probability distribution
and the hierarchical bayesian prior to the leaf parameters.
For each distribution, the nodes are updated for each times-
tamp following the conditional mondrian algorithm. For the
sake of conciseness, MF is explained from a mathematical
perspective. From (1), the random partitions are accorded
with timesteps λ from the MP distributionMP(λ[0, 1]d ). The
MF parametric equation is defined as [26]:

f̂λ,n,M (x,5λ,M ) =
1
M

M∑
m=1

f̂ mλ,n(x,5
m
λ ) (2)

Fig. 1 presents the global structure of the MF algorithm in
which incremental learning is getting proceeded over time.

FIGURE 1. (a) MF partition, with (b) corresponding tree structure [26].

Regarding Fig. 1, each node is split for a specific
λ timestep. MR has the propriety of no limitation for con-
tinuous learning. This MF ensures a falling back to the prior
mean and variance for samples far away from the train sets.

VOLUME 9, 2021 150333



M. Massaoudi et al.: Enhanced Deep Belief Network Based on Ensemble Learning and Tree-Structured of Parzen Estimators

B. EXTREME LEARNING MACHINE
The ELM is a learning model for the generalized
single-hidden Layer feedforward neural Networks [27]. The
ELM acquires a fast learning and high cost-effectiveness of
computational complexity compared to the back-propagation
algorithm and the Levenberg–Marquardt algorithm. Unlike
slow gradient-based algorithms for neural networks, this
algorithm’s hidden weights and bias parameters are randomly
selected, and the output weights are analytically computed.
The ELM learning process targets minimizing the training
error in tandem with the smallest norm of output weights as
following [27]:

Minimize : ||β||σ1u + λ||Hβ − Tv||σ2 (3)

where σ1 > 0, σ2 > 0, u, v = 0, 12 , 1, 2, . . . ,+∞. T denotes
the training data-target matrix. H is the Hidden layer output
matrix written as [28]:

H =

h(x1)
...

h(xN )

 =
h1(x1) · · · hL(x1)

...
. . .

...

h1(xN ) · · · hL(xN )

 (4)

The ELM mechanism consists of choosing the hidden per-
ceptron and calculating the output weights of Single-hidden
Layer Feed Forward Neural Networks (SLFNs). The
ELM model with the activation function gi(.) for the
ith hidden node and N hidden nodes is presented as [27]:

N∑
i=1

βigi(x) =
N∑
i=1

βigi(wixi + ci), N ∈ N (5)

where wi is the weight between the hidden nodes and the
input nodes, βi denotes the output weights. ci is the bias.
This algorithm aims to get a faster training process with a
minimum norm of output weights. Eq. 5 can be simplified
as [27]:

Hβ = T (6)

Since the hidden node’s parameters are tuned randomly, the
output weight vector is calculated by a simple multiplication
of the training data-target matrix, and the Moore-Penrose
generalized inverse of H denoted as H† presented by [27]:

βi = H†T =

h(x1)
...

h(xN )


†

.

t
T
1
...

tTn

 (7)

The orthogonal projection method is successfully
employed for the calculation of inverse matrix: H†

=

(HTH )−1HT , if HTH is non-singular; or H†
= HT (HT

H )−1, ifHHT is non-singular. Following the ridge regression
theory, it is recommended to add a positive value (1/λ) to
the diagonal matrix HHT . Thus, the corresponding output
function f (x) is given as follows [29]:

f (x) = h(x)β = h(x)(
1
λ
+ HHT )−1THT (8)

C. K-NEAREST NEIGHBORS
The traditional KNN algorithm is an instance-based learning
supervised learning method to find out k training samples
closest to the target object based on the available input pat-
terns. The traditional KNN implementation is characterized
by high simplicity and generalization potential for regression
and classification problems. The Euclidean distance D(X ,Y )
is often implemented through the standard KNN to measure
the distance between two points X = (x1, x2, . . . , xn) and
Y = (y1, y2, . . . , yn) illustrated as [30]:

D(X ,Y ) =

√√√√ n∑
i=1

(x1 − y1)2 + . . .+ (xn − yn)2 (9)

where n denotes the number of features. From the Euclidean
distance calculation, only saving the input representations is
required, and the prediction is achieved locally based on some
near patterns. Despite being a mature algorithm with wide
use, the traditional KNN has several shortcomings, including
high sensitivity to the local structure of the data, large mem-
ory requirements, poor performance with unbalanced data,
and ineffectiveness with large data sets. Therefore, several
research papers have been focused on tackling these prob-
lems, including the Weighted KNN, Mixed KNN, and fuzzy
KNN [31]–[33].

D. EXTREMELY RANDOMIZED TREES
The ET is an ensemble of untrimmed Decision Trees (DT)
that promotes tree diversity based on classical top-down pro-
cedure [34]. The ET employs the whole training examples
to build each tree in the tree ensemble [34]. The ET model
separates the learning nodes by selecting action-points totally
randomized for growing these trees. This process makes the
ET model more computationally efficient compared to other
tree-based ensemble methods [34]. This process reduces the
variance of the model and prevents training overfitting [34].
Empirically, given a training data set, X = {x1, x2, . . . , xN },
where the sample xi = f1, f2, . . . , fD denotes a D-dimensional
vector with fj as the inputs and j ∈ {1, 2, . . . ,D}, ET gener-
atesM individual DT. Here, Sp presents the subset of training
data set X at child node p. At each node p, the ET model
selects the best split based on Sp and a randomized inputs’
subgroup. Gini impurity is employed as a score function to
select the best split rule. In each child node, the iterations
are repeated until obtaining a minimum number of samples
required to split, or when all the samples in subset Sp have an
identical label. Each leaf node is represented by the label of
the samples in subset Sp.

E. DEEP BELIEF NETWORK
The DBN is a variant of the Boltzmann Machine (BM)
model formed by h0 and L computational layers hi; (i = 1,
2, . . . ,L) [35]. Every layer hi is a Restricted Boltzmann
Machine (RBM) RBM i. The RBM algorithm contains a vis-
ible layer with visual neurons designed v ∈ {0, 1}gv hidden
layer containing hidden neural units named as h ∈ {0, 1}gh
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with gv and gh present the number of visible and hidden
units, respectively [35]. As depicted in Fig.2(a), the standard
BM has a limited potential in digging out discriminant data
of the input data layer by layer.

FIGURE 2. Simplified structure of (a) BM (b) RBM (c) DBN, respectively.

Thus, the RBM is employed as an advanced and more
straightforward form of BM as there is no linkage between
nodes in the same layer, while the nodes between the visible
layer and the hidden layer are fully connected, as shown
in Fig.2(b). Cascading multiple RBMs serve as the nuclear
components of DBN, as illustrated in Fig.2(c).

The RBM belongs to energy-based models, and the energy
function is defined by the visible layer v = (vi)n and the
hidden layer h = (hj)m computed as [36]:

E(v, h) = −
gv∑
i=1

gh∑
j=1

Wij
vi
σi
hj −

gv∑
i=1

(vi − ai)2

2σ 2
i

−

gh∑
i=1

bjhj

(10)

with Wij and σi present the weight between visible and
hidden units and the Gaussian standard deviation of the
visible units, respectively. ai and bj present the bias terms.
Gaussian unit-based RBM is simplified for practical use
as [35]:

E(v, h) = −
gv∑
i=1

(ai − vi)2)

2δ2i
+

gh∑
j=1

(bj − hj)2

2γ 2
j

−

gv∑
i=1

gh∑
j=1

vi
δi

hj
γj
wij (11)

where δi and γj and are the standard deviations of the Gaus-
sian noise of the visible unit i and the hidden unit j, respec-
tively. The joint distribution of the visible and hidden units is
defined by [37]:

P(v, h) =
1
ℵ
exp(−E(v, h)) (12)

ℵ denotes a normalizing constant as the sum of E(v, h)
over all pairs of visible and hidden vectors. ℵ is calculated
as [35]:

ℵ =

gv∑
i=1

gh∑
j=1

exp(−E(v, h)) (13)

The marginal distributions of the visible and the hidden
layer are defined as [36]:

P(v) =
1
ℵ

gv∑
i=1

exp(−E(v, h)) (14)

P(h) =
1
ℵ

gh∑
j=1

exp(−E(v, h)) (15)

At each RBM i with i = {1, 2, . . . ,L}, the condi-
tional probability density function of the j-th neurons in
the visible layer hi−1 and hidden layer hi can be expressed
as [37]:

P(hij = 1|hi−1) = σ (
∑
k

W i
kjh

i−1
k + b

i
j) (16)

P(hi−1j = 1|hi) = σ (
∑
k

W i
jkh

i
k + b

i−1
j ) (17)

With σ denotes the sigmoid function formulated as [38]:

σ (u) =
1

1+ e−u
(18)

The RBM training requires learning model parameters that
boost the log-likelihood of the probabilistic distribution of the
train visible set, following [37]:

ln(P(D)) =
T∑
t=1

lnP(vt ) =
T∑
t=1

[ln
gh∑
j=1

e−E(v
t ,h)

− ln
gh∑
j=1

gv∑
i=1

e−E(v,h)] (19)

where T denotes the sample number for the train set D,
in which D = {v1, v2, . . . , vT }t={1,2,...,T }. Hence, vt presents
the tth training sample. For a representative sample vt , Dif-
ferentiating a log-likelihood of P(vt ) with regard to 2 as
follows [37]:

∂lnP(vt )
∂2

= −

gh∑
j=1

P(h|vt )
∂E(vt , h)
∂2

+

gh∑
j=1

gv∑
i=1

P(v, h)
∂E(v, h)
∂2

(20)

where 2 is the network parameter set with 2 = {wij, ai, bj}.
P(h|vt ) and P(v, h) denote the expectations of the gradient
function under distribution specified by the data and the
model, respectively. Due to the high computational burden
for solving Eq. 20, the Contrast Divergence (CD) algo-
rithm is employed to measure the joint distribution of v
and h [37].

F. TREE-STRUCTURED OF PARZEN ESTIMATORS
The HP optimization is a tedious task for ML methods [39].
To remedy this task, the TPE algorithm is presented as a
sequential model-based optimization (SMBO) approach that
effectively handles categorical (such as date or weather type)
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and conditional parameters (such as learning algorithm and
learning rate) [40]. The TPE algorithm transforms the con-
figuration space into a non-parametric Parzen-window den-
sity estimation with a function evaluation f (θ ) [41]. The
configuration space can be modeled by uniform distribution,
discrete uniform distribution, or logarithmic uniform distribu-
tion [42]. Hence, this variety of configurations contributes to
the flexibility of the TPE compared to the standard BO [42].
For the iterative process, the TPE approximates f (θ ) in a
configuration space that is probabilistically supervised and
limited according to the observation history [41]. Expected
Improvement (EI) criterion is employed to locate the best
HP θ∗ from the search space [41]. The algorithm defines the
probability distribution p(θ |y) by splitting the configuration
space into good and bad samples as [41]:

p(θ |y) =

{
Prgood (θ ) if y < y∗

Prbad (θ ) if y ≥ y∗
(21)

where Prgood (θ ) and Prbad (θ ) are parzen estimators used
to estimate the density formed by using the observations θi
such that f (θi) are less than and greater than y∗, respectively.
y < y∗ indicates that the value of the objective function is less
than the threshold, and y > y∗ denotes that the value of the
objective function is higher than the threshold. The optimal
HP value θ is formulated as [41]:

θ∗ = argmin
Prbad (θ )
Prgood (θ )

(22)

To better describe the optimization procedure of TPE,
Fig. 3 presents the flow chart of the iterative steps.

FIGURE 3. Flow chart of the TPE method.

G. PROPOSED APPROACH
To avoid the insufficiency of standalone prediction models,
stacked generalization, so-called stacking, is proposed as a
heterogeneous integration strategy that comprises multiple

base learners [43]. Thus, the stacking approach efficiently
achieves an excellent non-linear fitting ability based on the
diversity principle of base learners [44]. In this two-tier
framework, the models in the first layer (or level-0), named
the base estimator, employs the same target function to obtain
the best hypothesis. Then, the second layer (or level-1) named
the meta-estimator, manages the balance among the hypoth-
esis obtained from level-0, and makes the final decision. The
proposedmodel is a combination ofMF, ELM, ET, KNN, and
DBN networks to strengthen the learning effect of standalone
models. The stacked scheme runs the individual base models
(first-level learners) to train the meta-learner (second-level
learner). The complete model architecture is shown in Fig. 4.

FIGURE 4. Block diagram of the EDBN method.

As seen in Fig. 4, six modules are consecutively computed,
namely, data preprocessing, data split, optimization, model
construction, results generation, and assessment modules.
In the data preprocessing module, the data collected from the
data set is cleaned from inconsistent measurements, missing
data points, and outliers using Scikit-Learn python library
to avoid false interpretations afterwards. Next, data encod-
ing, correlation analysis, and data normalization take place
to prepare the time-series data to be fed into the stacking
fusion model. The normalized feature representations are
integrated into the data split module, where the data is sep-
arated into training, validation, and testing. In addition, the
predictors’ HP were tuned using TPE optimizer in the third
module to boost the overall model accuracy. In the model
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construction module, MF, ELM, ET, and KNN are trained
by applying fivefold cross-validation in the first level of the
stacked generalization strategy to promote predictor diversity.
A series of four meta-features of base learners were merged
to construct new inputs. Then, the new inputs are fed to the
DBN meta-learner model. The meta-learner exploits the new
features to make the final forecasting. The prediction quality
is assessed in the evaluation module. The evaluation module
assesses the model’s applicability in real-world PV plants to
justify its practical utility compared to benchmarks. The flow
chart of the adopted framework is demonstrated in Fig. 5.

FIGURE 5. The PV power forecasting framework based on the proposed
stacking ensemble.

III. EXPERIMENTAL RESULTS
The evaluation of the recommended model is performed
based on numerical test results, using real PV plant data
traces. This section investigates the data description and
preprocessing stage. Next, the evaluation measures are pre-
sented. Finally, the simulation results are thoroughly dis-
cussed. The learning environment setup is run on a Google
Colaboratory, a free cloud service supported by Google with
Graphics Processing Unit (GPU) enabled. The experimental
simulations tests were carried out on the computational envi-
ronment described in Table 2.

TABLE 2. Experimental environment.

A. DATA DESCRIPTION AND PREPROCESSING
The evaluation process is conducted using a real-world data
set to prove the predictive performance of the proposed
model. Desert Knowledge Alice Springs Center (DKASC)

in Central Australia data was collected and employed for
the validation process [45]. The DKASC flagship facili-
ties of Alice Springs contain 38 sites. The DKASC has
a semi-arid climate BWh according to the Köppen cli-
mate taxonomy exploiting 9% of Northern Territory. This
renewable energy plant is located in a town in the northern
territory and is considered as one of the Australia’s top pro-
ducers of solar energy [45]. Meteorology (global horizontal
irradiance (W/m2), diffuse horizontal irradiance (W/m2),
relative humidity (%), wind direction (Â◦)), sampling time
(min), temperature (◦C)), and historical power data of PV
arrays (kW) from March 1, 2016, to December 1, 2019,
in sampling intervals of five minutes has been employed
for the numerical study. The meteorological factors and the
one-year lagged PV power were associated as feature inputs
to predict the PV power. The training, validation, and testing
sets occupy 60%, 10%, and 30% of the total collected data,
and the five-minutes ahead PV generation are the target.

For data cleaning purposes, removing invalid observation
samples from the database such as Not A Number (NAN)
or unreal values is highly required to not skew model train-
ing and gives a reliable sign of the data collected. The low
timestep (5 minutes) improves the clearness of the data and
the easiness of dirty sample detection. To ensure the consis-
tency of features’ dimensions, the data samples have been
linearly scaled into [0, 1] following the Min-Max normaliza-
tion approach [46]. This feature scaling approach boosts the
model convergence as [46]:

xn =
xr − xmin
xmax − xmin

(23)

where xn presents the normalized value. xr , xmax , and xmin
are the datum, maximum, minimum, and scaled datum,
respectively.

B. EVALUATION CRITERIA
To perform a fair assessment of the investigated prediction
models, the deterministic forecasting performance of EDBN
is assessed by RMSE, MAE, MAPE, and R2 error metrics
to their common applicability in TS forecasting problems
and wide acceptability within the PV forecasting research
community [47]. Mathematically, the score metrics are for-
mulated as [46]:

MAE =
1
n

n−1∑
i=0

|yi − ŷi| (24)

RMSE =

√√√√1
n

n−1∑
i=0

(yi − ŷi)2 (25)

MAPE =
100(%)

n

n−1∑
i=0

|
ŷi − yi
yi
| (26)

R2 = 100%(1−

∑n−1
i=0 (ŷi − yi)

2∑n−1
i=0 (ȳi − yi)

2
), ȳ =

n−1∑
i=0

yi

(27)
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FIGURE 6. PV power of each month using EDBN model for 5-min daily forecasting on: (a) March 20, Rainy. (b) May 20, sunny. (c) June 20, sunny.
(d) July 20, sunny to cloudy. (e) September 20, Sunny. (f) November 20, foggy to cloudy.

where n denotes the total number of samples. ŷi and yi denote
the ith forecast and the actual value, respectively.

C. RESULTS AND DISCUSSION
In the beginning, predictive analysis on the improvement of
the proposed model in the PVPF due to the inclusion of the
stacking ensemble model was evaluated and compared to
its original counterpart models. These models include ELM,
KNN, ET, DBN, MF, and EDBN. In this stage, four types of
fluctuations were considered for the assessment procedure,
namely, the sunny, partially cloudy, foggy, and rainy weather
types. Then, the evaluation procedure is extended to compare
the proposed model with the popular single DL models.
These models include Multi-Layer Perceptron (MLP), Gated
Recurrent Unit (GRU), Bidirectional Long Short-TermMem-
ory (BiLSTM), and LSTM. Finally, the proposed model is
compared to a list of hybrid methodologies presented in the
recent literature [47]–[54]. Towards a reliable evaluation of
the proposed model for 5-min ahead daily forecasting, score
errors are simultaneously computed with identical conditions
for the proposed framework. The simulated models pass by
an HP optimization using TPE method. For the TPE imple-
mentation, the 0TPE is used to classify the explored positions
into good and bad, while the RPP presents the probability
for the TPE to jump to a random position in an iteration
step. The TPE optimal configuration adopted in this study
lies in thirty iterations, 0TPE of 0.5, and a Random Position
Probability (RPP) of 0.03. To enable rigorous assessment
of the ensemble model with respect to individual models,
the EDBN model adopts the optimal HP settings of its base
and meta-learners to attribute the same level of tuning for
all the simulated models. Subsequently, some popular neural
network benchmarks, such as MLP, LSTM, BiLSTM, and
GRU, are compared. In these benchmarking DL methods, the
number of units, the hidden layer size, the activation function,
and the optimizer function need to be optimized. It is worth
noting that the adopted TPE model generates the optimal

TABLE 3. Configurations of HP settings for benchmarks.

HP for the reference models used in this study. The specific
HP settings of the developed model and benchmarks are
found in Table 3.

The proposed model is tested for the different seasons
of the year to evaluate the prediction performance of the
obtained architecture over the possible meteorological con-
ditions. The forecast results of the EDBN model are vividly
visualized in Fig. 6. It is worth noting that the forecasting
outputs are converted to the original range using theMax-Min
denormalization approach.

As it can be seen from the simulation results presented in
Fig. 6, the proposed PVPF method is well-performing. From
the first look at the forecast curves, the prediction curves
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show excellent agreement with the measured PV power taken
into account the number of forecasted points close to the real
values. The high accuracy confirms that the proposed model
is perfectly designed for PVPF. This assessment procedure
investigates the impact of the rapid changes of meteorological
factors on the forecasts’ quality. To have a more precise
judgment, the quantification of the error values for the EDBN
model and the counterpart models (ELM, ET, KNN, andDBN
models) are summarized in Table 4, where boldface error
measures represent the optimal values in each situation.

TABLE 4. Performance comparison of the simulated models for
daily PVPF.

According to Table 4, the EDBN model has an excel-
lent performance for an overall MAE = 2.70kW ± 1.26,
demonstrating the high effectiveness of the improvement
strategy. Regarding error metrics, ET, KNN, and DBN
exhibit an RMSE = 8.57kW, RMSE = 16.13kW, RMSE =
14.45kW while the achieved for EDBN is RMSE = 3.88kW.
The EDBN can always obtain better testing accuracy than
standalone models. The proposed framework succeeds in
performing the best accuracy. The high performance of the
proposed method is explained by combining the benefits
of the model components. To further demonstrate the per-
formance of the proposed model, the results are compared
with those of MLP, LSTM, BiLSTM, and GRU. To visually
display the predictive ability of the proposed model and other
DL benchmarks, Fig. 7 further plots the prediction outputs of

the simulated models for typical days in four seasons of the
year 2018.

According to Fig. 7, the EDBNmodel provides high effec-
tiveness in tracking the daily PV power and outperforms
all the benchmark models for different seasons of the year.
During sunny and partially cloudy days in summer and
spring, the EDBN and DBN perform best than other models.
It can be noticed that EDBN provides more stable results
with fewer fluctuations compared to DBN. On foggy and
rainy days, the kNN, DBN, ET, and DBN generate satisfying
forecasts despite the high volatility of meteorological con-
ditions. It is worth mentioning that MF and ELM models
provide the worst performance in all weather types, possess-
ing high errors compared to DBN, and ET models. Although
the predictive performance of the EDBN model is clearly
demonstrated compared to comparison models, it could be
remarked that the proposed method slightly outperforms ET
and KNNmodels. To establish the robustness of the proposed
framework compared to reference models, the scatter plot of
the simulated models is illustrated in Fig. 8.
As seen from Fig. 8(a), the forecasted PV power pattern

coincides mostly with the real PV power values. It is clear
that the EDBN outputs rise linearly with the actual PV mea-
surements. It should be noted that the presented methodology
shows a strong correlation between the forecasted and real
PV power, demonstrating the best performance compared
to counterparts models. More importantly, compared to the
original DBN in Fig. 8(c), the predicted points of the DBN
are very dispersed, reflecting a weaker correlation with the
actual outputs. It should be mentioned that the more the
dispersion is low, the more the accuracy is high, and vice
versa. From Fig. 8(d) and Fig. 8(g), it can be derived that
the weak learners of the stacking approach, namely ELM
and KNN, are badly correlated to the PV outputs. The linear
relationship deduced from Fig. 8(e) between the ET, and
actual values show a good correlation compared to ELM
and KNN models. In Figs. 8(b), 8(f), 8(h), 8(i) presenting
the MLP, GRU, LSTM, and BiLSTM outputs, respectively,
it can be remarked that theseDLmodels achieve a satisfactory
performance for a low PV generation lower than 150kW.
In other words, It can be found that the forecasting accuracy
of these models is very close to the EDBN model. But, the
forecast accuracy of the counterpart models degrades for
PV power outputs higher than 150kW.

Interestingly, it is remarked that the correlation among
the PV generation measurements decreases as the produced
PV energy is increased. Fig. 9 shows the error distribution
denoted as the difference between the predicted and actual PV
generation output. Empirically, the error error(i) = y(i)− ŷ(i)
is the test error for the ith sample, y(i) is the target value and
ŷ(i) is the output for time step i. The error distributions plot
reveals a direct interpretation of forecast errors for all weather
conditions. Regarding Fig. 9(a), the error distributions of the
proposed model are mostly concentrated on the zero-axis,
which reveals that the EDBN can produce more accurate
results. Compared to the LSTM model shown in Fig. 9(h),
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FIGURE 7. Performance comparison of considered models for daily PVPF in (a) Sunny day in Summer 2018 (b) Partially cloudy day
in Spring 2018, (c) Foggy day in Autumn 2018 (d) Rainy day in Winter 2018. For visualization purposes, the red box presents a
zoomed plot for better visibility of the forecast results.

the error values range from −20kW to 30kW, while the
LSTM errors range from −40kW to 30kW. Compared with
the prediction outputs of DL models, it can be conducted
that DLmodels can provide better performance than machine
learning prediction models. Fig. 10 shows the coefficient of
determination for the competing models using the 5-minutes
daily generated PV outputs in different seasons of the year.
Ideally, an R2 ratio closer to 1 is better.

As seen from Fig. 10, the box plots illustrate the notice-
able difference between the prediction engines’ performance.
It can be noticed from Fig. 10 that the EDBN model pre-
dicts the target accurately compared to ET and KNN models
despite the non-symmetry behavior of PV power over the
seasons of the year. The size of the box in the plot shows
that the coefficients of determination are mostly concentrated
at a high range. The EDBN model has the smallest box for
different weather types, reflecting the model robustness com-
pared to other models. To better demonstrate the feasibility
of the proposed model, Fig. 11 presents the spider chart
of MAPE and R2 of the proposed algorithm and simulated
benchmarks.

As presented in 11(a), the MAPE error of the proposed
EDBN is 2.30% which is lower than the reference models.
Furthermore, the R2 value of the EDBN algorithm yields

a 97%, which is higher than the other benchmarks. It is
worth mentioning the DL models possess a sight lower error
values than the proposed model, which demonstrates the high
competitiveness of the proposed model. In this work, daily
comparisons based on scale-independent forecast error met-
ric results are conducted in this study with the recently pro-
posed models. Comparing with other methods presented in
literature using other PV databases, the proposed model per-
formance is analysed aside with CNN-LSTM (CLSTM) [48],
LSTM-based AttentionMechanism (LSTM-AM) [49], PVPF
Network (PV-Net) [50], Multi-Channel CNN (MC-CNN)
[51], Radial Basis Function Neural Network (RBFNN) [52],
Wavelet Packet Decomposition-LSTM (WPD-LSTM) [53],
LSTM [47], GRU [47], Improved Moth-Flame Optimiza-
tion algorithm-SVM (IMFO-SV) [54], and Particle Swarm
Optimization-SVM (PSO-SVM) [54]. The models’ results
for PVPF are listed in Table 5.
As per Table 5, the EDBN model yields accurate forecast-

ing results, exhibiting a MAPE error of 2.30%. The proposed
model produces better results than high-performing bench-
marks such as WPD-LSTM, IMFO-SVM, and PSO-SVM
with 2.40%, 3.92%, and 2.85%, respectively. Although
hybrid models generally yield better performance, the
CLSTM, LSTM-AM, and MC-CNN generate low MAPE
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FIGURE 8. Regression plot of predicted power and measurements using
nine models: (a) EDBN, (b) MLP, (c) DBN, (d) ELM, (e) ET, (f) GRU, (g) KNN,
(h) LSTM, and (i) BiLSTM.

FIGURE 9. Error distribution plot of predicted power and measurements
using nine models: (a) EDBN, (b) MLP, (c) DBN, (d) ELM, (e) ET, (f) GRU,
(g) KNN, (h) LSTM, and (i) BiLSTM.

errors of 7.53%, 7.10%, and 8.63%, respectively. The
RBFNN, LSTM, and GRU yield an MPAE of 3.71%,
3.61%, and 3.42%, respectively. It is worth mentioning
that the EDBN model produced slightly better results than
WPD-LSTM and PSO-SVM models (the best algorithms

FIGURE 10. Box plot exemplifying the R2 veracity of the proposed model
over different seasons of the year.

FIGURE 11. Comparison results obtained from the simulated models with
(a) MAPE and (b) R2.

TABLE 5. Model comparison of daily PVPF results.

after the proposed one) with 2.40% and 2.85%. To assess
the significance of the differences among the results listed
in Table 5, Fig. 12 presents the MAPE results of the obtained
EDBN and recent works.

Fig. 12 reveals that the proposed model is highly competi-
tive compared to the results reported in the literature. This is
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FIGURE 12. Performance (MAPE) for the PVPF methods.

TABLE 6. Testing time for PVPF models.

deduced since the overall MAPE obtained from the adopted
methodology is comparatively lower than those obtained
in [47]–[54]. Therefore, the obtained EDBN model is found
perfectly tailored for daily PVPF. The time complexity of the
ML algorithm is an essential ingredient taken into consider-
ation when devising novel models for real-world implemen-
tation. A proposed model requires having a running time less
than the response time needed for the underlying problem.
In this work, the computational complexity of the testing
model is resumed in Table 6.

From Table 6, it is observable that the proposed
technique generates the testing prediction output with an
acceptable computational testing time-cost (1.67 seconds).
The PV forecasts generation in a few seconds reflects the fast
convergence of the stacking ensemble and its adaptability in
practical applications. Empirically, the MLP, ET, ELM, and
DBN present the fastest algorithms, followed by the EDBN
and GRU models with 0.42, 0.77, 0.8, and 1.13 seconds,
respectively. It is conducted that the relative complexity
and the superior accuracy of the EDBN model did compro-
mise its low testing time for generating the final outputs.
It must be pointed out future work of this study will give a
particular focus on the emerging materialistic optimization
algorithms that can further boost the model performance,
such as grey wolf optimizer and whale optimization algo-
rithms [38]. In summary, the proposed EDBNmodel is able to
model the periodical data in complex non-linear relationships
and irregular dependencies through the stacking mechanism
in a timely manner, demonstrating its high applicability in
real-world PV plants.

IV. CONCLUSION
PV power forecasting (PVPF) is essential and fundamental
in decision-making processes for smart grid systems. This
paper proposes a novel PVPF framework named Enhanced
Deep Belief Network (EDBN). The proposed EDBN model
incorporates Extreme Learning Machine-Mondrian Forest-
K-Nearest Neighbors, Extremely Randomized Trees, and
deep belief network to cope with the heteroskedasticity
of PV power. This model employs the correlation pat-
terns between the meteorological data and the meta-learning
ensemble to provide a precise daily estimation of the
PV power. Tree-structured of parzen estimators algorithm
is employed to optimize the model performance through an
effective hyperparameter tuning. As demonstrated in the case
study, the error measurements of the developed system are the
lowest among all involved methods, with an RMSE and R2

of 3.88kW and 97%, respectively. The mean absolute error
has been reduced from 7.5kW to 2.70kW when compared
with the original DBN model. In sum, the simulation results
demonstrate that the EDBN provides excellent performance
for non-linear PV power output forecasting and high gener-
alization potential compared to single reference models.

In this study, the most suitable base learners were selected
based on the repetitive experiments, which can present a cum-
bersome task for complex time series forecasting problems.
An automatic knowledge generation method will be consid-
ered to define the best model stack for various prediction
problems in future works. Furthermore, a missing-data tol-
erant strategy is highly required to guarantee the proper oper-
ation of the proposed method in real-world environments,
which will be the topic of a future study.
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