
Received September 30, 2021, accepted October 23, 2021, date of publication November 8, 2021,
date of current version November 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3126000

Intention as a Context: An Activity Intention
Model for Adaptable Development of
Applications in the Internet of Things
VICTOR PONCE , (Student Member, IEEE), AND BESSAM ABDULRAZAK , (Member, IEEE)
AMbient Intelligence Laboratory (AMI-Lab), Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada

Corresponding authors: Victor Ponce (victor.ponce@usherbrooke.ca) and Bessam Abdulrazak (bessam.abdulrazak@usherbrooke.ca)

This work was supported by SENESCYT, Ecuador and Université de Sherbrooke, Canada.

ABSTRACT End-users, such as aging people, look for dynamic applications to help them in their daily
activities while usually assisted by domain experts (e.g., physicians) in performing these activities. Nowa-
days, the Internet of Things (IoT) augments applications with a changing context based on the activities,
environments, and services. Unfortunately, most IoT application development tools are restricted to specific
scenarios or involve technical challenges. We propose an activity intention model for quick application
development, targeting domain experts who are not traditional software developers. Our model is based on
the ContextAA micro context-awareness approach with autonomic computing-based components providing
pervasive adaptations. Unlike other Internet of Things application definitions, our model promotes elicitation
of the activity semantics and provides mechanisms to compute the semantics. We then generate intention as
a context (IaaC), which contains a self-described activity intention context with compiled knowledge ready
to be assessed in pervasive smart environments for augmented adaptations. Experimental results show a
potential resource optimization for dynamic Internet of Things applications in smart homes and smart cities.

INDEX TERMS Activity model, context-aware application, intention model, Internet of Things, semantics.

I. INTRODUCTION
Computer applications contain a representation of end-user
intentions (i.e., target goals/actions obtained in requirement
elicitation). In general, we can determine how suitable an
application is by asking end-users if an application’s inten-
tion aligns with their intention when performing an activity.
To better achieve end-user intentions, application developers
collect knowledge from diverse sources and describe their
interpretation when creating applications. However, omis-
sions in intention representation can produce applications
with incorrect system actions/responses. Since end-users con-
stantly demand applications to help in their daily activi-
ties, the intention representation becomes more complex but
essential.

The Internet of Things (IoT) provides a promising new
generation of surrounding pervasive technology and smart
environments [1], e.g., smart cities, smart transportation.
With the flooding of IoT devices and smart environments,
new application requirements are increasing as well [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Sabah Mohammed .

Furthermore, end-users demand dynamic applications con-
nected to IoT devices for activity automation at home [3].
Similarly, available services on the Internet increase
the context for applications, e.g., Amazon Alexa skills
(i.e., domains developed by third-party developers) have
grown from 40 000 in 2018 [4] to more than 100 000 by
the end of 20191. Among other challenges (e.g., integrating
available devices, protocols, and services; energy optimiza-
tion; providing security and big data [1], [5]), we have iden-
tified the representation of activity intentions as an essential
aspect to perform smart environment actions.

Representing activity intentions starts by identifying end-
user goals, which complicates application development,
especially when developers are not aware of the end-user
goals. Domain knowledge also plays an essential part when
developing an application, but developers are not experts in
all domains. Consequently, the gap between applications’
intention and end-user intention increases because it depends
on a) the developers’ interpretation of additional/unknown
attributes and knowledge; and b) changing context from

1https://voicebot.ai/2019/12/18/amazon-announces-100k-smart-home-
products-support-alexa/ Last accessed on November 3, 2021.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 151167

https://orcid.org/0000-0002-4818-5935
https://orcid.org/0000-0002-5468-0190
https://orcid.org/0000-0002-7639-0696

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

IoT devices and available services. To decrease this gap,
developers have introduced configuration/application tem-
plates, parameterization [6], and machine learning domain
classification to avoid erroneous system actions/responses [4].
Even though these mechanisms allow end-users to person-
alize and run the applications, they restrict the applications
to changing fixed attributes and machine learning accuracy,
limiting end-user intentions’ achievement. It is necessary to
introduce new personalization approaches because pervasive
applications involve dynamic attributes that make difficult
the goal interpretation. It is also essential to reduce the
implementation time because IoT devices are in constant
deployment.

A valuable source of knowledge for applications is domain
experts (e.g., practitioners). They are well prepared to assist
end-users; they recognize end-user situations and behavior by
efficiently combining experiences with available and exter-
nal resources. Furthermore, domain experts can support the
development process with their expertise. They can even
decrease the level of requirement interpretation and imple-
mentation time by becoming application developers. Thus,
increasing the domain expert’s involvement in IoT appli-
cation development is key for achieving end-user activity
intentions. However, domain experts do not have application
development expertise. Therefore, it is necessary to empower
domain experts with adaptable tools that enable them to
manage applications.

We present in this paper an approach to represent activity
intentions in applications. Our approach involves a model
to elicit the activity semantics and mechanisms to compute
the semantics. Following our approach, domain experts2 can
develop application flows representing: first, the activity ter-
minology with relevant features of the domain, and then,
key attributes to achieve end-user intentions. The semantics’
computation produces an enriched context with the activity
intention (which we name Intention as a Context (IaaC)
applications). IaaC applications are context-reduced and self-
contained, i.e., they contain a complete representation of
the application logic and domain knowledge required to
achieve the intention. IaaC applications can be deployed in
smart IoT environments, and their self-contained logic and
knowledge increase the features to improve system activity
recognition/interpretation accuracy. To validate our proposed
approach, we designed a testbed to simulate a complete devel-
opment process, from building to deploying applications. The
testbed allows gathering context from real IoT devices and
deploys IaaC applications to run in a smart environment IoT
nodes [7]. We also evaluated the scalability of IaaC in a
distributed system scenario.

The major contributions of this paper are summarized as
follows:
• Intention as a Context (IaaC): A novel representation
for context-aware applications, where the applications

2Domain experts are the ‘‘users’’ of our approach to develop applications
for end-users.

are self-described with compiled knowledge to provide
augmented adaptations in pervasive smart environments.
This self-described representation is used to define
activity elements (e.g., user preferences, environment
actions). With the activity elements, domain experts
(i.e., non-technical people) can create self-described
applications in an easy-to-use flow paradigm.

• An approach to model activity intentions, including
the application domain knowledge to enhance applica-
tion descriptions. The intentions can be reused, interre-
lating intentions by connecting their activity elements.
Furthermore, the activity elements are extensible; they
allow us to describe corresponding attributes (e.g., syn-
onyms). They are also adaptable for connecting them in
sequence (flow) to simplify the expression of activity
intentions.

• Semantic constructs to describe applications with
an algorithm for semantic reduction, matching the
application semantics and reducing it to a minimum
expression to run in smart environments. The semantic
constructs are also represented as programming building
blocks in a graphical user interface (GUI). Then, domain
experts can use the programming constructs to build
context-aware applications.

• A testbed to develop and deploy adaptable IoT appli-
cations connected to a sensor/actuator platform and a
smart city simulator. Using the testbed, we simulated
the complete development process: Domain and activ-
ity intention elicitation, semantic reductions, automatic
deployment, and running in smart environments.

We organize the paper as follows: Section II summa-
rizes existing artifacts to model intentions and activities.
In Section III, we propose our approach to represent and
compute the activity intention. In Section IV, we describe our
model and implementation, providing details about seman-
tic computation. In Section V, we present the validation
and preliminary test results. In Section VI, we discuss our
approach and future work. Finally, we present the conclusions
in Section VII.

II. LITERATURE REVIEW: MODELING INTENTIONS AND
ACTIVITIES
End-user intentions are analogous to high-level goals that
represent desired outcomes (e.g., drinking water), having a
higher abstraction than concrete end-user actions (e.g., grasp,
reach) [8]. Thus, an intention model involves the represen-
tation of anticipated outcomes that guide end-user activities
required to achieve a goal. The corresponding activity model
introduces appropriate definitions for supporting the accom-
plishment of end-user intentions. Following, we present the
relevant background of existing modeling approaches.

A. END-USER INTENTION
User intentions in human-computer interaction (HCI) are
becoming an important input data for smart environments,
together with other user data such as users’ location,

151168 VOLUME 9, 2021

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

TABLE 1. Approaches for activity modeling.

posture, emotions, and habits [9]. Thus, HCI designers regard
end-user intentions for subsequent evaluation of the design,
i.e., matching intentions with the current system state. Fur-
thermore, the software development process regards inten-
tions to improve quality. Software developers use diverse
mechanisms (e.g., annotations, semantics) to maintain their
intended design in software artifacts, e.g., use cases into the
source code [10]. Other mechanisms allow expressing the
intention of informed end-users (i.e., non-technical users with
domain knowledge such as smart home users) in applications,
e.g., through domain modeling [11], end-user software engi-
neering [12], and intent elicitation on intelligent assistants
such as Google Assistant, Amazon Alexa, Microsoft Cor-
tana, Apple Siri [4]. Thus, representing intention is a key
aspect to augment the system’s understanding of end-user
requirements. Likewise, end-user intentions complement
Artificial Intelligence research in goal recognition algo-
rithms [13] and intention/action recognition in human-robot

interaction [14]. In general, intentions are reduced to actions
to perform. For example, (a) in the Belief-Desire-Intention
(BDI) architectures, an intention is a component that repre-
sents high-level plans which are refined to basic actions [15],
and (b) in BDI-based context-aware frameworks, for consid-
ering end-user intentions to enrich the situation [16]. In BDI
architectures, intentions cannot be reduced only to beliefs
and desires, and they can contain a kind of permanent goal
influenced externally, e.g., with events [15]. Consequently,
BDI intentions are a unique state that links them with behav-
ior, environment, other components of the system (e.g., rules,
processes), or end-user activities.

B. END-USER ACTIVITY
Researchers have proposed diverse approaches for activity
modeling (Table 1). They range from using (a) modeling
artifacts to allow creating a complete model through an

VOLUME 9, 2021 151169

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

expressive representation to (b) advanced mechanisms to
infer unknown activity elements (e.g., activity, rule):

1) The expressive representation approaches simplify
manipulating known activity elements and facilitat-
ing application development by non-technical end-
users [39]. They exploit the activity semantics to
describe activity elements and relationships for further
interpretation of activities. They integrate diversemeth-
ods to express activity terminology. The drawback is
that the modeling considers fixed descriptions of the
activity elements. Therefore, it is usually combined
with other approaches to support complex problems
(e.g., recognize an activity related to an unknown sen-
sor input).

2) Discriminative, generative, and pattern matching rep-
resentations are approaches for manipulating unknown
elements [40]. They introduce variables, data sets,
mathematical models, and detailed patterns to link
known and unknown activity elements - for example,
associate activity elements with activity labels for dis-
criminative activity recognition [27]. The drawback of
the discriminative and generative approaches is that the
modeling requires large data sets for training. Also,
applying a model and learning results for the same per-
son (e.g., from one body part to another) [41] or from
one person to another [20] is challenging. We discard
discriminative and generative approaches because we
are working on the requirement elicitation and data col-
lection at this stage of our work. The pattern matching
approach’s drawback is that the modeling requires the
description of static patterns for matching, making it
challenging to model dynamic activities. Thus, we tar-
get our solution for domain experts who can provide
their knowledge to describe the required patterns.

C. SEMANTICS IN CONTEXT-AWARE APPLICATIONS
Context-aware platforms provide features to enrich the
semantics for activity modeling and activity recognition.
Ye et al. [42] presented a review of semantic web artifacts
to represent, process, and reason on the intended semantics
from heterogeneous sources. One approach uses ontologies
as a formalism to capture and share activity semantics in
context-aware applications, e.g., an ontology to describe a
set of actions to achieve a goal using smart devices context
through the Web (Web of Things) [43]. Ontologies have
also been combined with other artifacts (Table 1) to increase
expressiveness [42], e.g., a) language or overlapping rules for
expressing a richer semantic to capture the interrelation of the
dynamic context (e.g., time, location, actors, resources) and
b) event processing techniques/engines to match the ontology
with event patterns and context from sensors.

A second approach is to limit the activity semantics
to pre-defined concepts with rules connecting them as
input_context → task/action → output_context, e.g., asso-
ciating context conditions with activity workflows [44] or

activities expressed with diverse apps such as Workflow3 and
IFTTT.4 Similarly, other approaches restrict the semantics to
a pre-defined model of actions such as activity theory-based
(i.e., activity decomposed into actions and operations, relat-
ing elements such as subject and rules to produce an activity
outcome). For example, Li and Landay [45] adopted the
activity theory elements and proposed an activity language
to describe activity characteristics. Huang and Gartner [46]
extended the activity theory elements to include complimen-
tary human activity components such as the physical envi-
ronment of the activity, creating a mapping between context
categories and activity theory elements, e.g., user context
relates ‘‘subject,’’ task context relates ‘‘outcome,’’ social con-
text relates ‘‘rules,’’ and environmental context relates the
‘‘physical context’’ of the activity.

In general, context-aware application developers require to
learn/apply technical artifacts such as ontologies or domain-
specific languages, e.g., activity query language in [45]),
or other artifacts (Table 1). Our work attempts to empower
end-users such as domain experts (i.e., non-technical peo-
ple) to define activity intention. Thus, instead, we provide
mechanisms to compile the semantics to be processed in our
context-aware platform ContextAA.

D. ContextAA PLATFORM
We adopted ContextAA (Context-Aware Agents) [7], [47],
[48] for activity modeling and interpretation in perva-
sive environments. ContextAA enables context-aware sup-
port in dynamic settings (e.g., pervasive e-health through
a city), maintaining pervasive service provision close to
users. The design of ContextAA focuses on working in
resource-constrained hardware and being portable to mobile
devices.

We extend ContextAA’s context representation to describe
activities. ContextAA considers the context representation of
traditional categories (e.g., location, time) and includes oper-
ations, situations, and agents’ characteristics as context. Con-
textAA manages the meaningful context (by different agents,
maintaining agent missions) and facilitates the migration of
agents among components on the ContextAA platform.

The ContextAA platform is a self-organized architecture
that focuses on a micro context-awareness of distributed
agents, perceiving their local environment and acting based
on their roles. The architecture includes host components,
agents, context, and context space (for both host and agent).
• Host components serve as middleware, interacting with
others and integrating external services. Also, host com-
ponents isolate the network and manage the deployment
and execution of agents, working with local knowledge
(i.e., ontic perspective).

• Agents are context-dependent entities responsible for
executing actions, differentiating between standard and

3Workflow for iOS, iPadOS (accessed on November 3, 2021,
https://my.workflow.is)

4IFTTT (accessed on November 3, 2021, https://ifttt.com)

151170 VOLUME 9, 2021

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

user (or domain-specific) agents. A standard agent
implements host services, having privileges on its host.
User agents perform context-aware tasks to solve spe-
cific problems defined by each agent’s mission.

• Context is stored in context spaces – organized knowl-
edge repositories at both the agent and host lev-
els. An agent’s contexts (stored in context space) are
immutable, enabling hosts to share and synchronize
context between agents. Requests for context are also
described in the form of context, mediated through con-
text space. A host consumes requests using standard
agents and searches in their context space and through
neighboring hosts.

In the following section, we present our approach for mod-
eling activity intentions.

III. APPROACH: INTENTION AS A CONTEXT
We propose an intention model to facilitate and simplify
context-aware application development. Our objective is to
take advantage of domain experts’ knowledge to describe
end-user intentions’ semantics on activities, i.e., experience
on the outcome of activities. Describing activity intentions
rather than specific situations can help to elicit an in-person
purpose of an application. It also enables the preserva-
tion of the intention in diverse IoT settings, from smart
homes to smart cities. We also attempt to provide an IoT
smart environment independent of fixed system components
(e.g., unique devices, specific context). The activity inten-
tion can be introduced into context-aware system processes
as well. As a result, IoT smart environments can interpret
activity intentions and provide services following end-user
goals.

Our model subsumes the activity and exploits the
activity semantics by defining simplified activity elements
(e.g., action, end-user profile). The activity elements are
extensible; they allow us to describe corresponding attributes
(e.g., synonyms). They are also adaptable for connecting
them in sequence, simplifying expressing activity intentions.
At the same time, the intentions can be reused, interrelating
intentions by connecting their activity elements. We analyzed
diverse modeling artifacts (Table 1) to simplify application
development for non-software experts. As a result, we com-
bine the expressive and pattern matching artifacts (Section II)
for intention description and semantic computation, respec-
tively (Table 2):

1) We adopt the logic formalism, i.e., rules, to describe
activity circumstances (e.g., triggering conditions,
desired preferences). It keeps modeling simple, espe-
cially for domain experts (i.e., non-software experts)
to express their knowledge. We discard the use of
languages for intention elicitation because they incor-
porate terms that overload domain experts. Instead,
we only consider a set of keywords to categorize pro-
gramming constructs. However, at the implementation
level (i.e., not seen by the domain expert), the semantic
definition/computation follows ContextAA’s language,

TABLE 2. Intention model and semantics computation artifacts.

expressed in the extended Backus-Naur form (EBNF)
context-free grammar.

2) Similarly, we discard an ontology-basedmodel because
we don’t attempt to define specific categories, i.e.,
specific activities, of a particular environment. On the
other hand, we target dynamic activities whose knowl-
edge is diverse, changing every day. However, wemain-
tain compiled knowledge (i.e., ontic perspective) for
each application. In our approach, domain experts
define the activity intention, express the activity seman-
tics, and label activities properly.

3) We designed an action machine to match rules and
the semantic of the compiled knowledge. The action
machine compiles related activity circumstances to cre-
ate IaaC applications with simplified scripts (i.e., IaaC
assignments). Then, domain experts can deploy IaaC
applications in smart environments (IoT platforms),
where the semantics computation is performed through
context matching.

We base our model on the micro context-aware approach
running inContextAA – a smart environment IoT platform [7].
In this approach, autonomic computing components analyze
context and produce proper responses in multiple compu-
tational spaces. Micro context-aware components include
context operations to assess the context semantics for an
improved adaptation. We implemented the tools to enable
domain experts as developers of IaaC applications corre-
sponding to micro context-aware applications. They include
a self-description of the activity intention and knowledge in
terms of the ContextAA semantics. A deployed application in
the IoT smart environment then integrates the self-description
into the autonomic computing components’ running setting.

We reified our model by creating programming constructs,
i.e., semantic elements used to represent activity elements.
Then, domain experts can use the programming constructs
to build context-aware applications. We also propose an
action machine to compute our semantic elements. The action
machine’s outcome is IaaC applications with a reduced set
of IaaC assignments ready to be deployed in smart environ-
ments. The constructs and the action machine are part of
our semantic framework for micro context-aware applications

VOLUME 9, 2021 151171

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

FIGURE 1. Intention model components.

(called AmI-DEU: Ambient Intelligence Domain Expert
User) [11]. Our framework facilitates using the constructs,
programing the action machine, and deploying applications
to our ContextAA micro context-aware platform.

Finally, we validate our approach in a testbed designed to
simulate a complete development process, from building to
deploying applications. The testbed allows gathering context
from real devices, which is an important aspect contributing
to our design regarding real context. We tested our approach
defining use cases of applications for smart homes and smart
cities. Following, we address our conceptual model to repre-
sent activity intentions.

IV. INTENTION MODEL AND IMPLEMENTATION
Our model defines semantic elements to take advantage of
domain expert knowledge and activity terminology to express
end-user intentions in application flows. An action machine
then reduces the intentions to create assignments for being
deployed in smart environments (FIGURE 1).

A. ACTIVITY DOMAIN
Contrary to general purpose applications, we focus on
creating dynamic context-aware applications, i.e., appli-
cations that require rapid development and continuous
deployment [11]. These applications can run for everyday
activities in diverse domains, making them unmanageable
using domain-specific models. First, we analyzed activity
modeling approaches (Section II) to identify common activity
elements and terminology. Then, we define a hierarchical
classification of activity intentions [39] where ‘‘actions’’ are
the basis for modeling activities. Combining actions can pro-
duce well-known activity-related intentions that simplify the
development, from simple intentions to complex intentions
(FIGURE 2). Furthermore, including the possible relations
between activities is a challenging problem because they
depend on the combination of each aspect of activity and end-
user profile. Thus, we include in our model a representation

FIGURE 2. Activity intention hierarchy.

of the applications’ domain to facilitate the description of
activity elements and end-user profile (1).
Definition 1: a domain D is a set of the tuple D= {〈ς , ρ〉}

where ς ∈ K is a set of concept elements of the universe of
concept knowledge K and ρ is the set {〈ςi, r〉: ςi, r ∈ K ×
8} - the relation to other concepts, where 8 is the universe
of relations.

We consider domain experts as the ‘‘user’’ of the model to
build applications. We aim to encourage domain experts to
define the concepts and relations of the domain for applica-
tions, rather than using fixed ontologies or other approaches
that constrain applications to pre-defined concepts/relations.
Regarding the diverse aspects of domain modeling [49] and
activity modeling (Section II), we only model the activity
domain’s concepts because of the dynamicity of activi-
ties. We discard, among others, domain constraints, orga-
nization, and division of labor modeling (e.g., regulations,
roles). However, we envisage the hierarchy classification for
defining ‘‘templates’’ of activities with further aspects of
domain modeling to complement the current concept/relation
modeling. For example, to define a domain for social
intentions, with multiple end-users performing activities,

151172 VOLUME 9, 2021

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

FIGURE 3. The action machine reduces all intentions to a set of IaaC assignments. Domain experts describe domain and
activity intention in application flows, and the action machine processes the semantics, reducing it to a minimum
expression to run in smart environments.

e.g., to describe social regulations such as community orga-
nization/guidelines.

B. INTENTION SEMANTICS
The intention semantics, which subsumes the activity seman-
tics, allows domain experts to describe simple action flows
to represent simple intentions. A flow can describe activity
actions with input/output context (for intentions regarding
activities, tasks, and end-user actions), as well as actions
based on end-user preference/profile (for hedonic intentions).
We aim to use intention templates for complex intentions
(i.e., intentions regarding behavior, habit, and sequence of
activities). In any case, a flow includes a time configuration
for repetition, a priority to distinguish between two over-
lapped intentions, and an order to define the sequence of
executions.

We associate the activity elements in an intention net
(Definition 2), containing a complete application description
map. The intention net represents the connection between
application flows and activity domain concepts, including
the relationships, attributes, values, conditions, and config-
urations. Each flow path is independent, including the tran-
sition’s weights and conditions, having the required context
in each flow step. The flows and intentions can also be
interrelated, defining new paths. The end of each path must
include actions to execute when all the paths’ conditions are
satisfied.
Definition 2: An intention net is a tuple N = 〈I, A, P〉

where I is a set of intentions, A is a set of actions, and P⊆ I×
(E × E) × A is a set of paths where E is an activity element.
An action in a path pa ∈ N is a tuple pa = 〈·c, a, c·〉, where a
is an element of the set A, ·c is the set input context of a, and
c· is the set of output context of a.
In Definition 2, the concepts of the activity domain are part

of the input/output context. We discard the state of the inten-
tion because the intention flow defines a set of non-connected
actions. The state of the intention net is independent of the

paths. It only depends on the context of the action regard-
ing the concepts, weights, conditions, and configuration
(i.e., schedule, order, priority). Thus, the intention net raises
the level of independence for a domain expert when compos-
ing applications. An action path pa is ‘‘followed’’ when all its
conditions are satisfied regarding its input context ·c, and its
context values gathered in the smart environment. Upon the
‘‘followed’’ path p ∈ P, an action a is executed (in the smart
environment), and values in the output context c· become part
of the most recent context in the current path p.

Intentions and their flows are reduced to IaaC assignments
ready to be deployed as smart environment actions, process-
ing their semantics in the action machine.

C. ACTION MACHINE
Intention flows can contain many attributes, overlapping con-
ditions, and redundant paths related to one or more activities.
For example, a domain expert can overlap the intention to
go for a walk with the intention to notify (an end-user)
to bring medicine if going outside. Thus, we designed an
action machine to process the intention net. The action
machine’s main functionality is to reduce all intentions to a
set of IaaC assignments (Definition 3), which corresponds
to smart environment actions. Each IaaC assignment is a
self-contained context that includes the conditions and the
required input/output context (defined in the intention flow
paths). A central design aspect is that the action machine
matches the activity domain, adding compiled knowledge
to the assignments. Smart environments can then execute
assignments without dependencies for performing the inten-
tion in different settings (FIGURE 3).
Definition 3: An IaaC assignment is defined by α = 〈O,

X, {Xa}a∈A, {Gp}p∈P, {Ua}a∈A〉 where:

• O ⊆ M∪ D, D is an activity domain, M is the set of all
contexts. O is the compiled knowledge that contains the
context of α (i.e., concepts, relations, environment).

VOLUME 9, 2021 151173

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

TABLE 3. IoT platform semantics.

• X ⊆ O is a set of variables representing the attributes of
the conditions

• For each action a∈A, Xa is the set of condition variables
of the action a.

• For each path p ∈ N, Gp is a predicate defined over X,
N is the intention net.

• For each action a ∈ A, Ua ⊆ O is the set of variables
updated by a (i.e., context with new values).

In Definition 3, the predicate G corresponds to the condi-
tion to check before executing an assignment action. How-
ever, conditions are not always necessary, e.g., a ‘‘display
message’’ action executed at the beginning of the application
to show a notification, updating the variable Uai = ‘‘new
message.’’ Similarly, an intention can define triggers to exe-
cute based on (a) time, e.g., display a message every day; or
(b) checking initial conditions either if X ∈ D (e.g., display a
message if the room temperature is greater than 35 degrees,
for the smart home domain) or X∈M (e.g., display a message
if the temperature is greater than 35 degrees, everywhere/all
domains). In any case, an assignment αi considers the nearest
context, matching the compiled knowledge with the available
context in the smart environment when deployed.

D. MODEL IMPLEMENTATION
We implemented the proposed model as part of our seman-
tic framework for context-aware applications, called AmI-
DEU-Semantics (Ambient Intelligence Domain Expert User
Semantics) [11]. The framework processes semantic ele-
ments (i.e., context-based value types) that we developed to
build applications. The semantic elements include basic data
types (e.g., numbers, Boolean, text), composite data types
(e.g., functions, lists, maps), and semantic entities (abstract
computational entities, e.g., concept type, process type, ser-
vice type). We defined and implemented new semantic

entities to describe applications (i.e., activity intention flows)
based on our framework. Afterward, we implemented the
action machine’s functionalities to reduce the applications to
create IaaC assignments ready to run on our IoT platform.
IoT platform semantics.

The implementation follows the micro context-aware
approach [7] that runs in our IoT smart environment imple-
mentationContextAA (Context Awareness Agent-based) plat-
form [38]. Micro context-awareness agents are autonomic
computing-based components with a self-contained Context
(i.e., ContextAA context representation). They include pro-
cesses to analyze and interpret the Context for producing
proper responses. The Context (with capitalized ‘C’) is a
simple recursive formal tuple (name, value), where name is
a globally unambiguous name (i.e., two Contexts are dis-
tinct if they have distinct names); and value is a set of
Contexts. A value in Context follows the specification for
self-descriptive data, where the value description has a mean-
ingful significance for individual agents. In the ContextAA
platform,Context expresses the usual context, as well as oper-
ations and entities that request and publish Context. Table 3
lists examples of applied ContextAA semantics in AmI-DEU
(the complete ContextAA semantics is summarized in [48]
annexes A to E). The ContextAA core semantics is expressed
in the extended Backus-Naur form (EBNF) context-free
grammar. The grammar defines the Context representation
that allows a self-description of any context (i.e., vocabulary
convention), which we simplify in Table 3 as Context =
name {value}, where value ∈ Context. It also defines primi-
tive operations to validate, manipulate, and compute Context
expressions such as is_date, filter_if, eval, etc. The current
implementation of ContextAA is in C++ based on the design
and implementation of the C++ Standard Template Library
(STL). ContextAA combines programming paradigms such

151174 VOLUME 9, 2021

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

as object-oriented and functional programming with predi-
cates to transform Context.

This section presents our new Context-based elements and
expresses Context in a canonical form c = n{v}, meaning
Context has name n and value v.

1) CONTEXT-BASED PROGRAMMING CONSTRUCTS
AmI-DEU semantics Context-based programming con-
structs [11] are the basis for our new Context-based semantic
elements to represent intentions. The elements inherit from
the unique abstract value type CTerm (Context Term) defined
as a tuple CTerm = 〈 type, description〉 where type = n {v}
is a Context that contains a unique token representing the
type of term (e.g., ‘‘concept’’), and description = n {v} is a
Context that contains the self-description of the element. For
example, we describe a concept as a term CTermConcept =
(type, context), where:
• type = concept_name {TERM_TYPE {‘‘concept’’} }.
• context = concept_id {properties {list_props} relation
{name {a_name} weight {a_weight} } }.

Each CTerm has a unique ID (concept_id in the previous
example) for being identified. Our implementation distin-
guishes the programming constructs through keywords, e.g.,
TERM_TYPE, INTENTION_PATH. Unique IDs and key-
words allow high-level processing of the semantic elements
in the AmI-DEU semantics framework. However, after pro-
cessing to create IaaC assignments to deploy, the framework
only maintains fewer keywords required for being interpreted
in ContextAA.

We define a finite set of semantic elements CTERM =
{CTermConcept, CTermIntention, CTermEntity, CTermCon-
dition, CTermAction}. The element CTermConcept enables
the definition of the activity domain. The element CTer-
mIntention relates the other semantic elements to define the
intention net. Following, we describe our semantic elements,
their structure, and our implementation.

2) INTENTION REPOSITORY
We store the semantic elements in a singleton repository.
We implemented it as a symbol table R= (idx, aTerm) where
(idx, aTerm) ∈ ID × CTERM. ID ⊂ ℵ is the index set,
and aTerm ∈ CTERM (the semantic element set). We imple-
mented a mutex synchronization for accessing the repository,
a function DCAST: CTERM → aTerm for dynamic casts
(polymorphisms), and utility functions to add, delete, and
query the repository. We also manage repository persistence
(store and read functions).

3) ACTIVITY DOMAIN
We consider concepts with two kinds of direct associations:
1) part-whole relations, e.g., ‘‘living room’’ contains ‘‘tem-
perature sensor,’’ and 2) weighted relations, e.g., ‘‘ a person’’
always - weight=100% - prefers ‘‘leisure.’’ These two associ-
ations, including their combination (e.g., ‘‘living room’’ often
- weight=80% - contains a robot), enable domain experts to
define the activity domain (1).

The semantic element ‘‘Concept’’ represents any activ-
ity domain concept and its associations between concepts.
Its structure is CTermConcept = (uid, name, List_attribute,
List_relation), where:
• uid is a unique identification of the concept; name is the
concept name (meaningful token).

• attribute= (name, value), where: name is the attribute’s
name; value is the attribute’s value.

• relation= (type, description, weight), where: type is the
relation category, which can be a part-whole relation or
a weighted relation; description is to add information
about the relation; weight ∈ [weightmin, weightmax] to
determine a relation preference degree.

We implemented the activity domain concepts and associ-
ations as a directed acyclic graph A = (�, P). The node set�
is a set of Concepts of the domain {ω1, . . . , ωn} ∈ K, where
K is the universe of concepts. The set of edges P is a set of
relations {〈ω1, ω2, r〉: ω1, ω2 ∈ �, r ∈ 8}, where 8 is the
universe of relations. A concept has zero or more relations
(FIGURE 4).

FIGURE 4. Domain and intention graphs.

4) INTENTION NET
We implemented the intention net (Definition 2) as a tuple
CTermIntention = (uid, name, List_property, List_element).
We include properties such as priority (the predilection
for the intention); category (the intention ‘‘type,’’ e.g.,
hedonic—which considers preference degrees, goal-based—
which best matches concepts/relations); and schedule to rep-
resent time constraints, e.g., for repetition of the intention.
An element ei ∈ List_element represents the next element
in the flow. It could be a condition which structure is
(uid, name, List_property, List_element); actionwhich struc-
ture is (uid, name, List_property, order), where order defines
the sequence or predilection for execution; or another
intention.

Each path of the intention net contains a sequence of
elements that describes the action. A ‘‘condition’’ element
enables the decomposition of an action path into context vali-
dations to accomplish the action. Conditions allow to describe
operators on strings and numbers (e.g., equals, greater than,
is true), as well as to combine with statements (e.g., else) and
logical operators (i.e., and, or) for creating composite rules.

We implemented the intention net as a directed acyclic
graph0= (E,5). The node set E is a set of semantic elements

VOLUME 9, 2021 151175

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

{ε1, . . . , εn}, ε ∈ {Intention, Entity, Condition, Action}. The
set of direct edges 5 is the set {〈ε1, β, ε2〉: ε1, β, ε2 ∈
Eβ × M× E}, where M is the set of all contexts. An edge
ε1 → ε2 = (π1, β, π2) in the edge set 5 expresses that
the environment surrounding the element ε1 is affected by the
context β, and all together form the environment surrounding
the element ε2. Thus, β1,2 represents the payload context,
and the union of all paths’ payloads forms the accumulated
knowledge. In the graph, the semantic element Intention is
a root node (i.e., a node with no parents), and the semantic
element Action is a leaf node (i.e., a node with no children)
(FIGURE 4).

5) ACTION MACHINE
The action machine enables a reduction of the intention
net through semantic processing. The output of the action
machine is a set of IaaC assignments (Definition 3) corre-
sponding to the actions of the intention net composed by the
set of conditions to accomplish the action. Algorithm 1 shows
the recursion implemented in the actionmachine to reduce the
intention net to a set of IaaC assignments.

Since our model is based on a flow of actions starting
from the root node (i.e., Intention), Algorithm 1 follows
paths, accumulates the Context of each path, and creates an
assignment with action elements. A particular case is the
element ‘‘condition,’’ where it is necessary to accumulate
all paths from the root node (currentIntention) to the current
condition node (currentElement) (Algorithm 1 line 9). Then,
each assignment’s set of conditions becomes the context to be
evaluated in the path to achieve an action. Finally, the algo-
rithm queries the repository R to enrich the Context with the
activity domain (Algorithm 1-line 13), creating assignments
with accumulated knowledge.

The action machine also compiles the assignments to pro-
duce a minimal, self-contained Context. The compilation
aims to match the intentions’ elements (Definition 2) with
the activity domain (Definition 1) to create compiled knowl-
edge. We implemented two approaches for domain matching:
1) concept matching to find the closest concept to a Context,
e.g., Context ‘‘walking’’ refers to the concept ‘‘walk,’’ and
2) preference matching to infer the most appropriate associ-
ation inside a domain, e.g., an elderly (i.e., end-user) activity
preference is walking rather than sleeping.

1) Concept matching: We apply semantic distance
between Contexts [38] to match domain concepts ς
with intention input/output Context ·c, c·. Our imple-
mentation requires first to define a domain for activ-
ities. Then, a user creates applications linking the
concepts from the domain. However, two concepts can
have similar names (e.g., walk and watch), or users
can introduce/select a similar Context, e.g., walking.
We use ContextAA semantic distance [38] to select
an appropriate Context as follows: A self-contained
Context c = n{v} (read from left to right) is used
to describe concepts and other AmI-DEU elements.
The ContextAA semantic distance s is a function F:

Algorithm 1 Intention Reduction
1: Input: Semantic repository R, Intention graph 0; Output:

Assignments α
2: for each CtermIntention I in R do
3: for all pathx (paths of I) do ReduceIntention(pathx, I, φ)

end for
4: end for

5: Void Function ReduceIntention(currentPath,
currentIntention, currentEnvironment)

6: Add currentEnvironment to ·ccurrentPath
7: for all currentElement in currentPath do
8: if currentElement.term_type == ‘‘condition’’ then
9: for all entity between 0.getAllNodes

(currentIntention, currentElement) do
Add node.properties to ·ccurrentPath
end for

10: ReduceIntention(currentElement.IF_path,
currentIntention, · ccurrentPath)

11: ReduceIntention(currentElement.ELSE_path,
currentIntention, · ccurrentPath)

12: else if currentElement.term_type == ‘‘action’’ then
13: for all entities in 0.getAllNodes

(currentIntention, currentElement) do
Add R.getConcept(entity) to activityDomain

end for
14: α.add(action, activityDomain, c·currentPath)
15: else if currentElement.term_type == path then
16: for each nextPath in currentElement do

ReduceIntention(nextPath, currentIntention, φ)
end for

17: end if
18: end for

s→ [0, 1] which represents the distance between two
context c1 and c2 ∈ C (i.e., all Context). Likewise, the
action machine computes semantic, matching names
(i.e., words) from left to right, calculating the semantic
distance. For example, a domain expert user describes
the activity preferences for elderly people, considering
a range of preferences between 1 and 10. Thus, the user
describes two concepts ς1: walk {preference {9 }} and
ς2: watch tv {preference {3 }}.When creating an appli-
cation, the user describes the intention to perform some
activities, introducing an output Context c·1: walking
{preference {5 } }. The action machine then applies
semantic distance between ς1 and c·1, and between ς2
and c·1. Finally, it selects the target concept ς1 as the
concept with less distance (i.e., closest Context).

2) Preference matching: We use Fuzzy Logic reason-
ing for matching assignments with domain concept-
relation. We consider a fuzzy relation reasonably
expressed by domain experts, depending on their
knowledge representation. Thus, we adopt fuzzy logic
to enhance our action machine for selecting appro-
priate domain concepts based on weighted relations.
We define a degree of truth as a map F :ρ →
[0, 1] which represent the ρ weight w; w ∈ fuzzy
set weight W, ρ ∈ ς × ς× r. We define
three memberships for a relation (FIGURE 5-a):

151176 VOLUME 9, 2021

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

FIGURE 5. Fuzzy (a) input, (b) output, and (c) rules.

Lower (2), Normal (1), and Greater (3). We use trian-
gular and trapezoid membership functions at this stage
because they are a basic membership representation for
simple relations with a weight (e.g., high preference for
walking, middle for running, lower for watching tv).
The membership functions represent a relation with
a target weight (i.e., normal value), which belongs to
a fuzzy range (e.g., ranking of activities, a recom-
mendation based on health conditions). We define a
lower limit wmin and an upper limit wmax to represent
the range of a weight w ∈ W, e.g., preference for
walking is between 1 and 5, temperature preference
is between 22 and 26 degrees Celsius. The selected
membership functions also require extreme values.
Thus, we define an extreme constant kmin and kmax to
represent the extreme minimum and maximum weight
values, respectively, e.g., the extreme minimum age
is 0 years old, the extreme maximum age is 110 years
old.

We define our output variable ρout for belonging to
three truth ranges represented as triangular functions
(FIGURE 5-b): NO_RELATED if ρout ∈ [0, ρno],
MAYBE_RELATED if ρout ∈ [ρno, ρmaybe], and HIGH_
RELATED ρout ∈ [ρmaybe, 1]; where the constants ρno
and ρmaybe ∈ (0,1) and ρno < ρmaybe. We design our
rules (FIGURE 5-c) to consider ‘‘NORMAL’’ membership
(i.e., expected relation weight) as the target value to activate
the relation.

The design of the fuzzy logic inference engine considers
the rules as local, i.e., each ρ only depends on the tuple
(ς1, ς2, r), and not in other assumptions or complementary
concepts/relations. Thus, we adopted the Mamdani impli-
cation algebraic product, which suits local rules [50]. The
constants ρno and ρmaybe represent the priority for rela-
tions, and as a result, allow discarding relations (e.g., when
NO_RELATED). We also define a Threshold τ for activa-
tion of rules. Then, the action machine introduces a level of
restrictions for fuzzy outputs when ρout ≥ τ which enable to
adjust the machine, i.e., ρ is only related when ρ ∈ [τ , 1].

Following, we present the evaluation of our model.

µρNormal (x) =

x − wmin
w− wmin

, x ∈ [wmin,w]
x − wmax
w− wmax

, x ∈ [w,wmax]

0, otherwise

(1)

µρLower (x) =

1, x ∈ [kmin,wmin]
2x − wmin − w
wmin − w

, x ∈
[
wmin,

wmin + w
2

]
0, otherwise

(2)

µρGreater (x) =

2x−wmax−w
wmax−w

, x ∈
[
w+wmax

2
,wmax

]
1, x ∈ [wmax ,Kmax]
0, otherwise

(3)

6) DEVELOPMENT PROCESS
We implemented an adapter to convert application defini-
tions in JSON format to our semantic elements. We envisage
the adapter for interoperability, e.g., with other development
environments. The JSON format definition is Flow = (uid,
name, type, properties, List_paths), where: uid is a unique
element identification; name is the element name; type is
the correspondence to a semantic element (i.e., concept |
intention | entity | condition | action); path = (List_uid) is
a set of element uids corresponding to the next elements in
the flow of the current element.

Algorithm 2 shows the recursion implemented in the
adapter to convert JSON flows to our semantic elements.
Afterward, we applied Algorithm 3 to create the intention net.
Our action machine then reduces the intentions, matches the
activity domain with Fuzzy Lite – an open source fuzzy logic
engine [51], and generates the assignments. Finally, we sim-
ulated an automatic deployment to a smart environment by
loading the assignments into ContextAA for a subsequent
mission generation. Then, ContextAA executes the missions.

VOLUME 9, 2021 151177

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

Algorithm 2 JSON Parser
1: Input: JSON Flow; Output: Intention repository R
2: for each pathx in Flow do
3: if pathx.type == ‘‘concept’’ then
4: Adapt pathx to CTermConcept and Store in the repository
R
5: else if pathx.type == ‘‘intention’’
6: Adapt (for all pathy (paths of pathx) do

ParsePath (pathy)
end for) to CTermIntention and Store in the repository R

7: end if
8: end if
9: end for
10: return repository R

11: Function ParsePath(currentPath)
12: if currentPath. type == ‘‘entity’’ then
13: Adapt (for all pathy (paths of currentPath) do ParsePath

(pathy) end for) to CTermEntity and Store in the
repository R

14: else if currentPath. type == ‘‘condition’’ then
15: Adapt (for all pathy (paths of currentPath) do ParsePath

(pathy) end for) to CTermCondition and Store in the
repository R

16: else if currentPath. type == ‘‘action’’ then
17: Adapt (for all pathy (paths of currentPath) do ParsePath

(pathy) end for) to CTermAction and Store in the
repository R

18: end if

V. EVALUATION
We focus in this paper on the application descriptions (in
diverse domains) and semantic compilation at development
time (before deployment). The semantic compilation is mea-
sured in terms of Context size and semantic matching.
We also evaluated IaaC’s scalability for deployment in terms
of ContextAA response time (as a reminder, our proposed
approach is based on our novel IoT platform ContextAA.
Previous runtime semantic matching performance of Con-
textAA has been evaluated in [11], [38], [39]). Follow-
ing, we detail our evaluation before runtime and present
empirical results in two scenarios: smart homes and smart
cities.

A. SMART HOMES
We implemented a testbed to evaluate our approach through a
real scenario of creating applications that include real sensor
devices. Our testbed implementation combines open-source
technologies to facilitate both gathering context from devices
and simplifying end-user interactions.

1) TESTBED
We designed and implemented a complete infrastructure
for performing tests (FIGURE 6). Our testbed infrastruc-
ture comprises three parts: 1) Development environment
(FIGURE 6-a,b,c), 2) AmI-DEU/ContextAA implementa-
tion (FIGURE 6-d,e,f,g,h,i), and 3) Sensor/actuator platform
(FIGURE 6-i,j).

Algorithm 3 Intention Net Construction
1: Input: Intentions from R; Output: Intention graph 0
2: for each intentionx in Intention do
3: for each pathx in intentionx do

AddElementToGraph(pathx, intentionx.ID)
end for

4: end for
5: return 0

6: Function AddElementToGraph(currentPath,
originOfThePath)

7: for all currentElement in currentPath do
8: If currentElement.type == ‘‘path’’then
9: for each pathx in currentElement do

AddElementToGraph(pathx, currentElement.ID)
end for

10: else if currentElement.type == ‘‘entity’’ or
currentElement.type == ‘‘action’’ then

11: 0.addEdge(originOfThePath,currentElement.ID)
12: else if currentElement.type == ‘‘condition’’ then
13: for all pathif in currentElement.IF_path do

AddElementToGraph(pathif, currentElement.ID)
end for

14: for all pathelse in currentElement.ELSE_path do
AddElementToGraph(pathelse, currentElement.ID)

end for
15: end if
16: end for

2) DEVELOPMENT ENVIRONMENT
We used Node-red (https://nodered.org) to facilitate the
composition of applications. Node-red GUI includes a com-
position area where users can drag and drop nodes and
connect them, forming flows (FIGURE 6-b). We created
nodes (FIGURE 6-a) to represent our semantic constructs
(i.e., concept, relation, intention, entity, condition, action).
We restricted our nodes to one-direction flows to simplify the
development process. The flows start with intention nodes
and end with action nodes. A user can connect nodes from
two intentions through the flow, i.e., reuse activities and
hierarchical composition. A user can also fork/join conditions
and apply a condition to a different environment (adding an
entity node before a condition). The development environ-
ment stores the application definitions in a Node-red JSON
format (FIGURE 6-c) that we parse and load in AmI-DEU
(Algorithm 2, FIGURE 6-d). Then, we create the intention net
(Algorithm 3, FIGURE 6-e) and process the app semantics
(FIGURE 6-f) to generate IaaC assignments (FIGURE 6-g).
Finally, we simulated an automatic deployment to a smart
environment by loading the assignments into ContextAA
for a subsequent mission generation (FIGURE 6-h). Then,
ContextAA executes the missions (FIGURE 6-i).

3) SENSOR/ACTUATOR PLATFORM
We developed DomoSense, our home automation platform,
to interact with the environment (FIGURE 6-j). DomoSense
includes a set of functionalities to connect diverse sens-
ing technologies. We connected Z-Wave devices to gather
the indoor environment context, simulating a smart house.

151178 VOLUME 9, 2021

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

FIGURE 6. Testbed infrastructure.

TABLE 4. Use cases.

These devices enable ContextAA to receive context related
to temperature, humidity, motion, door-window open/close,
switches, doorbell, among others. Then, ContextAA eval-
uates the rules in deployed missions, matching them with
changing context to execute the actions (FIGURE 6-i).

4) SCENARIO IMPLEMENTATION
We created a scenario to perform tests simulating a domain
expert defining a domain for an ‘‘elderly person’’ living in
a smart house. As a first step, we defined four use cases
(Table 4). The first use case corresponds to an intention with
a simple activity that includes a simple action triggered by a
condition. The second use case corresponds to an intention

with a complex activity that validates multiple conditions
and executes multiple actions. The third use case corresponds
to two interrelated intentions. The fourth use case evaluates
hedonic activity intentions.

As a second step, we use the testbed to create applications.
We use Node-red to add elements, modify attributes, and
connect elements of domain and intentions.

Table 5 shows an example of the concept-relation descrip-
tion we created for the evaluation (with a relation weight
between 1 and 10). FIGURE 7 shows the Node-red com-
position area, with flow examples for the use cases for
domain description (FIGURE 7-a) and intentions description
(FIGURE 7-b).

VOLUME 9, 2021 151179

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

TABLE 5. Example of concepts and relations for the scenario.

FIGURE 7. Examples of the node-red composition of activity domain and intentions.

5) RESULTS
After the composition of applications for the use
cases, the system generates semantic elements using
Algorithm 2. Then, it creates the intention net using the
implementation of Algorithm 3. Afterward, the system pro-
cesses the semantic elements through the action machine
using Algorithm 1 and domain matching. We performed
two tests for the use cases: computation without domain
matching and with domain matching. We maintain the
same domain (14 concepts with their relations) to compare
the generated/processed data for the use cases. Table 6
lists the number of generated semantic elements and assign-
ments, the rate of knowledge compilation with domain
matching, and the reduction rate when deployed. These rates
depend on the complexity of the application and represent
the resource optimization for pervasive IoT apps. The rate
of generated Context for knowledge compilation tends to
decrease matching the domain (FIGURE 8). On the other
hand, the rate of generated Context when deployed tends to
decrease when the size of the Context to deploy is bigger

FIGURE 8. Action machine compilation.

than a threshold size, i.e., a minimal size to include a set of
keywords of the ContextAA platform processing language,
e.g., ‘‘eval’’ {expression}.

151180 VOLUME 9, 2021

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

TABLE 6. Use cases test data.

TABLE 7. Similar semantic elements evaluation.

FIGURE 9. Example of assignments for UC-4.

The action machine’s basic semantic processing is walk-
ing through the Intention Net to generate self-contained
assignments, e.g., UC-3 produces eight assignments interre-
lating two intentions. The subsequent semantic processing
matches the Context of the applications with the Context of
the domain. The current evaluation implements the semantic
distance S between names (i.e., a string representing the
Context/concept name). We evaluate each name to compare
thematching (Table 7), defining closeContextswhen S< 0.1.
For example, S(walk, walking)= 0.0498, then the strings are
close. S(kitchen light, Light) = 0.5725; then, the strings are
distant; therefore, they are different and discarded.

The final semantic processing of the action machine is
matching the domain relations through Fuzzy logic. We use
UC-4 to test domain relations matching. FIGURE 9 shows
the IaaC assignments generated by the action machine
without domain matching (FIGURE 9-a), with domain

matching (FIGURE 9-b), and IaaCs deployed in the Contex-
tAA IoT platform (FIGURE 9-c). We configured the Fuzzy
logic engine to generate outputs with an activation threshold
>= 0.5 for relations of the type HIGH_RELATION and
MAYBE_RELATION. Table 8 lists the reasoning results for
UC-4. The results show that the context size decreases, e.g.,
discarding ‘‘sleep,’’ as well as the preferences for activities
is reordered, e.g., from LEISURE (5), walk (9) to walking
(0.889), leisure (0.667) (which does not affect the deployment
because preference walk > leisure). We can also apply the
activation threshold to suggest or improve intention/action
configurations such as priority and order.

B. SMART CITIES
We also implemented deployment functionalities for our
testbed (FIGURE 6-h). We evaluated our approach’s
deployment scalability for smart cities through the InterSCity

VOLUME 9, 2021 151181

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

TABLE 8. Fuzzy engine reasoning results for UC-4.

FIGURE 10. Smart city simulation.

platform and InterSCSimulator [52]–[54]. InterSCity (plat-
form and simulator) is an open-source microservices-based
middleware to simulate smart city applications. InterSCity
provides facilities to manage, store, and process heteroge-
neous IoT services and resources.

1) INTERSCITY
InterSCity is built on top of the Sim-Diasca simulator
(FIGURE 10), which executes simulation processes such
as deployment and time management and simulation result
collection. Both are implemented in Erlang (based on the
actor model) with Wooper (a wrapper for object-oriented
programming in Erlang).

InterSCity receives config files representing smart cities’
resources and configurations such as city maps, traffic lights,
trips, etc. It provides mobility models for vehicles and other
city actors (e.g., pedestrians). Actors execute tasks during
a simulation clock tick, representing the simulation of one
second in the real world [52]. We adapted InterSCity to
interact with our IoT platform ContextAA via MQTT and
REST API.

2) SCENARIO IMPLEMENTATION
We extended the InterSCity traffic lights scenario to simulate
vehicle emergencies in an area of Sherbrooke city, Canada.
We consider two types of vehicles: cars and ambulances.
A car represents a vehicle moving in normal conditions, i.e.,
respecting traffic lights. An ambulance represents a vehicle
that needs to move faster from origin (e.g., home) to destina-
tion (e.g., hospital).We created an application to represent the

emergency response for ambulance proximity to a red traffic
light, changing it to green, i.e., IF car_type is an ambulance,
THEN turn traffic_light to green. Each traffic light keeps
an IaaC, and we deployed the IaaC to multiple ContextAA
docker containers connected to InterSCity (FIGURE 10).
Results

The process of composing and deploying the app is the
same as described previously for smart homes. Furthermore,
the testbed facilitates the deployment to multiple contain-
ers for testing. We simulated trips for 162 cars and five
ambulances (emergencies). The vehicles travel different dis-
tances, respecting traffic lights with homogeneous phases of
130 ticks (i.e., simulation unit of time). We consider only
green and red lights with 30 to 60 seconds in green based
on the number of crossing streets. We simulated ten different
traffic lights through the city deployed on each container
(FIGURE 11). The results show that Ambulance 1 and 2
travel time is the same because they were close to the hos-
pital and had no traffic lights. However, Ambulance 3, 4,
and 5 trips are adapted by the IaaC deployed. Specifically,
Ambulance 5, which is traveling farther distance (from 6363
m), arrives earlier (in 568 ticks) when the IaaC is deployed
on all 30 traffic lights (FIGURE 12).

VI. DISCUSSION AND CHALLENGES
We aim to augment activity representation in the
current IoT era when smart devices enable higher automation
of everyday activities. Our research and experimental results
brought challenges to address, in particular, to describe com-
plex intentions such as habits or events. Following, we discuss
key aspects of our approach and future research.

151182 VOLUME 9, 2021

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

FIGURE 11. Simulation with three containers, each one with different traffic lights through the city.

FIGURE 12. Simulation with 30 traffic lights.

A. ACTIVITY INTENTION ELICITATION IN PERVASIVE
COMPUTING APPLICATIONS
Traditional applications restrict end-user intentions because
they are designed for a general end-user profile and developed
considering only specific actions. For example, they restrict
activities based only on an ontology-basedmodel with atomic
actions such as ‘‘obtain milk vessel,’’ ‘‘pour milk’’ [55].
Similarly, new solutions (e.g., cloud-based smart homes) and
intelligent assistants (e.g., Google Assistant, Amazon Alexa)
introduce an improved interaction (e.g., voice, widgets) [56].
However, these solutions restrict end-user intentions to fixed
environment actions (e.g., Google Actions, Alexa skills at
home). With the flooding of IoT smart devices, defining
applications is tedious, i.e., more actions/skills to configure.
In our approach, the actions are not specific and depend on
the activity domain.

Our approach abstracts any context (e.g., environments,
concepts, actions) and describes them in terms of ContextAA
Context-based semantic elements. Adopting our approach,
domain experts can generate dynamic applications that use
a common domain (e.g., smart home shown in Table 5).
The applications can be interrelated, reusing the abstracted
context based on end-user needs (e.g., smart home activ-
ities shown in Table 4). The action machine processes
the semantic elements and matches the context to gener-
ate IaaC assignments. The generated assignments in our
approach contain compiled knowledge that can augment
applications’ achievement, decreasing the dependence on
fixed environments. However, it is a challenge to process

dynamic semantics (i.e., the same application in a new
environment) and, at the same time, improve the seman-
tic matching (closer to 100%). Future research can apply
another semantic compilation level using machine learning,
e.g., with pre-trained sentence encoders [57] or incremental
learning [34].

B. ENHANCE THE INTENTION DESCRIPTION
We include the semantic element Concept to describe the
activity domain. We discard complex relations and axioms
to describe domain phenomena because we attempt to sim-
plify domain experts’ descriptions. At this stage of our work,
the semantic element Concept allows describing concepts
with part-whole and weighted associations, which are ade-
quate to build simple everyday activity applications. We also
include the semantic elements representing entities and com-
mon operations, the statements to create rules, and the
required configurations (e.g., priority, order) to create action
sequences. With the action machine semantic processing,
we can improve intention/action configurations to automatize
action sequences.

Our approach also enables us to compose hierarchical
intentions (FIGURE 2) (e.g., activity plans) using rules’ com-
position/aggregation. However, we identified the need for
additional domain descriptions for complex intentions such
as end-user roles and temporal constraints between concepts
(e.g., preference for outdoor activity during a day). We also
identified the need for a simplified UI to help non-technical
people compose IoT applications.

VOLUME 9, 2021 151183

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

C. COMPLEX INTENTIONS
By reducing intentions, we prepare them for running in
IoT smart environments. This reduction is essential because
the semantic elements allow flexibility to promote domain
experts’ involvement. For example, a domain expert can
describe the intention to turn on a light and the intention
to go to the bathroom. Each intention has a goal; how-
ever, both can be: 1) described independently (two inde-
pendent intentions, each one with each context/conditions);
or 2) described together (two intentions, but interrelating
context/conditions). This situation creates different paths for
the intentions, which are the input for the action machine.
The action machine processes intentions and creates atomic
assignments, i.e., self-described context with logic and com-
piled knowledge.

We are exploring the complexity of applications and how
to compile complex intentions. Complex intentions require
additional descriptions such as temporal constraints or regu-
lations. One option is to create activity templates that domain
experts can reuse. Then, we can improve the compilation with
pre-compiled application templates.

VII. CONCLUSION AND FUTURE WORK
In this paper, we proposed an approach to empower domain
experts who apply their knowledge and new technologies to
assist people. Our approach comprises an intention model to
describe the activity intention as a context (IaaC)—an antici-
pated outcome of the activity represented as a self-described
context. The model is part of our context-aware framework
AmI-DEU which provides the semantic elements to sim-
plify creating meaningful applications for our ContextAA
IoT smart environment platform. In the first step, domain
experts describe the activity domain using semantic ele-
ments to represent concepts and relations. Afterward, diverse
semantic elements enable the description of activity intention
flows. Finally, our action machine reduces and matches the
flows, generating IaaC applications with simplified scripts
(i.e., IaaC assignments). IaaC applications are reduced in size
but contain enriched context with the conditions, actions, and
the assignments’ compiled knowledge. The enriched context
provides relevant information to enhance the assessment and
adaptation of the pervasive IoT smart environment to support
end-user activities.

The results of applying our approach have shown that the
action machine (1) decreases the context size matching inten-
tion flows and activity domain, which reduce the implemen-
tation/interpretation time; and (2) the semantic processing
can improve the activity intention (e.g., ordering activities by
preference, discarding unnecessary context) which augment
the available features to enhance system actions.

We plan to add domain descriptions (e.g., temporal con-
straints) to elicit complex intentions. We will then improve
the action machine semantic matching of sentences and other
patterns (e.g., events, behaviors). We are also developing a UI
representing our hierarchical model, with activity templates,
for making our framework useful/usable to domain experts.

REFERENCES
[1] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, ‘‘A sur-

vey on Internet of Things: Architecture, enabling technologies, security
and privacy, and applications,’’ IEEE Internet Things J., vol. 4, no. 5,
pp. 1125–1142, Oct. 2017.

[2] A. Ghasempour, ‘‘Internet of Things in smart grid: Architecture, applica-
tions, services, key technologies, and challenges,’’ Inventions, vol. 4, no. 1,
p. 22, 2019.

[3] L. Yao, Q. Z. Sheng, B. Benatallah, S. Dustdar, X. Wang, A. Shemshadi,
and S. S. Kanhere, ‘‘WITS: An IoT-endowed computational framework for
activity recognition in personalized smart Homes,’’ Computing, vol. 100,
no. 4, pp. 369–385, Apr. 2018.

[4] J. K. Kim and Y. B. Kim, ‘‘Joint learning of domain classification and
out-of-domain detection with dynamic class weighting for satisficing false
acceptance rates,’’ in Proc. Annu. Conf. Int. Speech Commun. Assoc.
(INTERSPEECH), Sep. 2018, pp. 556–560.

[5] L. Farhan, A. E. Alissa, S. T. Shukur, M. Alrweg, U. Raza, and R. Kharel,
‘‘A survey on the challenges and opportunities of the Internet of Things
(IoT),’’ in Proc. 11th Int. Conf. Sens. Technol. (ICST), Dec. 2017, pp. 1–5.

[6] V. Ponce, J. P. Deschamps, L. P. Giroux, F. Salehi, and B. Abdulrazak,
‘‘QueFaire: Context-aware in-person social activity recommendation sys-
tem for active aging,’’ in Proc. Int. Conf. Smart Homes Health Telematics,
2015, pp. 64–75.

[7] B. Abdulrazak, P. Roy, C. Gouin-Vallerand, Y. Belala, and S. Giroux,
‘‘Micro context-awareness for autonomic pervasive computing,’’ Int.
J. Bus. Data Commun. Netw., vol. 7, no. 2, pp. 48–68, Apr. 2011.

[8] S. Thill, D. Caligiore, A. M. Borghi, T. Ziemke, and G. Baldassarre,
‘‘Theories and computational models of affordance andmirror systems: An
integrative review,’’ Neurosci. Biobehav. Rev., vol. 37, no. 3, pp. 491–521,
Mar. 2013.

[9] C. Stephanidis, G. Salvendy, and J. Y. C. Chen, ‘‘Seven HCI grand chal-
lenges,’’ Int. J. Hum.–Comput. Interact., vol. 35, no. 14, pp. 1229–1269,
2019.

[10] M. Bystricky and V. Vranic, ‘‘Preserving use case flows in source code,’’
in Proc. 4th Eastern Eur. Regional Conf. Eng. Comput. Based Syst.,
Aug. 2015, pp. 9–16.

[11] V. Ponce, P. Roy, and B. Abdulrazak, ‘‘Dynamic domain model for micro
context-aware adaptation of applications,’’ in Proc. Int. IEEE Confer-
ences Ubiquitous Intell. Comput., Adv. Trusted Comput., Scalable Comput.
Commun., Cloud Big Data Comput., Internet People, Smart World Congr.
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Jul. 2016, pp. 98–105.

[12] M.M. Burnett and B. A. Myers, ‘‘Future of end-user software engineering:
Beyond the silos,’’ in Proc. Future Softw. Eng., 2014, pp. 201–211.

[13] G. Sukthankar, C. Geib, H. H. Bui, D. Pynadath, and R. P. Goldman,
Plan, Activity, and Intent Recognition: Theory and Practice. London, U.K.:
Newnes, 2014.

[14] J. Lindblom and B. Alenljung, ‘‘The ANEMONE: Theoretical foundations
for UX evaluation of action and intention recognition in human-robot
interaction,’’ Sensors, vol. 20, no. 15, p. 4284, 2020.

[15] A. Herzig, E. Lorini, L. Perrussel, and Z. Xiao, ‘‘BDI logics for BDI
architectures: Old problems, new perspectives,’’ KI-Künstliche Intelligenz,
vol. 31, no. 1, pp. 73–83, Mar. 2017.

[16] C. K. Chang, H. Y. Jiang, H. Ming, and K. Oyama, ‘‘Situ: A situation-
theoretic approach to context-aware service evolution,’’ IEEE Trans. Ser-
vices Comput., vol. 2, no. 3, pp. 261–275, Jul. 2009.

[17] S. Liu, S. Helal, and J. W. Lee, ‘‘High fidelity simulation and visualization
of activities of daily living in persim 3D,’’ in Proc. Int. Conf. Smart Homes
Health Telematics, vol. 10461, 2017, pp. 136–148.

[18] A. Aztiria, J. C. Augusto, R. Basagoiti, A. Izaguirre, and D. Cook, ‘‘Learn-
ing frequent behaviors of the users in intelligent environments,’’ IEEE
Trans. Syst., Man, Cybern., Syst., vol. 43, no. 6, pp. 1265–1278, Nov. 2013.

[19] C. A.Kamienski, F. F. Borelli, G. O. Biondi, I. Pinheiro, I. D. Zyrianoff, and
M. Jentsch, ‘‘Context design and tracking for IoT-based energy manage-
ment in smart cities,’’ IEEE Internet Things J., vol. 5, no. 2, pp. 687–695,
Apr. 2018.

[20] L. Chen, C. D. Nugent, and H. Wang, ‘‘A knowledge-driven approach
to activity recognition in smart Homes,’’ IEEE Trans. Knowl. Data Eng.,
vol. 24, no. 6, pp. 961–974, Jun. 2012.

[21] S. Zhang, P. McCullagh, C. Nugent, H. Zheng, and N. Black, ‘‘An onto-
logical framework for activity monitoring and reminder reasoning in an
assisted environment,’’ J. Ambient Intell. Humanized Comput., vol. 4, no. 2,
pp. 157–168, 2013.

151184 VOLUME 9, 2021

V. Ponce, B. Abdulrazak: Intention as Context: Activity Intention Model for Adaptable Development of Applications in IoT

[22] U. Naeem, J. Bigham, and J. Wang, ‘‘Recognising activities of daily life
using hierarchical plans,’’ in Smart Sensing and Context. Berlin, Germany:
Springer, 2007, pp. 175–189.

[23] A. Kojima, T. Tamura, and K. Fukunaga, ‘‘Natural language description
of human activities from video images based on concept hierarchy of
actions,’’ Int. J. Comput. Vis., vol. 50, no. 2, pp. 171–184, 2002.

[24] F. Gu, K. Khoshelham, S. Valaee, J. Shang, and R. Zhang, ‘‘Locomotion
activity recognition using stacked denoising autoencoders,’’ IEEE Internet
Things J., vol. 5, no. 3, pp. 2085–2093, Jun. 2018.

[25] A. Benmansour, A. Bouchachia, and M. Feham, ‘‘Multioccupant activity
recognition in pervasive smart home environments,’’ ACM Comput. Surv.,
vol. 48, no. 3, pp. 1–36, Feb. 2016.

[26] K. C. Hsu, Y. T. Chiang, G. Y. Lin, C. H. Lu, J. Y. J. Hsu, and
L. C. Fu, ‘‘Strategies for inference mechanism of conditional random
fields for multiple-resident activity recognition in a smart home,’’ in Proc.
Int. Conf. Ind., Eng. Other Appl. Appl. Intell. Syst., vol. 6096, 2010,
pp. 417–426.

[27] B. Minor and D. J. Cook, ‘‘Forecasting occurrences of activities,’’ Pervas.
Mobile Comput., vol. 38, pp. 77–91, Jul. 2017.

[28] Y. Gu, F. Ren, and J. Li, ‘‘PAWS: Passive human activity recognition
based on WiFi ambient signals,’’ IEEE Internet Things J., vol. 3, no. 5,
pp. 796–805, Oct. 2016.

[29] Z. Zhu, U. Blanke, and G. Tröster, ‘‘Recognizing composite daily activities
from crowd-labelled social media data,’’ Pervas. Mobile Comput., vol. 26,
pp. 103–120, Feb. 2016.

[30] K. Häussermann, C. Hubig, P. Levi, and F. Leymann, ‘‘Understanding
and designing situation-aware mobile and ubiquitous computing systems,’’
World Acad. Sci. Eng. Technol., vol. 4, no. 39, pp. 972–981, 2010.

[31] C.-H. Lu and L.-C. Fu, ‘‘Enhancement of human-preference assisted
activity recognition using a cooperative ADL infrastructure,’’ in Proc. 9th
Int. Conf. Ubiquitous Intell. Comput. 9th Int. Conf. Autonomic Trusted
Comput., Sep. 2012, pp. 1009–1014.

[32] N. P. Cuntoor, B. Yegnanarayana, and R. Chellappa, ‘‘Activity modeling
using event probability sequences,’’ IEEE Trans. Image Process., vol. 17,
no. 4, pp. 594–607, Apr. 2008.

[33] S. Wang, W. Pentney, A. Popescu, T. Choudhury, andM. Philipose, ‘‘Com-
mon sense based joint training of human activity recognizers,’’ in Proc.
IJCAI, 2007, pp. 2237–2242.

[34] D. Tao, Y. Wen, and R. Hong, ‘‘Multicolumn bidirectional long short-
termmemory for mobile devices-based human activity recognition,’’ IEEE
Internet Things J., vol. 3, no. 6, pp. 1124–1134, Dec. 2016.

[35] D. Kulkarni and A. Tripathi, ‘‘A framework for programming robust
context-aware applications,’’ IEEE Trans. Softw. Eng., vol. 36, no. 2,
pp. 184–197, Mar. 2010.

[36] P. Rashidi and D. J. Cook, ‘‘Keeping the resident in the loop: Adapting the
smart home to the user,’’ IEEETrans. Syst., Man, Cybern., A, Syst. Humans,
vol. 39, no. 5, pp. 949–959, Sep. 2009.

[37] V. Tietz, A. Rümpel,M. Voigt, P. Siekmann, andK.Meißner, ‘‘Tool support
for semantic task modeling,’’ in Proc. 3rd Int. Conf. Web Intell., Mining
Semantics (WIMS), 2013, pp. 1–12.

[38] P. Roy, B. Abdulrazak, and Y. Belala, ‘‘Quantifying semantic proximity
between contexts,’’ in Proc. Int. Conf. Smart Homes Health Telematics,
2014, pp. 165–174.

[39] V. Ponce andB. Abdulrazak, ‘‘Activitymodel for interactivemicro context-
aware well-being applications based on ContextAA,’’ in Proc. Int. Conf.
Smart Homes Health Telematics, 2017, pp. 99–111.

[40] E. Kim, S. Helal, and D. Cook, ‘‘Human activity recognition and pat-
tern discovery,’’ IEEE Pervasive Comput., vol. 9, no. 1, pp. 48–53,
Jan./Mar. 2010.

[41] Y. Chen, J. Wang, M. Huang, and H. Yu, ‘‘Cross-position activity recog-
nition with stratified transfer learning,’’ Pervas. Mobile Comput., vol. 57,
pp. 1–13, Jul. 2019.

[42] J. Ye, S. Dasiopoulou, G. Stevenson, G. Meditskos, and E. Kontopou-
los, ‘‘Semantic web technologies in pervasive computing: A survey and
research roadmap,’’ Pervasive Mobile Comput., vol. 23, pp. 543–549,
Oct. 2015.

[43] M. Noura, S. Heil, and M. Gaedke, ‘‘GROWTH: Goal-oriented end user
development for web of things devices,’’ in Proc. Int. Conf. Web Eng.,
vol. 10845, 2018, pp. 358–365.

[44] V. Realinho, T. Romao, and A. E. Dias, ‘‘A language for the end-user
development of mobile context-aware applications,’’ J. Wireless Mobile
Netw., Ubiquitous Comput. Dependable Appl., vol. 11, no. 1, pp. 54–80,
2020.

[45] Y. Li and J. A. Landay, ‘‘Activity-based prototyping of ubicomp applica-
tions for long-lived, everyday human activities,’’ in Proc. 26th Annu. Conf.
Hum. Factors Comput. Syst. (CHI), 2008, pp. 1303–1312.

[46] H. Huang and G. Gartner, ‘‘Using activity theory to identify relevant con-
text parameters,’’ in Location Based Services TeleCartography II. Berlin,
Germany: Springer, 2009, pp. 35–45.

[47] P. Roy, B. Abdulrazak, and Y. Belala, ‘‘A distributed architecture for micro
context-aware agents,’’ Proc. Comput. Sci., vol. 5, pp. 296–303, Feb. 2011.

[48] P. Roy, ‘‘ContextAA: Plateforme sensible Au Contexte pour abor-
der le problème de l’espace intelligent ouvert,’’ M.S. thesis, Univ.
Shrerbrooke, Sherbrooke, QC, Canada, 2019. [Online]. Available:
http://hdl.handle.net/11143/15817

[49] D. Bjorner, Software Engineering 3: Domains, Requirements, and Soft-
ware Design (Texts in Theoretical Computer Science. An EATCS Series).
Secaucus, NJ, USA: Springer-Verlag, 2006.

[50] A. Konar, Computational Intelligence: Principles, Techniques and Appli-
cations. Berlin, Germany: Springer, 2006.

[51] J. Rada-Vilela. (2018). The FuzzyLite Libraries for Fuzzy Logic Control.
[Online]. Available: https://fuzzylite.com/

[52] A. de M. Del Esposte, E. F. Z. Santana, L. Kanashiro, F. M. Costa,
K. R. Braghetto, N. Lago, and F. Kon, ‘‘Design and evaluation of a scalable
smart city software platform with large-scale simulations,’’ Future Gener.
Comput. Syst., vol. 93, pp. 427–441, Apr. 2019.

[53] A. M. Del Esposte, F. Kon, F. M. Costa, and N. Lago, ‘‘InterSCity:
A scalable microservice-based open source platform for smart cities,’’ in
Proc. SMARTGREENS, vol. 1, 2017, pp. 35–46.

[54] E. F. Z. Santana, N. Lago, F. Kon, and D. S. Milojicic, ‘‘Interscsimulator:
Large-scale traffic simulation in smart cities using Erlang,’’ in Proc. Int.
Workshop Multi-Agent Syst. Agent-Based Simulation, 2017, pp. 211–227.

[55] J. Rafferty, C. D. Nugent, J. Liu, and L. Chen, ‘‘From activity recognition to
intention recognition for assisted living within smart Homes,’’ IEEE Trans.
Human-Mach. Syst., vol. 47, no. 3, pp. 368–379, Jun. 2017.

[56] J. Kiseleva, K. Williams, J. Jiang, A. H. Awadallah, and A. C. Crook,
‘‘Understanding user satisfactionwith intelligent assistants,’’ inProc. ACM
Conf. Hum. Inf. Interact. Retr., vol. 2016, pp. 121–130.

[57] I. Casanueva, T. Temčinas, D. Gerz, M. Henderson, and I. Vulić, ‘‘Efficient
intent detection with dual sentence encoders,’’ 2020, arXiv:2003.04807.

VICTOR PONCE (Student Member, IEEE)
received the B.Sc. degree in computer science
from the Escuela Superior Politécnica del Litoral
(ESPOL), Guayaquil, Ecuador, the M.Sc. degree
in distributed systems from the Polytechnic Uni-
versity of Madrid (UPM), Madrid, Spain, and the
M.Sc. degree in open source from the Universitat
Oberta de Catalunya (UOC), Barcelona, Spain.
He is currently pursuing the Ph.D. degree in com-
puter science with the Université de Sherbrooke,

Sherbrooke, Canada.
He specializes in software development and architecture. He has been

collaborating in technological projects with companies and institutions,
and is also involved in research and academic work. His current research
interests include the IoT, distributed systems, ambient-intelligence, software
architectures, context awareness, and software engineering.

BESSAM ABDULRAZAK (Member, IEEE)
received the B.Sc. degree in electronics from
USTHB, Algeria, the M.Sc. degree in robotics
from Paris 6, France, and the Ph.D. degree in
computer science from Telecom SudParis, France.

He is a Professor of computer science with the
University of Sherbrooke and the Director of the
AMI Laboratory, Sherbrooke, QC, Canada. He is
an active Researcher at the Research Center on
Aging and the Interdisciplinary Institute for Tech-

nological Innovation. His research interests include the IoT, ubiquitous and
pervasive computing, ambient intelligence, smart environments, assistive
living technologies, context awareness, and software engineering. He has
over 180 peer-reviewed publications, served as the general chair for a number
of conferences and workshops, and serves on the editorial board of numerous
international journals, as well as program committee of several conferences
related to his research interests.

VOLUME 9, 2021 151185

