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ABSTRACT The paper proposes a taxonomy for categorizing the main features of the supervised learning
classification problems and a notation for the identification of the supervised learning classification problem
categories. The proposed taxonomy has been based on the review and analysis of the recent literature.
It allowed the construction of the landscape of decision problem factors influencing the supervised learning
processes. To enable a concise and coherent identification of supervised classification problems we have
suggested a notation enabling description and identification of various supervised learning classification
problem types and their critical features. The notation consists of 5 fields representing, in a sequence,
a structure and properties of decision classes, structural model and properties of attributes, features of the
data source, and the performance measure used for constructing and evaluating a classifier. The proposed
notation is open and could be extended in the case of need new developments within the machine learning
theory.

INDEX TERMS Machine learning, supervised classification, classification problems, taxonomy of features,
notation for problem description.

I. INTRODUCTION
Classification is a term commonly used for describing the
process of distinguishing and distributing kinds of ‘‘things’’
into different groups. Classification can be viewed as the
assignment of elements to pre-defined classes [1] or as the
act or process of dividing things into groups according to
their type [14]. Classification re-mains one of the main
topics of scientific research and is vital to practically all
domains of human activities. As it has been recently observed
‘‘most of the classifications are still based on the evaluation
of resemblances between objects that constitute the empirical
data. This one is almost always computed by the means of
some notion of distance and some algorithms of aggregation
of classes’’ [57].

Classifications are produced using different reasoning
schemes. For example, in statistics, a classification task
(also called discrimination problem) requires a classification
rule for assigning new data to one of the known classes.
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Such a rule is identified based on a set of data containing
observations (or instances), whose category membership
is known [3]. In the machine learning terminology [4],
classification is viewed as learning from examples (observa-
tions, instances), where a training set consisting of correctly
identified observations is available and used to induce a
model that describes and distinguishes data classes [11]. Such
a model is called a classifier [5]. Classifiers are sometimes
referred to as mathematical functions that map input data into
a category. Such functions are also called the hypothesis.

Classification problems are encountered in many real-
world activities where finding effective methods and tools
requires an interdisciplinary effort [1], [2]. Classification
methods and tools have been, and still are, under development
in numerous research areas of computer science, such
as, for example: image processing and analysis [6], [7],
computer vision [8], signal recognition [9], decision support
systems [10], knowledge discovery in databases and data
mining [5], data science [14]. It would be impossible to list
here all application areas where machine learning-based clas-
sifiers have proven to bring breakthrough advantages. Several
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examples of such areas include genetics and genomics [124],
agriculture [125], molecular and materials science [126],
physical sciences [127], hydrology [128], chemistry [129]
manufacturing [130], medical image analysis [131], just to
mention a few.

In the current paper, we study classification problems
that can be solved automatically. Besides, it is assumed that
processes of classifier learning are based on the principle of
supervised learning, where a classifier, often referred to as a
classification model, is learned from a set of examples. Under
this assumption classification is a two-stage process. The first
stage involves learning from data to induce a classification
model. The second one involves using the model to predict
the class or category of instances with unknown class labels.
Research effort undertaken by specialists in various areas
of computer and data sciences has resulted in providing
a wide range of classification models and approaches
for constructing classifiers. These are based on different
paradigms, with different scopes, different complexities, and
varying degrees of performance. All of them are, however,
based on a 2-dimensional conceptual data model consisting
of the set of examples (instances, observations) and each
example consisting of feature (attribute) values which are
assumed to be in some unknown way related to the class or
category an instance belongs to. Within the set of examples
labels (categories) of instances are known.

The simplicity of such a conceptual model does not,
unfortunately, mean that inducing classifiers assuring the
required level of performance is an easy task. There is
a multitude of factors that make the task complex and
difficult or even impossible. Among such factors one should
mention, for example, limited availability of examples,
ambiguity, uncertainty, and distortions to feature values,
different methods of representing and coding feature values,
class imbalanced among instances available for inducing a
classifier, presence of the concept drift, presence of outliers,
complex feature values, and many others. One of the most
difficult barriers encountered in developing classification
methods is the sheer size of the data available for deriving
a classifier. This barrier may apply to both data dimensions
- the number of features and the number of instances. It is
well known that data analysis including classification, is more
complex in the so-called Big Data environment [12], [13].

The main contribution is the identification and order-
ing of factors influencing the construction and outcomes
of classification models in supervised machine learning.
Besides, we also propose a taxonomy for supervised classifi-
cation problems categorization. In the available literature on
machine learning, the authors haven’t found any attempt to
provide a wider scheme for categorization of the supervised
learning problems based upon considering a variety of
combinations of factors important from the point of view of
constructive effective classification models. Our goal is to
provide specialists and laymen with a simple classification
scheme allowing them to identify what kind of classification
problem they are facing. Consequently, they can narrow

their search for a suitable classification model considering at
first methods that have proven successful in solving similar
problems.

The proposed classification scheme is based on several
characteristics of supervised classification problems referred
to as their dimensions. Under the proposed scheme the type
of the supervised classification problem can be identified
considering the following factors:
- Characteristics and properties of the problem categories,
(category view).

- Structure and properties of the dataset available for
learning a classifier (attribute view).

- Sources of the dataset available for learning (data source
view).

- Criterion or criteria associated with the supervised
classification problem (performance criteria view).
Besides the classification scheme, we also propose the

notation for the supervised classification problems. It has
been inspired by the notation used in the theory of scheduling
for the identification of scheduling problems. The notation
was suggested in 1979 by Graham et al. [85] and is
widely used ever since. The reason behind proposing the
notation for denoting supervised classification problems in
a short but coherent way based on their main properties
is to enable efficient communication between specialists
developing classification models.

Classification problems in real-life arise in a variety of
settings. Researchers have studied hundreds of classification
problems and it would be impossible to list all known variants
in a single paper. We believe that offering a framework for
ordering and grouping classification problems could be of
value to both – the researchers looking for methods and tools,
and the practitioners trying to find a method or tools for
solving their particular classification problems. The proposed
classification scheme and notation should be considered as a
part of the meta-analysis of machine learning.

Wewould like also to stress that the proposed classification
scheme does not depend on techniques, methods, and tools
used for inducing classification models. It is also independent
of techniques and methods used at the data pre-processing
stage, for example for dealing with the missing data
problem or outliers removal. There is, of course, a relation
between a particular supervised classification problem type
and methods or techniques which might be more effective
for solving its cases as compared with other techniques.
Identifying such relations could be a subject of analysis when
constructing or selecting a learner.

The remainder of this paper is organized as follows. In the
next section, the problem of classification is formally defined.
Section III contains a review of the different problems
and strategies of learning from data based on the relevant
literature. Section IV provides a short overview of studies
on complexity of classification problems. In Section V,
we propose a notation for classification problems. Section VI
includes conclusions and discussion on some open research
problems.
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II. CLASSIFICATION PROBLEM FORMULATION
In the case of supervised learning, to induce a learner some
examples are needed. The set of examples denoted U, is a
non-empty, finite set and is called the universe. The example
x ∈ U is represented by a fixed set of attributes (features),
A = {a1, a2, . . . , an}, where n is the number of attributes.
Each attribute ai:i=1,...,n has a value ai(x) ∈ Vai , where Vai
is a set of all possible values for attribute ai. Vai is also
called an attribute domain. It is assumed that one particular
attribute, say ai, contains value representing the class label
of the example [11].

The aim of learning from examples is to obtain a model
(classifier, learner) able to reveal the value of the unknown
class label by identifying the dependence between attribute
values (our independent variables) and the value of the class
label (our dependent categorical variable) using the set of
available instances.

The class labels belong to a finite set of predefined decision
categories (classes) C = {cl = 1, . . . , k}, where k is a number
of these categories. Hence, theU set for the classification task
can be defined as:

U = {
[
xij, d

(
xj
)]
: i = 1, . . . , n; j = 1, . . . ,N }. (1)

Based on the above, a single example is represented by
[xij, d(xj)], the set U consists of N such vectors and d(x)
represents the value of the class label for the example x, where
∀x∈Ud(x) ∈ C.

In [11] the process of learning from examples was called
a ‘‘concept learning’’, i.e. ‘‘search through a predefined
space of potential hypotheses for the hypothesis that best
fits the training examples’’. When instances are repre-
sented by the n-dimensional input data (space) and each[
x1j, . . . , xnj

] N
j=1 ∈ <

n, then the mission of a classifier is to
map instances to the discrete class set, i.e. h : <n→ C .
The machine learning algorithm, called a learner, produces

a classifier h ∈ H . The classifier is induced from the set U. H
is called as the hypothesis space and consist of all possible
hypotheses that can be drawn during the learning process.
Thus, given a datasetU , a set of hypothesesH , a performance
criterion or criteria F , the learning algorithm L outputs a
hypothesis h ∈ H using the learning algorithm L optimizing
F. Thus, learning from examples is to generate L which will
be able to determine the best possible h ∈ H with respect to
the adopted performance measure or measures F .
In case the classifier output is evaluated using a sin-

gle criterion with the performance measure expressed as
f ∈ F , the learning from examples may be formulated as
a process maximizing the performance measure concerning
the hypothesis h, such that:

h = argmax
h∈H

f (h). (2)

The role of a classifier predicts the category of an instance,
where the category is unknown.
Definition: A classifier h is a function assigning examples

from D to a predefined set of categories as shown in the

TABLE 1. Selected classifier algorithms.

equation (3):

h : U → {∅,C1,C2, . . . ,Ck}, (3)

where Cl:l=1,...,k denotes subset of data set D, such that
examples are labelled by a class cl:l=1,...,k ∈ C , under the
following conditions:

1.
⋃k

l=1
Cl = D (4)

2. ∀Cj ⊂ D, Cl ⊂ D, : Cj ∩ Cl = ∅, j, l = [1, k] , j 6= l.

(5)

In view of the above, the classification task is to assign of
the class, c ∈ C , to the instance x ∈ D.
The process of classification involves several steps.

A natural sequence of these steps can be seen as follows:
− Sample collection,
− Selection of instances and attributes for learning,
− Carrying other pre-processing actions (cleaning, remov-

ing outliers, etc.),
− Producing the training set,
− Induction of the classifier using instances from the

training set.
− Using the induced classifier to predict classes of

instances with unknown class labels.

III. PROPERTIES OF THE CLASSIFICATION PROBLEMS
The first known classifier based on the supervised learning
paradigm was proposed back in 1967 by Cover and Hart [52].
Since then numerous dedicated and universal classification
algorithms have been proposed and published (see, for
example, Table 1).

It is now widely recognized that the selection of methods
and tools for constructing classifiers should be preceded by
an analysis and assessment of properties of the classification
problem at hand. Such an analysis should be carried out
considering the following dimensions, shown also in Fig. 1:
− Structure, cardinality, scales, and relations category -

features of classes (categories).
− Structural model of data and data characteristics.
− Data source features.
− Classifier performance criterion (or criteria).

A. THE NUMBER, PROPERTIES, AND STRUCTURE OF
CLASSES (CATEGORY VIEW)
It is assumed that in the case of supervised learning the
classification problem requires deciding to which class an
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FIGURE 1. Dimensions for classification problems assessment.

instance belongs. In supervised learning, unlike the semi-
supervised, and unsupervised ones, it is assumed that the
number of classes (categories) and their possible labels are
known at the outset. In the case of the two classes, the
problem is called the binary classification [37]. In many
cases, the binary classification problem has served as a
basis for introducing new classification methods as, for
example, in the case of the support vector machine (SVM)
approach [38].

In the case of binary classification, the cardinality of the
set of decision categories is equal to 2 (i.e. |C| = 2), and
classifying is carried out into one of the two known classes.
However, in many practical applications of machine learning
techniques, the number of classes is greater than two, i.e.
|C| > 2 (see for example [40]–[42]). In such a case, a
multiclass classification problem is considered and instances
belong to one of three or more classes [39]. It should be noted
the binary classification is a special case of the multiclass
classification. On the other hand, the multiclass classification
can be seen as a natural extension of the binary classification
problem.

In a special case where |C| = 1, one deals with the one-
class classification or unary classification problem. Unary
classification problem requires identification of instances
belonging to one particular class only. Such class is arbitrarily
referred to as the positive or target one, and it is assumed that
the positive class is well characterized by instances. Instances
that do not belong to the target class are assumed to belong
to the negative class, however, they do not form a statistically
representative sample of the negative concept [26], [27], [31].
In the discussed case the aim of the classifier is either to
identify only one class amongst all the others possible or to
identify positive instances when the negative class examples
are either not available, not adequately sampled, or ill-
defined. The one-class classification is, however, encountered
in many real-life situations like, for example, detection of
outliers [28], novelties [29], faults [34], spam [33], and

abnormal behaviors [36]. Some automatic diagnosis [35],
document classification [32], and concept learning [30]
problems can be also modelled as the one-class classification
problem.
So far we have considered classification problems where

each instance belongs to a single class and is associated
with a single class label. Such problems can be solved
using methods of single-label learning for training the
classification model [25]. However in numerous situations
classification problems are multi-labelled where one instance
can be naturally associated with multiple, non-exclusive
labels. Examples include document, gene, and image cate-
gorization. In multi-label learning, the aim is to learn model
mapping instances to the powerset of the decision categories
set C. Both, the single and the multi-label classifications
are based on a fixed set of labels. Compared with the
single-label classification, which predicts only one label
for each instance, the multi-label classification is more
complicated. Each instance are different and the number of
labels per instance is not fixed. A review of the multi-label
classification tools and algorithms can be found in [25], [43],
and [45]. A special category of multi-label classification
problems encountered in mining data streams is discussed in
section III.D.

In the literature, the term multi-label classification is often
used interchangeably with the termmulti-dimensional classi-
fication. In fact, the multi-dimensional classification can be
viewed as a generalization of the multi-label classification
where each data instance is associated with multiple class
variables. The goal of multi-dimensional classification is to
assign each data instance to multiple classes. In the multi-
dimensional classification, class labels are allowed to have
more than a single value [48]. A real-life cases of the multi-
dimensional approach including bio-informatics and multi-
fault diagnosis are discussed in [47] and [48].

Another recently investigated classification problem cate-
gory is the multi-output classification. The task of the multi-
output classification is to simultaneously predict multiple
outputs for a single input. In such case the output values
belong to a diversified data types, such as, for example,
binary, nominal, ordinal, and real-valued variables data.
The problem of multi-output learning has attracted so far
the interest of researchers from many areas including, for
example, speech recognition, language processing, motion
tracking, computer vision, document processing, and ranking
in information retrieval [46]. The multi-output classification
is also known as the multitask classification or multi-output-
multi-class classification. Multi-label classification can be
seen as a special case of the multi-output classification
problem.

All the above-discussed classification problems assumed
that to induce a classifier there is available a training set
consisting of instances, each represented by a single attributes
vector and where each such vector has an associated class,
classes, or labels. In many areas, the above assumption
does not hold and the classification problems belong to the
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category of the multiple instance classification [50]. In the
multiple instance classification, the aim is to learn a classifier
based on a training set of bags. Each bag contains multiple
attribute instances and has an associated class. However, the
labels of the individual instances within a bag are unknown.
According to [51] ‘‘bags may also contain instances that are
not necessarily relevant, do not convey any information about
bag class, or are better related to other classes of bags’’. A set
of bags can be used as a training set, and the multi-instance
classification aims to predict the class of unlabelled bags.
Examples of the multiple-instance classification problems
can be found in medicine, chemistry, image recognition, etc.
More information on multi instance learning can be found
in [51].

Usually, it is assumed by default that label values can be
measured using interval or ratio scales. Such an assumption
does not always hold. It appeared that in case label values
are defined using nominal and ordinal scales, the resulting
supervised classification problems may require different
approaches and techniques.
Ordinal classification is the special case of multiple

class problems. Hence, the ordinal classification problems
can be solved using standard approaches as in the case
of other multiple class problems. While applying multiple
class classification methods for ordinal data sometimes
works, the outcome can be unsatisfactory since classes
are treated equally without considering their intercon-
nections and relative superiority [104]. Ordinal classi-
fication problems are further discussed, among others,
in [105], [106], [108], [110]. The special case of the
ordinal classification is monotonic classification [107].
In the ordinal classification, the different labels show an
ordering relation, related to the specific nature of the target
variable. If additionally, a set of monotonicity constraints has
been imposed on the relationship between independent and
dependent variables, then the problem is known as monotonic
classification.

Other special cases are multiple criteria ordinal classi-
fication problems. An ordinal classification problem with
multiple criteria consists of the assignment of objects to a
finite number of ordered classes. Objects are characterized
by attributes with ordered value sets and monotonicity
constraints assuring that a higher value of an object on an
attribute, with other values being fixed, should not decrease
its class assignment. The problem was studied, by several
authors, among them [111], [112], [116], [117].

In nominal classification, categories are mutually exclu-
sive. According to Warrens [132] nominal classification can
be further divided into two types. The distinction depends
upon the presence of the category ‘‘absence’’. When there
is no ‘absence’ category, a classification can be described as
having several unordered categories of ‘‘presence’’ charac-
terizing possible cases. Such type of nominal classification
is referred to as regular as opposed to a dichotomous-
nominal classification. History of developments in nominal
classification can be found in [109].

Classification problems where there is some structure
(hierarchical or not) among the classes form a wide category
of structured classification problems [115]. According to the
above authors, hierarchical classification can be seen as a
particular type of structured classification problem, where
the output of the classification algorithm is defined over a
class taxonomy. Class taxonomy can be defined as a tree-
structured regular concept hierarchy defined over a partially
ordered set (C,≺), where C is a finite set that enumerates
all class concepts in the application domain, and the relation
≺ represents the ‘‘IS-A’’ relationship [119].

According to [118], in many real-world classification
problems, one or more classes can be divided into subclasses
or grouped into superclasses, and instances can belong to
more than one class simultaneously at the same hierarchical
level. In this case, the classes follow a hierarchical structure,
usually a tree or a directed acyclic graph. These problems are
known in the literature of machine learning as hierarchical
multiple label classification problems. Evaluation measures
for hierarchical classification were discussed in [114].
An approach for hierarchical multilabel classification was
proposed in [113].

The category view of the supervised classification prob-
lems is shown in Fig. 2. Category view focuses on cardinality,
structure, and properties of categories (labels) encountered in
different classification problems.

B. DATA VIEW
A natural structure of data used to induce learners is the
relational database model or decision table model, where data
are kept in tables [61]. Each row in the table represents an
instance (example) with a unique class label. The columns
of the table hold attribute values, and each instance usually
has a value for each attribute. The model is appropriate for
binary learning and multi-class learning, and data organized
in a table-like structure are called well-structured. The well-
structured data are also used in the case of the multiple
instance learning, although the class labels are not necessarily
provided for all instances from bags belonging to the training
set [51]. The one-class classification is also based on the
discussed structure even though the only positive class
instances are guaranteed and the negative class instances can
be absent, unlabelled, or not properly defined.

A more complex data structure is required for multi-output
learning. In this case, the outputs can be of various types and
structures. Different output structures typical for multi-output
learning, including independent binary vectors, independent
real-valued vectors, rankings, sequences, graphs, trees, links,
images, text, audio, and time series, are discussed in [46].

Unstructured data either does not have a pre-defined
data model or is organized loosely. Unstructured data has
an internal structure, but it is not predefined through data
models. It might be human-generated, or machine-generated
in a textual or a non-textual format. Unstructured data can
be defined as all the data that is not structured. Unstructured
data is mostly qualitative. Examples of such data include all
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FIGURE 2. Supervised classification problems – category view (‘‘∗’’ denotes remaining options).

kinds of text and audio data, e-mails, web pages, business
documents, FAQ’s, multimedia content, spatial data, molecu-
lar structures, chemical structures, and others [55], [86], [87].
Solving classification problems based on unstructured data is
referred to as learning from unstructured data [86], [87].
Structured data is most often quantitative data. When

data has well-structured the process of solving classification
problems is less demanding from the implementation and
computational side [86]. However, learning from structured
data such as sequences, trees or graphs is less trivial than
learning from data organized as decision tables. Challenges
in learning from structured data arise in the so-called
hybrid domains, where, for example, continuous and discrete
structures are mixed. Dealing with hybrid structures and
structures representing social networks is discussed in [88].
In [89] it is was observed that even learning from the
structured data is nontrivial. The main reasons behind
this finding include ignorance of structural information on
input and output domains and the occurrence of high-
dimensional structured data containing huge numbers of
features and labels. Current methods for learning from
structured data are also limited in handling large, isolated
substructures [90].

Apart from structured and unstructured data, some special-
ists use also the term semi-structured data. Semi-structured
data has characteristics of both structured and unstructured
data. These data are not structured using a relational database
model but they have elements of semantic markups that
enforce hierarchies assuring that some structure is kept [56].
An example of semi-structured data is also discussed in [91],
where conditions for learning from semi-structured data are
presented. An approach for learning from semi-structured

data was suggested in [92], where a genetic programming
algorithm for extraction of the multiple tree-structured
patterns from tree-structured data was proposed.

From the point of view of practical application, important
examples of structured data include time-series data, multi-
view data. When data is represented by multiple, distinct
feature sets one deals with the multi-view data and multi-
view learning. An excellent survey of the multi-view learning
approaches and algorithms can be found in [121].

Another important and challenging problem in data mining
is time-series classification. In time-series classification a
training dataset is a collection of pairs [Xi,Yi], where Xi could
either be a univariate or multivariate time series with Yi as
its corresponding label vector. Reviews related to time-series
classification can be found in [122] and [123].

The knowledge of the structural data model can determine
the learning process with respect to the decision on the
algorithm or tool which should be used or what learning
strategy should be applied to produce a strong and a high
generalized system, highly competent to deal with different
types of data, from numbers to textual format, from well-
defined structures to undefined ones. Hence, we consider
structural properties of data as an important dimension
of classification problems influencing learning processes.
On the other hand, we assume that quality of data is
not a dimension of classification problems. Cleansing data,
removing outliers, dealing with missing data, reducing data
and other imputation efforts, remain an important tasks at the
pre-processing stage.

To sum up this subsection, a general scheme for data view
is shown in Fig. 3, while a graphic representation of the
structural data model is proposed in Fig.4.
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FIGURE 3. Data view – a general scheme.

C. ATTRIBUTE VIEW
The traditional machine learning paradigm is based on
the processing of examples as multidimensional vectors of
attributes. Each attribute has a domain determined by the
attribute type. The domain of each attribute may be either
symbolic or numerical. The majority of the machine learning
algorithms deal with the following types of attributes [60]:
− Numerical (continuous) attributes - they take real or

integer values and can have an infinite number of states.
− Nominal attributes (also called categorical) - the values

are determined on a predefined set of possible values.
− Ordinal attributes - they are numeric or nominal, and

contain values that have a meaning in terms of ranking
or order.

− Discrete attributes – they have a finite or countably
infinite numerical or categorical value. In the case of the
domain consisting of two possible values for this type of
attribute, the attribute type is referred to as the binary.

− Complex attributes – they reach beyond a simple
attribute-value pair and can be represented by a more
complex structure like, for example, graphs [75].

Attributes belong to the qualitative, quantitative, or com-
plex types. Attribute view covering the instance (samples)
attributes in the supervised machine learning is presented
in Fig. 5.

The type of attributes characterizing the set of instances
(examples) may influence the choice of the machine learning
technique for solving a classification problem. Hence, in the
literature the different techniques of learning from examples
have been discussed including, for example, learning from
numeric data [62], learning with symbolic attributes [64],
learning problem with categorical data [63], learning from
spatial data [65], learning from ordinal data [68], learning
from collective data (bags of words or items) [66], learning
from discrete data [66], and learning from multidimensional
data [66], [67].

D. DATA SOURCE VIEW
The basic approach for solving classification problems
using machine learning techniques assumes that data remain
unchanged during the learning process, so means that are
static. Such kind of learning is called batch learning [75]
and learners are trained using a single batch of data.
Batch learning ignores all new data and focuses entirely on
previously learned concepts [69]. Batch learning relies on
the assumption that data coming from the data source has a
stationary distribution.

In numerous real-life applications, batch learning is
impossible or impractical. More and more often the size of
the available datasets outpace the capability of computational
hardware to analyze them. One method to deal with the
problem is applying so called incremental algorithms that
sequentially process chunks or packages of data one by one,
combining the results from each chunk. Data chunks can be
formed by the user to overcome problems with computational
resources or may come sequentially in a natural way from the
data source. Learning from the current chunk and modifying
the model after the prediction results have been revealed to
be ready for the next chunk, is called incremental learning,
and the data source producing a sequence of chunks is called
the incremental data source.

A special case of incremental learning is online learning.
Online learning is needed to deal with an endless stream of
received data like, for example, sensor data, currency rates,
stock market indexes, or video streams. In online learning,
the class label for the instance is predicted immediately
when this instance incoming and the true class label is
revealed afterward. In the next step, the incoming instance
is incorporated into the training data dataset. In such an
environment, learning is categorized as online learning [75]
and the data source as the online data source or data stream.
If the distribution of data from the data source

is not constant the domain is said to have a non-
stationary distribution. In this case, changes of the under-
lying data distribution known as the concept drift may
occur [72], [73].

Among challenges facing online learning, there is the
scalability of the learning process which should be ready to
learn from thousands of training examples. Almost at the
same time, there is a need to take classification decisions con-
sidering new data flowing into the system [78]. Another chal-
lenge is coping with the eventual concept drift and dynamic
character of the observed data source [70], [71], [74], which
requires timely and accurate drift detection mechanisms.
It should be noted that distribution changes may occur
not only in the feature space but also in class space,
or simultaneously, in both of these spaces [69]. Difficulties
should be also expected when the data stream used to induce
a learner is class imbalanced.

Many real-world problems involve data which are multi-
label data streams [49], [93]. The problem of multi-
label classification is characterized by unique properties
as compared with other types of classification problems.
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FIGURE 4. Graphic representation of the structural data model.

FIGURE 5. Attribute view - types of the instance attribute in the supervised machine learning.

A special feature of the multi-label data streams is that the
set of labels is not fixed at the outset and may change
during the learning. Besides, more than one label may
be assigned to incoming items during the classification
process. Examples of multi-label data streams include data
from different sensor applications, traffic management, web
exploration, manufacturing processes, as well as from the
social media networks, where a photo posted on Facebook
or Twitter might be labelled continuously and differently
by users [49]. Another example is the categorization of the
incoming mails, where each email may be relevant to a
thematic label, as well as to a label concerning confidentiality.
On the other hand, such labels may be correlated. Such labels
are called orthogonal [93]. A review of the multi-label data
streams learning algorithms can be found in [54], [93].

Data used to induce learners may be stored in one central
repository. Another possibility is physical and geographical
distribution of the data using, for example, cloud computing
technologies, so means that the distributed data sources are
considered [75].

Data stored in multiple separated sites may be homoge-
nous. In such case each site consists from instances defined
on the same set of attribute. When we have various sets of

attributes is different in these separated sites, then these stored
data are heterogeneous. Although some attributes among
the sites can be common. Of course these separated data
sets also may to have distinct structure (format differences,
semantic differences, etc.) [76], and could have been exposed
to horizontal and vertical data fragmentation [77].

E. PERFORMANCE CRITERIA VIEW
As it has been shown in Section II, classification prob-
lems belong to a wide class of optimization problems.
A performance criterion (performance measure) or a set of
criteria, cannot be considered as a feature of the particular
optimization problem since the choice of the criterion is
at hands of the user who carries out the optimization
process. Besides, it is usual that a problem can be solved
to optimum using different performance measures. The
above observations also hold for the classification problems.
Nevertheless, there exist a set of criteria that is commonly
used when solving classification problems using machine
learning techniques. Among measures belonging to this
set, one can list classification accuracy, classification error,
classification cost, sensitivity, specificity, the area under the
curve, F1 score, precision, recall, and many others [84].
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FIGURE 6. The landscape of decision problem factors influencing the supervised learning processes.

There are, however, classification problems where a
narrow range of possible performance measures is justified.
For example, in the case of the imbalanced data classification
problems, a meaningful set of criteria include, among others,
GeometricMean (G), Area Under the Curve (AUC), Balanced
Accuracy (BACC), and Mathews Correlation Coefficient
(MCC). Another example of the supervised classification
problems where specialized performance measures are
better suited than the standard ones is ordinal classifica-
tion. Cardoso and Sousa [120] discuss the problem and
propose a specialized criterion for measuring the perfor-
mance of ordinal classification named Ordinal Classification
Index (OCI).

The majority of studies on learning from data are focused
on a single-objective optimization, where the aim is to
optimize a single performance measure selected by the
user [80]. The problem of data classification can be also
formulated and solved as the multi-objective optimiza-
tion case. Solving multi-objective classification problems
using the machine learning techniques and the super-
vised learning paradigm has been studied, for example,
in [79], [81]–[84].

In subsections III.A to III.E we have discussed various fac-
tors and properties of the supervised classification problems
that may influence the learning process and could be decisive
in selecting an effective learning technique or algorithm.
In Fig. 6, the landscape of factors characterizing decision
problems and influencing the supervised learning processes
is shown.

IV. COMPLEXITY ISSUES
The complexity of the classification problems can be studied
in several aspects. One of them takes into account the

properties of the classifier induced from the available training
set. If such a classifier, that is the function h assigning
instances to a predefined set of decision classes, is linear
and, at the same time, its predictions assure the required
performance level, then the complexity of the classification
problem can be considered as a low one. In such a case,
finding a linear combination of features that characterizes or
separates two or more classes of objects is not a difficult task.
If, however, a linear discriminant function cannot be found or
it does not assure the required performance level then one has
to look for a non-linear function and the problem becomes
more complex [95].

Though there are so far only a few formal results reported
in the literature on the complexity of the machine learning
classification problems, some interesting ideas for the two-
class problems were suggested by Zhao and Wu in [95].
According to [95]: ‘‘if a two-class problem is not K-degree
linear separable, then we refer to it as a K-degree linear
non-separable two class problem’’, where K is the number
of hyperplanes needed to discriminate between each pair of
instances from different classes. Zhao and Wu in [95] further
state that: ‘‘a two-class problem has K-degree classification
complexity if it is K-degree linear separable but not (K-1)
degree linear separable’’. The proposed concept of the
classification complexity can be used to design a multi-layer
perceptron with the minimum required number of layers.

The classification complexity can be also seen as depend-
ing on both the feature space and the data size. Big sets of data
may cause an excessive demand for computational resources.
On the other hand, a small training set can appear deceptively
simple, however, when the cardinality of the set of attributes
of such training set is high the classification problemmay not
be easy to solve satisfactorily [94].
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Early studies on effects of dimensionality, sample size,
and structure of classification algorithm on misclassification
have concentrated on measures like use of probability
distance measure bounds, entropy measures, interclass dis-
tance measures, scatter matrices, information-theory-based
approaches, boundary methods, feature space partitioning
methods [44], [103].

Singh in [94] emphasized that the classification problem
complexity should be studied considering decision bound-
aries. He proposed two measures of classification complexity
based on feature space partitioning: purity and neighborhood
separability and compared them with probabilistic distance
measures and several other nonparametric estimates of
classification complexity.

In [96] the complexity of a discrimination problem has
been also discussed taking account of the data structure and
the number of data. The authors show that an incomplete
or sparse sample (relatively small data set) adds a level
of complexity, on the other words it means that when the
sample is too small the problem may appear only deceptively
simple. The small data effects are also considered in Vapnik’s
VC-dimension theory [97].

The classification complexity can be also evaluated
using the computational learning theory (CoLT). It allows
estimating potentials of learning algorithms for function
approximation and generalization [98]. The CoLT theory is
also related to the probably approximately correct (PAC)
learning. PAC learning provides a way to quantify the
computational difficulty of a machine learning task [99]. The
theory is concerned with binary classification, but it remains
valid for cases with more classes [100].

The problem of classification complexity is still considered
from several different perspectives. Among them, there
are these based on estimating the classification problem
complexity using different measures. These measures focus
on estimating the shape and size of the decision boundary
(like, for example in [101]), for binary as well as for
multiclass classification problems respectively (see, for
example, [101] and [102]). In [101] different complexity
measures have been divided into the following categories:
− Feature-based measures – used for characterizing how

the available features are informative for class separa-
tion.

− Linearity measures – used for deciding whether the
classes can be linearly separated.

− Neighborhood measures – used for describing the
presence and density of same or different classes in local
neighborhoods.

− Network measures – used for identifying structural
information in the dataset.

− Dimensionality measures - for evaluating data sparsity.
− Class imbalance measures.
Complexity measures may support various supervised

machine learning tasks including data preprocessing, design
of machine learning algorithms, and choice of the classifier,
adequately to features the available data [101].

V. NOTATION FOR IDENTIFICATION OF THE SUPERVISED
LEARNING CLASSIFICATION PROBLEMS
Apart from the classification problem complexity, a rational
choice of preprocessing tasks and, later on, the machine
learning technique or algorithm, requires identification of all
relevant features of the problem at hand. To make this task
easier we suggest using a special notation. The idea is inspired
by the notation introduced and used in the field of operations
research for scheduling problems [85].

A. COMPONENTS OF THE PROPOSED NOTATION
To identify a supervised classification problem we propose to
use the following 4-tuple of fields:

α | β | γ | δ,

where each field is a comma-separated string of symbols.
The first field, denoted α, represents the category view.

It consists of 4 subfields describing structure, cardinality,
scale, and the relation category – features. Symbols within a
field are separated by a colon. Unknown or undefined values
are replaced by ∗. The first subfield denotes the type of
structures and may include one of the following symbols:
- She – hierarchical structure of categories.
- S∗ - user-defined structure of categories.
- Uns – unstructured categories.
The second subfield denotes the cardinality of categories

and may include one of the following symbols:
- Unr – unary classification problem.
- Bin – binary classification problem.
- Mlc – multiple class classification problems.
The third subfield denotes the scale of categories and may

include one of the following symbols:
- I/R – interval/ratio scale.
- Orr – ordinal regular scale.
- Orm – ordinal monotonic scale.
- Nor– nominal regular scale.
- Nod – nominal dichotomous scale.
The fourth subfield denotes relation category - features and

may include one of the following symbols:
- Sil – single label problem.
- Mml – multi-label problem.
- Mdi – multi-dimensional problem.
- Mou – multi-output problem.
- Mtk – multi-task problem.
- Min – multi-instance problem.
- M∗ - user-defined relation category – features.
Example: Notation She:Mlc:I/R:Sil |∗|∗|∗ refers to a single

label, multiple class problem with the hierarchical structure
of categories that can be measured using interval/ratio scale.

The second field, denoted β, represents the data view. This
field contains three subfields. The first subfield describes
a structure model of data. The second described a data
distribution and the third data size. The first subfield may
include the following symbols:
- Sts – time series structured data.
- Smv – multi-view structured data
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- Sot – another type of structured data
- Ssd – semi-structured data.
- Und – unstructured data.
The second subfield may include the following symbols:
- Reg – regular distribution of data.
- Imb – imbalanced distribution of data.
The third field may include the following symbols:
- Rsi – regular data size.
- Big – big data size.
Example: Notation She:Mlc:I/R:Sil |Und :Reg:Rsi|∗|∗ refers

to a single label, multiple class problem with the hierarchical
structure of categories that can be measured using inter-
val/ratio scale. Besides, data are unstructured, with regular
distribution and regular size.

The third field of the proposed notation - γ , represents the
attribute type and contains two subfields. The first subfield
describes data type andmay consist of the following symbols:
- Noa – nominal attributes.
- Ora – ordinal attributes.
- Con – continuous attributes.
- Dis – discrete attributes.
- Umu – multidimensional attributes.
- Sym – symbolic attributes.
- Spt – spatial attributes.
- Mix – a mixture of types or unknown attribute types.
The second subfield describes the features of the data

source. It may contain one of the following symbols:
- Cen – centralised data repository or central repository.
- Ddis – distributed data repository
- Hom – homogenous data source.
- Het– heterogenous data source.
- Hor – horizontal fragmentation.
- Ver – vertical fragmentation.
- Inc– incremental data source. Data arrive in chunks.
- Stat – static data source. Data are available in batches.
- Sds – stationary data stream (stationary dynamic, station-
ary online data source). Data arrive one by one.

- Nds– nonstationary data stream (nonstationary dynamic,
nonstationary online data source, data with a concept
drift). Data arrive one by one.

- Dun – data stream of the unknown character (dynamic,
online data source of the unknown character). Data arrive
one by one.
Example:Notation She:Mlc:I/R:Sil |Und :Reg:Rsi|Con:Hom|

∗

refers to a single label, multiple class problem with the
hierarchical structure of categories that can be measured
using interval/ratio scale. Besides, data are unstructured,
with regular distribution and regular size. In addition,
data are continuous and come from a homogenous data
source.

The fourth field δ represents the performance criterion and
may contain one of the following symbols:
- Sin – single objective performance criterion.
- Mop – multiple objective performance criteria.

TABLE 2. Datasets used in the experiment reported in [93].

Example: Notation She:Mlc:I/R:Sil |Und :Reg:Rsi|Con:
Hom|Sin refers to a single label, multiple class problem with
the hierarchical structure of categories that can be measured
using interval/ratio scale. Besides, data are unstructured,
with regular distribution and regular size. In addition, data
are continuous and come from a homogenous data source.
The problem is to optimize a single objective performance
criterion.

B. EXAMPLE CASES
To illustrate how the proposed notation can be used to
describe the classification problem, several examples are
discussed in this subsection.
Example 1: To implement the machine learning system

for credit card fraud detection the following arbitrary
assumptions have been made:

− The system is expected to decide whether a credit card
transaction is fraudulent or not.

− The system will be used by more than one organization.
− Attributes of transactions are nominal, continuous,

discrete, and symbolic.
− On the whole, there will be many more non-fraudulent

transactions than fraudulent ones.
− Data sources are distributed.
− Transactional data from a stationary data stream.

For the considered case the following notation can be used:

She : Bin : I/R : Sil |Sts : Iim|Mix : Ddis : Hom : Sds|Sin

Example 2: In [93] the problem of multi-label stream
classification problem was considered. To deal with it a
Multiple Windows (MW) approach with a word bag model
and a single performance criterion was proposed. The
authors transformed the multi-label problem into multiple
binary problems and solved each problem independently. The
approach was validated using three large real-world multi-
label datasets as shown in Table 2.

Classification problems solved in [93] can be denoted,
using the proposed notation, as follows:

− tmc2007:
She: Mlc: Mml : I/R | Smv: Iim| Dis: Cen: Hom: Stat | Sin

− imdb:
She: Mlc: Mml : I/R | Smv: Iim| Dis: Cen: Hom: Stat | Sin

− rcv1v2:
She: Mlc: Mml : I/R | Smv: Iim| Con: Cen: Hom: Stat | Sin
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FIGURE 7. The number of publications and h-index for papers dedicated to different kinds of classification problems as of October 2021.

Example 3: In [91], the collective intelligence system
called RealTravel is discussed. The system has been designed
to work in an environment where:
− Data are distributed.
− Data are represented by different types, i.e. they are text,

numbers, photos, etc., i.e. are semi-structured, mixed,
and multidimensional.

− The system generates multi-class recommendations.
− Evaluation of the recommendation quality is carried-out

based on a multi-objective approach.
For the above case the notation can be as follows:

She : Mlc|Uud |Mix : Umu : Ddis|Mop

VI. THE RESEARCH EFFORT
To evaluate the research effort spent on the development
of models and tools designed for solving various types of
classification problems we show in Fig. 6 the number of
publications and their h-indexes as provided by Web of
Science and Scopus. From Fig. 7 it appears that binary
classification and multi-class classification problems have
been studied most intensively among all classification
problems.

VII. CONCLUSION
Two main contributions of the paper include:
− Offering a review of the current research effort in the

field of supervised learning covering various types of
classification problems tackled in the relevant literature.

− Proposing an original taxonomy for categorizing main
dimensions of the supervised learning classification
problems ordered by a category view, data view, attribute
view, data source view, and performance criteria view.

− Proposing a simple notation for identification of the
supervised learning classification problem categories.

The proposed taxonomy is based on the analysis of
factors relevant for constructing and solving the supervised
learning classification problems. The analysis of the machine
learning publications has enabled compiling the landscape
of decision problem factors influencing the supervised
learning processes. The proposed notation offers a concise
and coherent way to describe various supervised learning
classification problem types and their critical features.

The ultimate goal of both - the proposed taxonomy and
the notation, is to provide those interested in supervised
learning with a simple way to identify main factors that
have to be considered when looking for a method and a tool
for solving the particular supervised classification problem.
The proposed notation is open and can be further extended
taking into account new methods and techniques. It could
be also a starting point for constructing a decision support
system or recommender able to help a layman in the machine
learning field to select the proper method or tool for solving
his problems. Constructing such a system will be the focus of
future research.
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