
Received October 22, 2021, accepted November 2, 2021, date of publication November 8, 2021, date of current version November 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3126200

Efficient Search Over Encrypted Medical Data
With Known-Plaintext/Background Models
and Unlinkability
SHERIF ABDELFATTAH1, MOHAMED BAZA2, MAHMOUD M. BADR1,
MOHAMED M. E. A. MAHMOUD 1, (Senior Member, IEEE),
GAUTAM SRIVASTAVA 3,4, (Senior Member, IEEE), FAWAZ ALSOLAMI 5,
AND ABDULLAH MARISH ALI 5
1Department of Electrical & Computer Engineering, Tennessee Tech University, Cookeville, TN 38505, USA
2Department of Computer Science, College of Charleston, Charleston, SC 29407, USA
3Department of Mathematics and Computer Science, Brandon University, Brandon, MB R7A 6A9, Canada
4Research Centre for Interneural Computing, China Medical University, Taichung 404, Taiwan
5Department of Computer Science, King Abdulaziz University, Jeddah 21341, Saudi Arabia

Corresponding author: Mohamed M. E. A. Mahmoud (mmahmoud@tntech.edu)

This work was supported by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant
KEP-16-611-42.

ABSTRACT In advanced health care systems, patients’ medical data can be outsourced to cloud servers
to enable remote healthcare service providers to access and analyze patients’ data from any location to
provide better treatment. However, outsourcing sensitive medical data makes data owners, i.e., patients,
concerned about their privacy because private companies run the cloud service and the data can be accessed
by them. Therefore, it is important to encrypt the data in the form of documents before outsourcing them to
the cloud in a way that enables a data user, i.e., a doctor, to search over these documents without allowing
the cloud provider to learn any private information about patients. Several schemes have been proposed to
enable search over encrypted medical cloud data to preserve patient privacy, but the existing schemes suffer
from high communication/computation overhead because they are designed for a single-data-owner setting.
Moreover, they are not secure against known-plaintext/background and linkability attacks and do not allow
doctors to customize their search to avoid downloading irrelevant documents. In this paper, we develop an
efficient search scheme over encrypted data for a multi-data-owner setting. To secure our scheme, the cloud
server obtains noisy similarity scores and doctors de-noise them to download the most relevant documents.
Our scheme enables doctors to prescribe search conditions to customize the search without revealing the
conditions to the server. Our formal proof and analysis indicate that our scheme can preserve privacy and is
secure against known-plaintext/background and linkability attacks, and the results of extensive experiments
demonstrate the efficiency of our scheme compared to the existing works.

INDEX TERMS Security, privacy, e-health, searchable encryption schemes, cloud computing.

I. INTRODUCTION
Due to the cloud computing capability of storing large scale
databases [1], the patients’ medical data can be outsourced
to cloud servers through a high-speed cellular network, e.g.,
5G network and beyond [2], [3]. The cloud enables remote
healthcare service providers to access patients’ data from

The associate editor coordinating the review of this manuscript and

approving it for publication was Jerry Chun-Wei Lin .

any location to analyze this data using data mining [4]
and machine learning [5] techniques for providing better
treatment [6], [7].

Well-known examples for cloud-based health systems are
the national e-health infrastructures in Finland and Croa-
tia [8]. Also, the USA is widely implementing cloud-based
health services, and the market cap is expected to exceed $40
billion by 2026 [9]. However, outsourcing sensitive medical
data makes data owners, i.e., patients, concerned about their

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 151129

https://orcid.org/0000-0002-8719-501X
https://orcid.org/0000-0001-9851-4103
https://orcid.org/0000-0002-0396-1347
https://orcid.org/0000-0001-6676-7456
https://orcid.org/0000-0001-8768-9709

S. Abdelfattah et al.: Efficient Search Over Encrypted Medical Data

privacy because private companies run the cloud service and
the data can be accessed by them. For instance, over 113 mil-
lion clinical records were hacked in the US in 2015 [10].

Therefore, it is essential to encrypt the data in the form of
documents before outsourcing them to the cloud in a way that
enables a data user, i.e., a doctor, to search over these docu-
ments without allowing the cloud provider to learn any private
information about patients. To enable doctors to download
documents of interest without revealing any information to
the server, several schemes have been developed for searching
over encrypted data [11]–[15]. The idea is that patients attach
with each document an encrypted vector (called index) for the
keywords of the document. Then, a doctor encrypts a vector
(called trapdoor) that contains the keywords of the documents
he/she wants to download and sends it to the cloud server.
The server can compute the similarity score of an index and
a trapdoor without being able to learn their keywords and
returns to the doctor relevant documents.

Motivations. The existing schemes suffer from several
limitations.

Firstly, these schemes suffer from high communi-
cation/computation overhead and the need for a large
number of keys because they are designed for a single-data-
owner setting (one patient and multiple doctors). In medical
applications, a multi-data-owner setting (multiple patients
and multiple doctors) is more appropriate because a doctor
treats several patients, and thus he should be able to search
the documents of these patients efficiently. In the existing
schemes, a doctor needs to use a unique key for each patient to
be able to search his/her documents, which makes key man-
agement inefficient due to using many keys at the doctor’s
side.

Secondly, in the existing schemes, doctors cannot cus-
tomize their search scope to download only the documents
that achieve certain search conditions, which may result in
downloading irrelevant documents, and thus wasting com-
munication and computation resources. An example of a
search condition is laboratory reports with a certain issuance
date.

Thirdly, the existing schemes are vulnerable to known-
plaintext/background attacks and linkability. In the known
plaintext attack, an adversary can decrypt encrypted data
(indices and trapdoors) if he possesses a set of plain-
text/ciphertext pairs. In the known background attacks,
an adversary uses background (or statistical) information,
such as the frequency of keywords, to infer the keywords of
the documents by analyzing the frequency of downloading
these documents, which may reveal sensitive information
on the patients’ health condition. The existing schemes also
suffer from linkability attacks in which the server can link
the trapdoors (or indices) that have the same keywords. The
existing schemes try to thwart this attack by using random
numbers in the encryption so that two trapdoors having the
same keywords look different, but this is not enough because
the server can link the trapdoors by observing that they give
the same scores when they matched to all the documents.

TABLE 1. Comparison with the related works.

Contributions. To address the aforementioned limitations,
we propose EPSM: an Efficient and Privacy-preserving
Search over Medical cloud data with known plain-
text/background and unlinkability security. We provide a
formal proof and privacy analysis for EPSM to prove that our
scheme is secure and can preserve the privacy of the patients.
Moreover, we conduct extensive experiments to evaluate the
performance of our scheme and compare it to the existing
works. Specifically, the main contributions of this paper are
listed as follows:
• EPSM enables customized search in multi-data-owner
andmulti-data-user settings so that doctors can prescribe
search conditions in trapdoors to limit the search scope
to the documents that can satisfy the conditions, without
revealing the conditions to the server. In EPSM, the
cloud server computes noisy similarity scores for indices
and trapdoors and doctors de-noise them to download
themost relevant documents.Moreover, unlike the exist-
ing schemes, EPSM allows each doctor to use only one
key to search the data of all patients he treats.

• Our security analysis proves that EPSM is secure under
known plaintext/background models, and the cloud
server cannot link two trapdoors (or indices) that have
the same keywords.

• Extensive experiments are conducted, and the results
indicate that EPSM requires a low overhead compared
to the existing schemes.

The organization of this paper is as follows. The net-
work and threat models and design goals are presented in
Section III. In Section IV, the proposed EPSM is explained
in detail. Then, we analyze the security and privacy of EPSM
in Section V. In Section VI, we present the performance
evaluation of EPSM. Section II provides the related works.
Finally, conclusions are drawn in Section VII.

II. RELATED WORK
In this section, we review the relatedworks and compare them
to EPSM.

Song et al. [18] and Boneh et al. [19] have proposed secure
searchable symmetric encryption (SSE) schemes based on k

151130 VOLUME 9, 2021

S. Abdelfattah et al.: Efficient Search Over Encrypted Medical Data

FIGURE 1. EPSM network model.

nearest neighbour (kNN) technique. However, these schemes
are designed to support single keyword search over encrypted
data, which is very restrictive because searching docu-
ments need multiple keywords to give accurate results. The
schemes also suffer from high computation/communication
overheads.

Wang et al. [20] have proposed a ranked search scheme.
In this scheme, the cloud server executes the search pro-
cess and sends back only the topmost relevant documents
to the user. However, this scheme only considers the sin-
gle keyword search. Then, Cao et al. [11] have proposed
a privacy-preserving multi-keyword ranked search scheme.
This scheme has a limitation in that it does not consider the
keyword frequency, and this may result in inaccurate search
results.

Xia et al. [16] have proposed a searchable encryption
scheme for single-data-owner and multi-data-users setting.
The scheme assumes that the server knows the term frequency
of each keyword and it uses this background information to
guess the keywords of a trapdoor and an index from the simi-
larity score it computes. To thwart this attack, the server ranks
the documents using inaccurate similarity scores, but this
leads to inaccurate search results and downloading irrelevant
documents which may cause misdiagnosis by doctors. Also,
the proposed scheme is designed for a single-data-owner
setting which is not suitable for medical applications where
a doctor typically treats several patients and it is inefficient
to use single-data-owner schemes in a multiple-data-owner
setting as explained in Section VI.

Xiangya et al. [17] have proposed a privacy-preserving
keyword search scheme for single-data-owner and single-
data-user settings. This setting is not suitable for medical
applications that have multiple patients and multiple doctors.

To secure the scheme against the known plaintext model, the
server ranks the documents using inaccurate similarity scores
which may result in downloading irrelevant documents. Also,
there is a tradeoff between accuracy and security because
higher security is achieved by increasing the inaccuracy of
the similarity scores, but downloading wrong documents is
more likely.

Zhang et al. [14], have proposed a scheme for
multi-keyword ranked search. The scheme uses an additive
order function to retrieve the relevant search results. After
receiving a trapdoor from a search user, the cloud server
compares each encrypted keyword in the trapdoor with all
the keywords of each data owner. Then, the cloud server adds
all the document’s scores with all the matched keywords.
However, because of comparing the individual keywords in
the trapdoor with all the keywords, this scheme requires
high computation overhead. In [12], Li et al. have proposed
a searchable encryption scheme over medical cloud data.
To prevent linking the indices/trapdoors that have the same
keywords, the scheme uses random numbers in the encryp-
tion so that they look different even if they have the same
keywords. However, the scheme is designed for a single-
data-owner setting, and the cloud server can link trapdoors
(or indices) having the same keywords by observing that
they give the same scores when they are matched to the
documents’ indices (or doctors’ trapdoors).

We provide Table 1 to summarize the differences between
EPSM and the aforementioned schemes. Unlike the exist-
ing schemes, EPSM supports multi-data-owner and multi-
data-user settings. Also, EPSM enables a customized search
feature that allows doctors to customize their search results.
EPSM ensures the unlinkability of indices/trapdoors having
the same keywords and ensures that the indices (or trapdoors)

VOLUME 9, 2021 151131

S. Abdelfattah et al.: Efficient Search Over Encrypted Medical Data

TABLE 2. Main notations.

computed by a patient (or a doctor) cannot be decrypted
by other patients (or doctors). Our scheme is secure against
known plaintext and know background models.

III. SYSTEM MODELS AND DESIGN GOALS
In this section, we present the network and threat models and
design goals considered in this paper.

A. NETWORK MODEL
As shown in Fig. 1, the network model consists of four main
entities, including an offline key distribution center (KDC),
data owners (DO), data users (DU), and cloud server (CS).
The role of each entity and the communication model are
explained in this subsection.

• Offline key distribution center (KDC): The KDC is
an offline entity that is not involved in the searching
process. It computes and distributes the data owners’
and data users’ keys. The KDC can be run by the
health department that is interested in the security of the
system.

• Data owners (DO): The data owner is either a patient or
a hospital, and it manages the patient’s medical records.
For each document, DO outsources to the cloud server

an encrypted document, an encrypted vector containing
the keywords of the document (called index), and an
encrypted random number used in the index to mask the
similarity scores.

• Data users (DU): Data users include doctors, nurses,
pharmacists, researchers, etc. Each data user sends an
encrypted query (called trapdoor) containing the key-
words of the documents he wants to download from
the cloud server. The data user receives the documents’
noisy similarity scores, de-noises the scores, and sends
the identifiers of the documents with the highest similar-
ity scores to the cloud server to download them.

• Cloud server (CS): After receiving a trapdoor, the cloud
server computes the noisy similarity scores of the trap-
door and the index of each document (that achieves
the search conditions) and returns to the user the noisy
scores. Then, after receiving the identifiers of the docu-
ments requested by the data user, the cloud server sends
the documents.

In the rest of the paper, for simplicity, we will refer toDO and
DU as patients and doctors, respectively.

B. THREAT MODEL
In EPSM, the attacker can be the cloud server and eaves-
droppers. The cloud server is honest-but-curious, where it
follows our scheme correctly but it is curious to infer sensitive
information, such as the health condition of the patients,
by analyzing the data it receives [16], [20]–[26]. Specifically,
eavesdroppers can capture all the communications in the
system and analyze them to infer sensitive information. The
server should not be able to infer the keywords of the indices
and the trapdoors or link two given trapdoors (or indices) if
they have the same keywords or are sent from the same doctor.
Moreover, EPSM should also be secure against the following
attack models.

1) Known ciphertext model. In this model, the adver-
sary only knows the encrypted indices and trapdoors
[16], [27].

2) Known plaintext model. In this stronger model, the
adversary has a set of tuples of indices (or trapdoors)
and their corresponding plaintext keyword vectors.
Using these plaintext-ciphertext pairs, the adversary
may try to infer the keywords or the search conditions
of other indices and the trapdoors [24], [28].

3) Known background model. In this model, the adver-
sary possesses statistical information, such as the fre-
quency of some keywords (or search conditions), i.e.,
the probability of querying documents with certain
keywords. Using this information, the adversary tries
to identify the keywords and the search conditions of
the indices/trapdoors [16], [29].

C. DESIGN GOALS
To enable efficient and privacy-preserving search, EPSM
should achieve the following design goals.

151132 VOLUME 9, 2021

S. Abdelfattah et al.: Efficient Search Over Encrypted Medical Data

FIGURE 2. Overview for the oracles of EPSM.

(1) Customized Search. EPSM should enable doctors to
prescribe conditions in trapdoors so that the server returns
only the documents that can satisfy these conditions without
being able to learn the conditions.

(2) Security and Privacy Preservation. EPSM should pre-
vent the cloud server from inferring any information about
the content of documents, indices, and trapdoors. EPSM
should also be secure against the Known plaintext and known
background models so that the server cannot identify the
keywords or the search conditions of given indices/trapdoors.
Also, the trapdoors (and indices) that have the same keywords
and conditions or are sent from the same doctor should not be
linkable. The eavesdroppers should not be able to infer any
sensitive information.

(3) Scalability and Efficiency. EPSM should efficiently
support the search for a large number of patients/doctors
with a small number of keys for efficient key manage-
ment. It should also need low search time and computa-
tion/communication overhead.

IV. PROPOSED SYSTEM
EPSM consists of four phases. In the system initialization
phase, the KDC generates and distributes secret keys to
patients and doctors. In the index generation phase, for each
document, the patient composes the corresponding index and
encrypts the random number used tomask the similarity score
and outsources them to the cloud. In the trapdoor generation
phase, the doctor encrypts a vector containing the keywords
and search conditions of the documents he wants to download
and sends the ciphertext, called trapdoor, to the cloud server.
Finally, in the query matching phase, the server calculates
the noisy similarity scores of the trapdoor and the indices of
the documents that can achieve the search conditions. Then,
it returns to the doctor the noisy scores to de-noise them
and send to the server the identifiers of the documents he
wants to download, i.e., the documents that have the highest
scores. Finally, the cloud server returns to the doctor these
documents. Table 2 gives themain notations used in the paper.
Figure 2 shows an overview of EPSM

VOLUME 9, 2021 151133

S. Abdelfattah et al.: Efficient Search Over Encrypted Medical Data

A. SYSTEM INITIALIZATION
The KDC runs the following algorithms to compute the secret
keys of the patients and the doctors.
Setup(1m) −→ SK1,SK2: This algorithm takes the security

parameter 1m as an input and outputs twoKeysSK1 andSK2.
The first key is SK1 = {S,M1,M2,N1, . . . ,N8}, where,
S is a random binary vector of length (m + e + 2), and
{M1,M2,N1, . . . ,N8} are a set of random invertible matrices
of size (m+ e+ 2)× (m+ e+ 2), where m and e are the
sizes of the keywords and search conditions, respectively. The
second key is SK2 = {J ,V1,V2,U1, . . . ,U8}, where, J is a
random binary vector of length n and {V1,V2,U1, . . . ,U8}
are a set of random invertible matrices of size (n× n), where
n is the bit length of the random number the patient uses to
mask the similarity score.
KeyGenPatient(SK1,SK2,Pi) −→ SK1

Pi ,SK
2
Pi : For each

patient Pi, this algorithm outputs two secret keys SK1
Pi and

SK2
Pi . SK

1
Pi is used to encrypt the keyword vectors to calcu-

late the indices, and it is computed as follows:

SK1
Pi = {S, N−11 Ai, N

−1
2 Bi, N

−1
3 Ai, N

−1
4 Bi,

N−15 Ci, N
−1
6 Di, N

−1
7 Ci, N

−1
8 Di} (1)

where, {Ai,Bi,Ci,Di} are (m+ e+ 2)× (m+ e+ 2) matri-
ces of random numbers such that Ai + Bi = M−11 , and
Ci + Di = M−12 .
SK2

Pi is used to encrypt the randomnumberPi uses tomask
the similarity score, and it is computed as follows:

SK2
Pi = {J , U

−1
1 Oi, U

−1
2 Pi, U

−1
3 Oi, U

−1
4 Pi,

U−15 Ti, U
−1
6 Ri, U

−1
7 Ti, U

−1
8 Ri} (2)

where {Oi,Pi,Ti,Ri} are (n× n) matrices of random num-
bers such that Oi + Pi = V−11 , and Ti + Ri = V−12 .

Finally, the KDC sends SK1
Pi and SK

2
Pi to the patient Pi.

KeyGenDoctor(SK1,SK2,Dx) −→ SK1
Dx ,SK

2
Dx : For

each doctorDx , this algorithm outputs two secret keys SK1
Dx

and SK2
Dx . SK

1
Dx is used to encrypt the vectors of keywords

to compose trapdoors and it is computed as follows.

SK1
Dx = {S, ExN1, ExN2, FxN3, FxN4,

GxN5, GxN6, HxN7, HxN8} (3)

where, {Ex ,Fx ,Gx ,Hx} are (m+ e+ 2)× (m+ e+ 2)
matrices of random numbers such that Ex + Fx = M1, and
Gx + Hx = M2.
SK2

Dx is used to decrypt the random numbers of the
patients to de-noise the similarity scores, and it is computed
as follows.

SK2
Dx = {J , WxU1, WxU2, XxU3, XxU4,

YxU5, YxU6, ZxU7, ZxU8} (4)

where {Wx ,Xx ,Yx ,Hx} are (n× n) matrices of random num-
bers such thatWx + Xx = V1 and Yx + Zx = V2.
Finally, the KDC sends SK1

Dx and SK
2
Dx to the doctor.

B. INDEX GENERATION
To outsource a document, a patient Pi computes an index
and an encrypted random number and sends them to the
cloud server. To do so, the patient executes the following
algorithm.
CreateIndex(SK1

Pi ,SK
2
Pi ,V

′
i,j, ai,j) −→ IVij , Iai,j : This

algorithm takes as input the patient’s secret keys SK1
Pi and

SK2
Pi , a keyword vector V ′i,j corresponding to the document,

and a random number ai,j, and outputs the index of the
document (IVij) and the encrypted random number (Iai,j).

For a document j, Pi chooses a keyword set
{wi,j,1,wi,j,2, . . . } to generate an m-element keyword vec-
tor V ′i,j. Every element in V ′i,j contains the relevance score
of the TF-IDF (Term Frequency - Inverse Document Fre-
quency) [30], [31], which represents the significance of
keyword wi,j,k within the whole document collection, and it
is computed as follows.

TF − IDF(wi,j,k , di,j) = freqwi,j,k ,di,j ∗ log(
N

nwi,j,k
) (5)

where, the frequency of the keyword wi,j,k is freqwi,j,k ,di,j , N
represents the total number of keywords in the documents
set, and nwi,j,k is the total number of documents the keyword
appears in. Then, Pi chooses a random number ai,j for the
(m+1)−th element in the vector V ′i,j. After that,Pi composes
an (m+ e+ 2)-element vector Vi,j = V ′i,j||EFi,j, where EFi,j
has (e+ 1) elements for the search conditions. For example,
assuming that there is one condition on the issuance year,
an example for Vi,j is shown in Fig. 3. The figure shows that,
the element that represents the issuance year stores one (2021
in the figure) and the other elements store zeros. e elements
are used to represent the years and one element stores one all
the time. For simplicity, the figure shows the vector with one
condition, but the idea can be extended to include multiple
conditions.

Then, in order to encrypt Vi,j, Pi first splits it into two
column vectors v′ij and v

′′
ij using the secret S. So, for every

element in Vi,j, Pi checks the value of the corresponding
element in S. If it is zero, Pi sets the corresponding element
in v′ij and v′′ij with the same value of the element in Vi,j.
Otherwise, Pi chooses two random numbers for this element
in v′ij and v

′′
ij where their summation is equal to the value of

the corresponding element in Vi,j.

IVi,j =
[
N−11 Aiv′ij; N

−1
2 Biv′ij; N

−1
3 Aiv′ij;

N−14 Biv′ij; N
−1
5 Civ′′ij; N

−1
6 Div′′ij;

N−17 Civ′′ij; N
−1
8 Div′′ij

]
(6)

where, IVi,j is an 8(m + e + 2)-element column
vector.

Then, to encrypt the random number ai,j, Pi first splits it
into two column vectors a′i,j and a

′′
i,j using the secret J . So,

for every element in ai,j,Pi checks the corresponding element
in J . If it is zero, the corresponding elements in a′i,j and a

′′
i,j

are set to the same value of the element of ai,j. Otherwise, two

151134 VOLUME 9, 2021

S. Abdelfattah et al.: Efficient Search Over Encrypted Medical Data

Algorithm 1: Search Algorithm by the Cloud
Input: IQx,y,IVi,j and Iai,j
Output: 3 and the corresponding Iai,j

of each document
1 3 ← Scorelist()
// Scorelist is a list to hold the

scores of the matched documents
2 for j← 1 to numberofdocuments do
3 calculate the matching score
4 Score

(
Qx,y • Vi,j

)
← Match(IQx,y , IVi,j)

// where Score
(
Qx,y • Vi,j

)
is the dot

product noisy score of Qx,y and
Vi,j

5 if Score
(
Qx,y • V ′i,j

)
≥ maxscore then

6 ignore this index and continue
7 else
8 3 ←

Scorelist.Append(3, Score
(
Qx,y • Vi,j

)
)

9 end
10 end

Output: Send 3 and the
corresponding Iai,j of each
document to Dx

random numbers are chosen for this element in a′i,j and a
′′
i,j

where their summation is equal to the corresponding element
in ai,j. Finally, the encryption of ai,j (Iai,j) is computed using
SK2

Pi as follow.

Iai,j =
[
U−11 Oia′i,j; U

−1
2 Pia′i,j; U3−1Oia′i,j;

U−14 Pia′i,j; U
−1
5 Tia′′i,j; U

−1
6 Ria′′i,j;

U−17 Tia′′i,j; U
−1
8 Ria′′i,j

]
(7)

where, Iai,j is a column vector of size 8n.
Finally, for each document,Pi sends to the cloud server the

corresponding index IVi,j and the encryption of ai,j (Iai,j).

C. TRAPDOOR GENERATION
In this phase, to search for documents of interest, a doctor
composes a query (Qx,y) containing the keywords of interest
and search conditions, and then uses the following algorithm
to encrypt it and obtain the trapdoor IQx,y .
CreateTrapdoor(SK1

Dx ,Qx,y) −→ IQx,y : This algorithm
takes the doctor’s secret key SK1

Dx and the query vector Qx,y
as input, and computes the trapdoor IQx,y .
Firstly, the doctor Dx composes the m + e + 2-element

query vector Qx,y. The first m elements contain the keywords
of interest where each element stores one or zero to indicate
whether or not the corresponding keyword to the element
exists in the documents of interest. Specifically, Qx,y[k] =
1 if the doctor is interested in keyword k , and Qx,y[k] = 0 if
the doctor is not interested in the keyword. Then, a random
number bx,y is selected for the (m + 1) − th element. After

that, Dx uses the following e + 1 elements to prescribe the
search conditions as follows.

Qx,y[k] =

−c, if k ∈ F̄
g× c, if k = m+ e+ 2
0, other

(8)

where c is a random number that is greater than the maximum
noisy similarity score, F̄ ⊂ [m + 2,m + e + 1] is set of the
elements’ positions of the document issuance years that the
doctor wants to search, and g is the length of F̄ .
For example, if the doctor wants to search for the doc-

uments issued in 2021 and download them as shown in
Fig. 3c. He/she stores −c in the element corresponding to
2021, c in the last element, and zeros in the other elements.
Moreover, as illustrated in Fig. 3b, if the document is issued
in 2021, the patient stores one in the corresponding element
to 2021 and the last element and zero in the other elements
of the index vector. By doing so, if the condition is satisfied,
the dot product of the elements of the conditions in the index
and the trapdoor is equal to zero. Otherwise, it is c whose
value is greater than the maximum noisy similarity score.
So, if the noisy similarity score obtained by the cloud server
is greater than the maximum score, this indicates that the
document does not satisfy the search conditions, otherwise,
all the conditions are satisfied. For simplicity, Fig. 3 shows
only one condition, but it can be extended to add additional
conditions.
To encrypt the query vector Qx,y and obtain the trapdoor

IQx,y , Qx,y is first split into two row vectors q′xy and q
′′
xy using

the secret S, as follows. For every element inQx,y,Dx checks
the corresponding element in S. If it is one, the corresponding
element in q′xy and q

′′
xy are set to the same value of the element

of Qx,y. Otherwise, two random numbers are chosen for this
element in q′xy and q

′′
xy where their summation is equal to the

corresponding element in Qx,y. Finally, the trapdoor IQx,y is
computed using SK1

Dx as follow.

IQx,y =
[
q′xyExN1, q′xyExN2, q′xyFxN3, q′xyFxN4,

q′′xyGxN5, q′′xyGxN6, q′′xyHxN7, q′′xyHxN8

]
(9)

where IQx,y is an 8(m + e + 2)-element row vector. Finally,
Dx sends the trapdoor IQx,y to the cloud server.

D. QUERY MATCHING
In this phase, the cloud server computes the noisy similar-
ity score of the trapdoor and the index of each document
that achieves the search conditions without being able to
learn the real score. Then, the server sends to the doctor the
noisy scores and the encryptions of the random numbers the
patients used to mask the scores as indicated in Algorithm 1.
After that, the doctor de-noises the scores and sends to the
cloud server the identifiers of the documents he wants to
download. These documents include the ones that have high
similarity scores in addition to redundant documents that are
downloaded to protect against known-background attacks by

VOLUME 9, 2021 151135

S. Abdelfattah et al.: Efficient Search Over Encrypted Medical Data

FIGURE 3. An illustration for our customized search feature.

preventing the server from learning the documents of interest
and guessing the keywords of these documents. Finally, the
cloud server returns to the doctor the documents he requested.
The following algorithms are used in this phase.
Match(IQx,y , IVi,j) −→ NoisyScore: This algorithm takes a

trapdoor IQx,y and an index IVi,j as input, and produces the
noisy similarity score of Qx,y and Vi,j by computing the dot
product (IQx,y • IVi,j).
Theorem 1: The server can obtain the noisy similarity

score of indices and trapdoors using dot product operation.
Proof:

IQx,y • IVi,j = q′xyExAiv
′
ij + q

′
xyExBiv

′
ij + q

′
xyFxAiv

′
ij

+ q′xyFxBiv
′
ij + q

′′
xyGxCiv

′′
ij + q

′′
xyGxDiv

′′
ij

+ q′′xyHxCiv
′′
ij + q

′′
xyHxDiv

′′
ij

= q′xy(Ex + Fx).(Ai + Bi)v
′
ij

+ q′′xy(Gx + Hx).(Ci + Di)v
′′
ij

= q′xyM1M
−1
1 v′ij + q

′′
xyM2M

−1
2 v′′ij

= Qx,y • Vi,j (10)

If all the search conditions prescribed in the trapdoor are
satisfied, Qx,y • Vi,j = KeywordScore + ai,jbx,y, which gives
the noisy similarity score that is equal to the similarity score
of the keywords part in vectors Vi,j and Qx,y (KeywordScore)
masked by the random number ai,jbx,y, where ai,j is added
by the patient in the document index and bx,y is added by the
doctor in the trapdoor. If at least one condition is not satisfied
Qx,y • Vi,j = KeywordScore + ai,jbx,y + c and by selecting
c to be greater than the maximum noisy similarity score, the
server can learn that the document does not achieve at least
one condition and it should discard the document. Finally,
for each document that achieves the doctor’s conditions, the
cloud server returns to the doctor the noisy similarity score

and the encryption of the random number ai,j (Iai,j) used by
the patient to mask the similarity score.

For each document, the doctor decrypts Iai,j to obtain ai,j
using the algorithm DecryptRandomNumber(). Then, using
this random number and his trapdoors’ random number bx,y,
the doctor de-noises the noisy scores (by subtracting ai,jbx,y)
to obtain the real scores. Then, the doctor sends to the cloud
server the identifiers of the documents he wants to download,
i.e., the documents that have the highest scores. The doctor
should also download redundant documents to protect against
known-background attacks by preventing the server from
learning the documents of interest and guessing the keywords
of these documents. Finally, the cloud server returns to the
doctor these documents.
DecryptRandomNumber(SK2

Dx , Iai,j) −→ ai,j: This algo-
rithm takes the doctor’s secret key SK2

Dx and the encrypted
random number Iai,j , and outputs the random number ai,j. The
algorithm multiplies SK2

Dx by Iai,j to obtain a′i,j and a
′′
i,j, and

then the splitting vector J is used to obtain ai,j as follows.
For each element k th in J , if J [k] is one, a′i,j[k] and a

′′
i,j[k] are

added to obtain ai,j[k], while if J [k] is zero, then set ai,j[k] is
equal to a′i,j[k] or a

′′
i,j[k].

Theorem 2: The doctor can decrypt the encrypted random
number Iai,j by multiplying it by SK2

Dx .
Proof:

(WxOia′i,j)+ (WxPia′i,j)+ (XxOia′i,j)+ (XxPia′i,j)

= (Wx + Xx).(Oi + Pi)a′i,j
= V1V

−1
1 a′i,j

= a′i,j (11)

similarly,

a′′i,j = (YxTia′′i,j)+ (YxRia′′i,j)+ (ZxTia′′i,j)+ (ZxRia′′i,j) (12)

V. SECURITY AND PRIVACY ANALYSIS
Our formal proof of the security/privacy-preservation of our
scheme follows the logic and model presented in [32]. The
goal of the proof is to prove that the cloud server can compute
the noisy similarity score of an index and a trapdoor without
revealing their keywords and search conditions. We will also
prove that external attackers cannot reveal the keywords and
search conditions. The server and external attackers cannot
also learn the similarity scores of the indices and trapdoors.
Preposition 1: The cloud server can calculate the noisy

similarity score of an index and a trapdoor without being able
to learn the keywords or the search conditions.

Proof:
History. The history consists of two sets, including a set

of n indices corresponding to the documents of patients
(IV =

{
IVi,1 , IVi,2 . . . , IVi,n

}
, for each patient Pi generated by

encrypting a set of keywords vectors V =
{
Vi,1,Vi,2 . . . ,Vi,n

}
)

and a set of u trapdoors corresponding to the doctors’ queries
(IQ =

{
IQx,1 , IQx,2 , . . . , IQx,u

}
, for each doctor Dx generated by

encrypting a set of queries vectors Q =
{
Qx,1,Qx,2, . . . ,Qx,u

}
).

151136 VOLUME 9, 2021

S. Abdelfattah et al.: Efficient Search Over Encrypted Medical Data

Trace. A trace Trace(H) represents the information of the
history H that is deduced by the cloud server, e.g., from the
search patterns.
View. The view W (IV , IQ,Trace(H)) has the encrypted

history and its trace and it is the observation of the server.
A simulator S can produce a fake viewW ′ that is indistin-

guishable from the original viewW by executing these steps.
Step 1: S generates the secret key sk ′ = SK′.
Step 2: S generates a set of random documents D′ =
{d ′1, . . . , d

′
n} such that |di| = |d ′i |, 1 ≤ i ≤ n, d ′i =

{w1,w2, . . . }, where |d ′i | is the number of keywords in d
′
i .

Step 3: S generates a set of queries as Q′ ={
Q′x,1,Q

′

x,2, . . . ,Q
′
x,u

}
, where Q′ is a random copy of Q.

Step 4: S generates a set of keyword vectors (V ′) which is
a random copy of V , where V ′ =

{
V ′i,1,V

′

i,2 . . . ,V ′i,n
}
.

Step 5: S generates indices I ′V and trapdoors I ′Q using the
secret sk ′.
From the previous construction, EPSM is indistinguish-

able and secure if S has a trace Trace(H ′) of the history
H ′ = (I ′V , I ′Q) that is similar to the original trace Trace(H)
such that in no probabilistic polynomial time, an adver-
sary can differentiate between the original view W (IV , IQ)
and the fake view W (I ′V , I ′Q) with non-negligible advan-
tage, where the correctness of the construction implies this
conclusion.
Preposition 2: EPSM ensures that adversaries can not

reveal any keyword or search condition from trapdoors
and/or indices, i.e., EPSM is secure in the known-ciphertext
model.

Proof: In EPSM, the confidentiality of the indices
and trapdoors is protected using encryption. For each
patient/doctor, the matrixM is split into two randomly chosen
matrices which are multiplied by another matrix N , and thus,
no patient/doctor can reconstruct the matrixM . This is impor-
tant because by knowingM , adversaries can compute the key-
words or the search conditions from the indices or trapdoors.
Thismeans that the keywords and the conditions are protected
in the known-ciphertextmodel because no information can be
leaked about them.
Preposition 3: EPSM ensures that the indices (or trap-

doors) computed by a patient (or a doctor) cannot be
decrypted by other patients (or doctors).

Proof: If all patients (or doctors) share the same key,
then the indices (or the trapdoors) computed by a patient
(or a doctor) can be decrypted by other patients (or doc-
tors). Thus, patients’ sensitive information, e.g., their health
condition, can be revealed by other patients. To avoid this
problem in EPSM, each patient/doctor has a unique key, and,
despite using different keys to encrypt the indices/trapdoors,
the cloud server is still able to obtain the dot product of the
keyword and query vectors and obtain the noisy similarity
score.
Preposition 4: EPSM is secure against known-plaintext

model if the random numbers ai,j and bx,y of each index and
trapdoor are not known by the adversary.

Proof: Under the known-plaintext model, the adversary
possesses a set of plaintexts (keyword vector and queries)
and their ciphertexts (indices and trapdoors). The adversary
tries to use this set to attack the encryption scheme, e.g.,
by decrypting a new ciphertext. Most of the existing schemes
are not secure against the known-plaintext model because the
server can learn the similarity score, by calculating the dot
product of an index and trapdoor. Therefore, if an index has
n elements (i.e., n unknowns), the server needs n trapdoors
(with known plaintexts) to create n linear equations and solve
them to compute the n elements of the index. To protect
against this attack in our scheme, the server does not know
the similarity score. It only knows noisy similarity score (real
score+ ai,jbx,y). The random numbers ai,j and bx,y are known
only to the patient and doctor. The patients should use a differ-
ent ai,j for each index and doctors should use a different bx,y
in each trapdoor, so that ai,jbx,y is always different even if the
same query is usedmultiple times. By reusing ai,j and bx,y, the
server can subtract two equations to cancel the term ai,jbx,y
and obtain the difference between the two scores, and thus the
server can create enough number of equations to obtain the
keyword vector of an index. Therefore, by changing ai,jbx,y
continuously, the server cannot have enough number of equa-
tions to solve because ai,jbx,y introduces a new unknown.
Similarly, for the same reasons explained, the server cannot
create equations to decrypt trapdoors.
Preposition 5: EPSM ensures that the cloud server or

an external eavesdropper cannot identify the keywords and
the conditions of the documents/trapdoors under the known
background model.

Proof: In the known background attacks, an adversary
uses background (or statistical) information, such as the fre-
quency of keywords, to infer the keywords of the documents
by analyzing the frequency of downloading these documents,
which may reveal sensitive information on the patients such
as their diseases. To protect against this attack in our scheme,
the server should not know the real frequency of download-
ing documents, and this is done by downloading redundant
documents (that do not have the highest similarity scores)
by the doctors, and because of hiding the similarity scores
of the documents in our scheme, the server cannot identify
these redundant documents.
Preposition 6: EPSM ensures unlinkabilty of indices/

trapdoors sent from the same patient/doctor or having the
same keywords and search conditions.

Proof: The existing schemes suffer from linkability
attacks in which the server can link the trapdoors (or indices)
that have the same keywords. They try to thwart this attack
by using random numbers in the encryption so that two
trapdoors (or indices) having the same keywords look dif-
ferent. However, this is not enough because the server can
link two trapdoors (or indices) by observing that they give
the same similarity scores when they are matched to a set
of indices (or trapdoors). EPSM ensures that the encrypted
indices/trapdoors that have the same keywords or are sent
from the same patients/doctors look different because of

VOLUME 9, 2021 151137

S. Abdelfattah et al.: Efficient Search Over Encrypted Medical Data

FIGURE 4. Computation overhead.

using random numbers in splitting the vectors Vi,j and Qx,y.
Moreover, our scheme also hides the similarity score from
the server using the random numbers ai,j and bx,y. Therefore,
by computing the noisy similarity scores by a server for two
trapdoors with the same keywords, the scores look different
due to using different bx,y in the two trapdoors.

VI. PERFORMANCE EVALUATION
In this section, we compare the performance of EPSM with
the existing schemes.

A. EXPERIMENT SETUP AND METRICS
1) EXPERIMENT SETUP
To evaluate the communication and computation overheads
of EPSM, we have performed our experiments using python
running on an Intel R© Core i7-8700 CPU @3.20GHz
and 16 GB RAM. The computation and communication over-
heads of EPSM are compared to the proposed schemes in [12]
and [16] after using them in a multi-data-owners setting.
All the results presented in this section are averaged over
1000 trials for 2,000 documents, 10 patients, 10 doctors, and
2 bytes for each element in the ciphertext vector.

2) PERFORMANCE METRICS
Three performance metrics are used for the comparison and
assessment of our scheme.

(1) Computation overhead. The time needed by patients/
doctors to generate indices/trapdoors to be sent to the
server. Also, the time needed to calculate the similarity
score by the cloud server to search the documents.

(2) Communication overhead. The amount of data
transmitted during the communication between the
patients/doctors and the server.

(3) Key management. The number of a doctor’s keys that is
used to search all the documents of all patients.

B. EXPERIMENT RESULTS
1) COMPUTATION OVERHEAD
Fig. 4a gives the computation overhead of generating
indices/trapdoors versus the number of keywords. The figure
shows that the computation overhead increases as the num-
ber of keywords increases due to increasing the size of the
matrices and vectors. In EPSM, because of supporting the
multi-data-owners setting, each patient generates one index
for each document and the doctor needs to generate only one
trapdoor to search over the documents of all patients. Also,
the same computation time is needed to generate the indices
and the trapdoors because their vectors have the same size.
It can also be seen from the figure that EPSM ismore efficient
compared to [12] and [16], because to use these schemes
in a multi-data-owners setting, the doctor needs to calcu-
late one trapdoor for each patient to be able to search their
documents.

Fig. 4b gives the time needed to calculate the similarity
score by the cloud server versus the number of keywords.
As shown in the figure, the computation overhead needed to
calculate the similarity score increases as the number of key-
words increases because the vector size increases. The figure
also shows that EPSM needs less time than [12] and [16].
Although EPSM increases by a higher rate because it needs
eight dot product operations to support a multi-data-owner
setting, the computation time is low (in ms) even with a high
number of keywords (2000).

2) COMMUNICATION OVERHEAD
In EPSM, each patient sends an index (IVi,j) for each doc-
ument. The overhead is |IVi,j |, where |IVi,j | is the size of
the index. If each element in the ciphertext is represented
by 2 bytes, the ciphertext size in our scheme becomes
16(m + e + 2) bytes. Similarly, the trapdoor vector size
is 16(m + e + 2) bytes. Fig. 5 gives the index/trapdoor

151138 VOLUME 9, 2021

S. Abdelfattah et al.: Efficient Search Over Encrypted Medical Data

FIGURE 5. Communication overhead.

FIGURE 6. Number of doctor’s keys versus the number of patients.

communication overhead versus the number of keywords.
It can be seen that the communication overhead increases
linearly with the number of keywords due to increasing the
vector size. Moreover, the schemes [16] and [12] need more
overhead compared to EPSM because they need to extend
the vectors by the maximum possible number of documents
before encrypting them, and the doctor needs to sendmultiple
trapdoors that are equal to the number of patients to search
their documents but in our scheme, only one trapdoor is sent
to search the data of all patients.

3) KEY MANAGEMENT
Fig. 6 gives the number of a doctor’s keys versus the number
of patients. As shown in the figure, in EPSM, each doctor has
only one key that is used to search all the documents of all
patients. However, in [16] and [12], because the schemes are
designed for a single-data-owner setting, each doctor needs to
share a key with each patient. In most E-health applications,
a doctor typically treats several patients, so multi-data-owner
is a proper setting. The figure shows that the number of keys

of a doctor increases linearly with the number of patients.
Using many keys in the system makes key management inef-
ficient.

VII. CONCLUSION
In this paper, we have proposed, EPSM, an efficient and
secure search scheme over encrypted medical cloud data in a
multi-data-owner setting. To secure EPSM, the could server
cannot learn the similarity scores of indices and trapdoors,
but it computes noisy scores and sends them to the doctor to
de-noise them. Moreover, EPSM enables a new feature that
allows doctors to customize their search results by express-
ing search conditions in the trapdoors. Our formal proof
and security analysis demonstrates that EPSM can preserve
patient privacy and is secure against known plaintext and
know background models. Also, EPSM ensures the unlinka-
bility of indices/trapdoors having the same keywords. Finally,
our extensive experiments demonstrate that EPSM requires
low computation and communication overheads and a small
number of keys because it is designed for a multi-data-owner
setting which is more suitable for medical applications. For
future work, we will investigate denial of service (DoS)
attacks against the centralized server. Specifically, we will try
to replace the central server with a blockchain network. Also,
we will investigate the use of machine learning technology to
diagnose diseases in e-health systems.

ACKNOWLEDGMENT
The authors, therefore, acknowledge with thanks DSR for
technical support.

REFERENCES
[1] J. C.-W. Lin, Y. Djenouri, and G. Srivastava, ‘‘Efficient closed high-

utility pattern fusion model in large-scale databases,’’ Inf. Fusion, vol. 76,
pp. 122–132, Dec. 2021.

[2] M. M. Badr, M. M. Fouda, and A. S. T. Eldien, ‘‘A novel vision to mitigate
pilot contamination in massive MIMO-based 5G networks,’’ in Proc. 11st
Int. Conf. Comput. Eng. Syst. (ICCES), Dec. 2016, pp. 366–371.

[3] J. C.-W. Lin, G. Srivastava, Y. Zhang, Y. Djenouri, and M. Aloqaily,
‘‘Privacy-preserving multiobjective sanitization model in 6G IoT environ-
ments,’’ IEEE Internet Things J., vol. 8, no. 7, pp. 5340–5349, Apr. 2020.

[4] J. C.-W. Lin, Y. Djenouri, G. Srivastava, U. Yun, and P. Fournier-Viger,
‘‘A predictive GA-based model for closed high-utility itemset mining,’’
Appl. Soft Comput., vol. 108, Sep. 2021, Art. no. 107422.

[5] Y. Shao, J. C.-W. Lin, G. Srivastava, D. Guo, H. Zhang, H. Yi, and
A. Jolfaei, ‘‘Multi-objective neural evolutionary algorithm for combinato-
rial optimization problems,’’ IEEE Trans. Neural Netw. Learn. Syst., early
access, Sep. 2, 2021, doi: 10.1109/TNNLS.2021.3105937.

[6] A. M.-H. Kuo, ‘‘Opportunities and challenges of cloud computing to
improve health care services,’’ J. Med. Internet Res., vol. 13, no. 3, p. e67,
Sep. 2011.

[7] S. A. Alansari, M. M. Badr, M. Mahmoud, and W. Alasmary, ‘‘Effi-
cient and privacy-preserving contact tracing system for COVID-19 using
blockchain,’’ in Proc. IEEE Int. Conf. Commun. Workshops (ICC Work-
shops), Jun. 2021, pp. 1–6.

[8] P. D. Raeve. The World of Cloud-Based Services: Storing Health
Data in the Cloud. Accessed: Aug. 2021. [Online]. Available: https://
www.healtheuropa.eu/cloud-basedservices-storing-health-data-in-the-
cloud/93053/

[9] Healthcare Cloud Computing Market to Hit U.S.$ 40 Bn by 2026.
Accessed: Aug. 2021. [Online]. Available: https://www.globenewswire.
com/news-release/2019/05/08/1819458/0/en/Healthcare-Cloud-
Computing-Market-to-Hit-U.S.-40-Bn-by-2026.html

VOLUME 9, 2021 151139

http://dx.doi.org/10.1109/TNNLS.2021.3105937

S. Abdelfattah et al.: Efficient Search Over Encrypted Medical Data

[10] Record Compromised. Accessed: Aug. 2021. [Online]. Available:
https://dashboard.healthit.gov/quickstats/pages/breaches-protected-
health-information.php

[11] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, ‘‘Privacy-preserving multi-
keyword ranked search over encrypted cloud data,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 1, pp. 222–233, Jan. 2014.

[12] H. Li, Y. Yang, Y. Dai, S. Yu, and Y. Xiang, ‘‘Achieving secure and efficient
dynamic searchable symmetric encryption over medical cloud data,’’ IEEE
Trans. Cloud Comput., vol. 8, no. 2, pp. 484–494, Apr. 2020.

[13] Y. Yang, X. Liu, R. H. Deng, and Y. Li, ‘‘Lightweight sharable and
traceable secure mobile health system,’’ IEEE Trans. Dependable Secure
Comput., vol. 17, no. 1, pp. 78–91, Jan. 2017.

[14] W. Zhang, S. Xiao, Y. Lin, T. Zhou, and S. Zhou, ‘‘Secure ranked multi-
keyword search for multiple data owners in cloud computing,’’ in Proc.
44th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw., Jun. 2014,
pp. 276–286.

[15] W. Zhang, Y. Lin, S. Xiao, J. Wu, and S. Zhou, ‘‘Privacy preserving ranked
multi-keyword search for multiple data owners in cloud computing,’’ IEEE
Trans. Comput., vol. 65, no. 5, pp. 1566–1577, May 2016.

[16] Z. Xia, X. Wang, X. Sun, and Q. Wang, ‘‘A secure and dynamic multi-
keyword ranked search scheme over encrypted cloud data,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 2, pp. 340–352, Jan. 2015.

[17] W. Xiangyu, J. Ma, M. Yinbin, X. Liu, and Y. Ruikang, ‘‘Privacy-
preserving diverse keyword search and online pre-diagnosis in cloud com-
puting,’’ IEEE Trans. Services Comput., early access, Dec. 16, 2020, doi:
10.1109/TSC.2019.2959775.

[18] D. X. Song, D. Wagner, and A. Perrig, ‘‘Practical techniques for searches
on encrypted data,’’ in Proc. IEEE Symp. Secur. Privacy (S P), May 2000,
pp. 44–55.

[19] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, ‘‘Public
key encryption with keyword search,’’ in Eurocrypt, vol. 3027. Cham,
Switzerland: Springer, May 2004, pp. 506–522.

[20] C. Wang, N. Cao, K. Ren, and W. Lou, ‘‘Enabling secure and efficient
ranked keyword search over outsourced cloud data,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 23, no. 8, pp. 1467–1479, Aug. 2011.

[21] C. Yang, W. Zhang, J. Xu, J. Xu, and N. Yu, ‘‘A fast privacy-preserving
multi-keyword search scheme on cloud data,’’ in Proc. Int. Conf. Cloud
Service Comput., Nov. 2012, pp. 104–110.

[22] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li, ‘‘Privacy-
preserving multi-keyword text search in the cloud supporting similarity-
based ranking,’’ in Proc. 8th ACM SIGSAC Symp. Inf., Comput. Commun.
Secur. (ASIA CCS), 2013, pp. 71–82.

[23] R. Li, Z. Xu, W. Kang, K. C. Yow, and C.-Z. Xu, ‘‘Efficient multi-keyword
ranked query over encrypted data in cloud computing,’’ Future Gener.
Comput. Syst., vol. 30, no. 1, pp. 179–190, Jan. 2014.

[24] Z. Fu, F. Huang, K. Ren, J. Weng, and C.Wang, ‘‘Privacy-preserving smart
semantic search based on conceptual graphs over encrypted outsourced
data,’’ IEEE Trans. Inf. Forensics Security, vol. 12, no. 8, pp. 1874–1884,
Aug. 2017.

[25] H. Li, Y. Yang, T. H. Luan, X. Liang, L. Zhou, and X. S. Shen, ‘‘Enabling
fine-grained multi-keyword search supporting classified sub-dictionaries
over encrypted cloud data,’’ IEEE Trans. Depend. Sec. Comput., vol. 13,
no. 3, pp. 312–325, May/Jun. 2015.

[26] J. Yu, P. Lu, Y. Zhu, G. Xue, andM. Li, ‘‘Toward secure multikeyword top-
k retrieval over encrypted cloud data,’’ IEEE Trans. Dependable Secure
Comput., vol. 10, no. 4, pp. 239–250, Jul./Aug. 2013.

[27] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis, ‘‘Secure KNN
computation on encrypted databases,’’ in Proc. Int. Conf. Manage. Data,
2009, pp. 139–152.

[28] Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang, ‘‘Enabling personalized search
over encrypted outsourced data with efficiency improvement,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 9, pp. 2546–2559, Sep. 2016.

[29] S. Zerr, D. Olmedilla, W. Nejdl, and W. Siberski, ‘‘Zerber+R: Top-k
retrieval from a confidential index,’’ in Proc. 12nd Int. Conf. Extending
Database Technol. Adv. Database Technol. (EDBT), 2009, pp. 439–449.

[30] J. Beel, B. Gipp, S. Langer, and C. Breitinger, ‘‘Paper recommender
systems: A literature survey,’’ Int. J. Digit. Libraries, vol. 17, no. 4,
pp. 305–338, Nov. 2016.

[31] J. Zobel and A. Moffat, ‘‘Exploring the similarity space,’’ in ACM SIGIR
Forum, vol. 32, no. 1. New York, NY, USA: ACM, 1998, pp. 18–34.

[32] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ‘‘Searchable symmet-
ric encryption: Improved definitions and efficient constructions,’’ J. Com-
put. Secur., vol. 19, no. 5, pp. 895–934, Jan. 2011.

SHERIF ABDELFATTAH received the B.S. and
M.S. degrees in electronics and communications
engineering from Arab Academy for Science,
Technology and Maritime Transport (AASTMT),
Alexandria, Egypt, in 2012 and 2016, respectively.
He is currently pursuing the Ph.D. degree with the
Department of Electrical & Computer Engineer-
ing, Tennessee TechUniversity, USA. FromMarch
2018 to August 2019, he worked as a Researcher
with the Polytechnic University of Turin, Italy.

He is also a Graduate Research Assistant with the Department of Elec-
trical & Computer Engineering, Tennessee Tech University. His research
interests include machine learning, cryptography and network security, and
privacy-preserving schemes for smart healthcare systems.

MOHAMED BAZA received the B.S. and M.S.
degrees in electrical and computer engineering
from Benha University, Egypt, in 2012 and 2017,
respectively, and the Ph.D. degree in electrical
and computer engineering from Tennessee Tech
University, Cookeville, TN, USA, in December
2020. From August 2020 to May 2021, he worked
as a Visiting Assistant Professor with the Depart-
ment of Computer Science, Sam Houston State
University, Huntsville, TX, USA. He is currently

an Assistant Professor with the Department of Computer Science, College
of Charleston, SC, USA. He also has more than two years of industry
experience in information security at Apache-Khalda Petroleum Company,
Egypt. He is the author of numerous papers published in major IEEE confer-
ences and journals, such as IEEE Wireless Communications and Network-
ing Conference (IEEE WCNC), IEEE International Conference on Com-
munications (IEEE ICC), IEEE Vehicular Technology Conference (IEEE
VTC), IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY (TVT), IEEE TRANSACTIONS ON

NETWORK SCIENCE AND ENGINEERING, and IEEE SYSTEMS JOURNAL. He served as
a Reviewer for several journals and conferences, such as IEEE TRANSACTIONS

ONVEHICULARTECHNOLOGY, IEEE INTERNETOFTHINGS JOURNAL, and the journal
of Peer-to-Peer Networking and Applications. His research interests include
blockchains, cyber-security, machine learning, smart-grid, and vehicular ad-
hoc networks. He was also a recipient of the Best IEEE Paper Award in
the International Conference on Smart Applications, Communications and
Networking (SmartNets 2020).

MAHMOUD M. BADR received the B.S. and
M.S. degrees in electrical engineering from Benha
University, Cairo, Egypt, in 2013 and 2018,
respectively. He is currently pursuing the Ph.D.
degree with the Department of Electrical & Com-
puter Engineering, Tennessee Tech University,
TN, USA. He is holding the position of Lecturer
Assistant at the Faculty of Engineering at Shoubra,
Benha University. He is also a Graduate Research
Assistant with the Department of Electrical &

Computer Engineering, Tennessee Tech University. He has been selected
as the Poster Winner in Tennessee Tech University’s Annual Research and
Creative Inquiry Day, in 2021. His research interests include machine learn-
ing, blockchain, cryptography, 5G networks, network security, and smart
grids.

151140 VOLUME 9, 2021

http://dx.doi.org/10.1109/TSC.2019.2959775

S. Abdelfattah et al.: Efficient Search Over Encrypted Medical Data

MOHAMED M. E. A. MAHMOUD (Senior
Member, IEEE) received the Ph.D. degree from
the University of Waterloo, in April 2011. From
May 2011 to May 2012, he worked as a Postdoc-
toral Fellow with the Broadband Communications
Research Group, University of Waterloo. From
August 2012 to July 2013, he worked as a Visiting
Scholar with the University of Waterloo, and a
Postdoctoral Fellow at Ryerson University. He is
currently an Associate Professor with the Depart-

ment of Electrical and Computer Engineering, Tennessee Tech University,
USA. He is the author of more than 120 papers published in leading IEEE
conferences and journals. His research interests include security and privacy-
preserving schemes for smart grid communication networks, blockchain,
machine learning, cloud security, and e-health. He has received the NSERC-
PDF Award. He won the Best Paper Award from several IEEE conferences.
He serves as an Associate Editor for IEEE INTERNET OF THINGS Journal and
Peer-to-Peer Networking and Applications journal (Springer).

GAUTAM SRIVASTAVA (Senior Member, IEEE)
received the B.Sc. degree from Briar Cliff Uni-
versity, USA, in 2004, and the M.Sc. and Ph.D.
degrees from the University of Victoria, Victo-
ria, BC, Canada, in 2006 and 2012, respectively.
He then taught for three years at the Department of
Computer Science, University of Victoria, where
he was regarded as one of the top undergrad-
uate professors in the computer science course
instruction at the university. In 2014, he joined a

tenure-track position at Brandon University, Brandon, MB, Canada, where
he is active in various professional and scholarly activities. He was promoted
to the rank of Associate Professor, in January 2018. He is active in research
in the field of data mining and big data. In eight years of academic career,
he has published a total of 200 papers in high-impact conferences in many
countries and high-status journals (SCI, SCIE) and has also delivered invited
keynote guest lectures on big data, cloud computing, the Internet of Things,
and cryptography at many International universities. His research is funded
by federal grants from the Natural Sciences and Engineering Research
Council of Canada (NSERC) and Mathematics of Information Technology
and Complex Systems (MITACS).

FAWAZ ALSOLAMI received the M.A.Sc. degree
in electrical and computer engineering from the
University of Waterloo, Canada, in 2008, and the
Ph.D. degree in computer science from KAUST,
Thuwal, Saudi Arabia, in 2016. He joined the
Computer Science Department, King Abdulaziz
University, as an Assistant Professor of computer
science. He has been the Chairperson of the Com-
puter Science Department, King Abdulaziz Uni-
versity, since 2018. His research interests include

artificial intelligence, machine learning and data mining, and combinatorial
optimization.

ABDULLAH MARISH ALI received the B.Sc.
degree in computer science from Al-Mustansiriya
University, Baghdad, Iraq, the M.Sc. degree in
computer science from King Abdulaziz Uni-
versity (KAU), Jeddah, Saudi Arabia, and the
Ph.D. degree in computer science from Universiti
Teknologi Malaysia (UTM), Malaysia. He is cur-
rently an Assistant Professor with the Department
of Computer Science, Faculty of Computing and
Information Technology, KAU. His research inter-

ests include cloud computing, software agents, data mining, information
retrieval, machine learning, and cyber security.

VOLUME 9, 2021 151141

