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ABSTRACT An underwater sensor network (UWSN) is a wireless network that is deployed in oceans,
seas, and rivers for real-time exploration of environmental conditions. The network is used to measure
temperature, pressure, water pollution, oxygen level, volcanic activity, floods, and water streams. Although
radio frequency (RF) is widely utilized in wireless networks, it is incompatible with the UWSN environment;
therefore, other communication mechanisms have been employed to manage the underwater wireless
communication among sensors, such as acoustic channels, optical waves, or magnetic induction (MI). Unlike
terrestrial wireless sensor networks, UWSNs are dynamic, and sensors move according to water activity.
Therefore, the network topology changes rapidly. One of the most critical challenges in UWSNs is how
to collect and route the sensed data from the distributed sensors to the sink node. Unfortunately, the direct
application of efficient and well-established terrestrial routing protocols is not possible in UWSNs. In this
work, a balanced routing protocol based on machine learning for underwater sensor networks (BRP-ML)
is proposed that considers the UWSN environmental characteristics, such as power limitations and latency,
while considering the void area issue. It is based on reinforcement learning (Q-learning), which aims to
reduce the network latency and energy consumption of UWSNs. The communication technique in the
proposed protocol is based on the MI technique, which has many advantages, such as steady and predictable
channel response and low signal propagation delay. The simulation findings validated that BRP-ML reduced
latency by 18% and increased energy efficiency by 16% compared to QELAR.

INDEX TERMS Underwater sensor network, routing protocol, reinforcement learning, network lifetime.

I. INTRODUCTION
Underwater sensor networks (UWSNs) have recently
attracted industry and research community attention due to
their broad application areas, such as resource discovery, dis-
aster avoidance, auxiliary navigation, and military purposes.
Actually, underwater acoustics is not new. It was first studied
in the early 1800s, and the first practical applicationwas in the
early 1900s [1]. It was used on ships to increase navigational
safety and receive bell signals. Then, between the 1920s and
1930s, researchers started understanding the basic concepts
of underwater sound. By the Second World War, the United
States had equipped its ships with communication systems to
determine seabed depth and detect objects miles away [2].

Consequently, the necessity of using UWSNs has emerged.
A UWSN is a wireless network that utilizes a set of sensors
and autonomous underwater vehicles (AUVs) to collect and
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sense data underwater. These underwater sensors deliver the
data to a surface sensor (sink node) directly or indirectly.
Then, the data are transmitted from the sink nodes to an
offshore monitoring center (base station) for analysis and
study of the collected data. UWSNs are a hot research
area because of their numerous applications. A practical
underwater acquisition technique must be studied with the
increasing demands for environmental marine surveillance,
exploration of marine resources, scientific marine research,
and marine protection. UWSNs have become a popular
research field due to their significance to the community.
These networks can be applied in different fields, such as the
following:

1) Monitoring: UWSNs can be used to monitor the
quality of water. [3] and [4] proposed implementing sensor
networks to monitor water quality. Additionally, UWSNs
are used for exploration purposes such as natural resources.
The marine life environment can also be monitored by
UWSNs.
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2) Disaster prediction: UWSNs can be used to predict
floods, volcanic activity, and earthquakes.

3) Military and surveillance applications: UWSNs can be
used to secure port facilities, communicate with submarines,
and detect mines [5].

4) Underwater localization: UWSNs can provides naviga-
tion assistance to vessels and explorers [6].

5) Underwater sports: UWSNs can be used for sensing
parameters of swimmers such as velocity, which is utilized
for further analysis.

Underwater environments are known to be harsh
environments due to several factors, such as water movement,
varying temperatures, and salinity [7]. Since establishing
a connection through a UWSN is a challenging task,
researchers have used other communication technologies
for UWSNs, such as optical waves, acoustic waves,
and electromagnetic (EM) waves. Each communication
approach has different characteristics; therefore, choosing
the appropriate technology is critical in creating an
efficient UWSN [8]. Acoustic communication is the most
popular technique; however, this method has several
shortcomings, such as long transmission delays, strongly
dependent channel behavior on the environment, and low
data rates.

Marine studies motivated scientists to research UWSNs.
However, many challenges face this type of network. The
speed of sound underwater is 1500 m/s, which is much
slower than that of regular radio waves, which causes
large propagation delays [9]. In addition, the underwater
environment is dynamic, which complicates the network
topology. The sensors are operated by batteries that are hard
to recharge or replace. Thus, energy consumption must be
managed to extend the network lifetime. Furthermore, there
are other challenges that face UWSNs, such as routing,
limited bandwidth, high error rate, and node localization [7].
Additionally, the void region issue is a primary concern that
must be consideredwhen designing a routing protocol. A void
region is a region where nodes have drained their batteries
or that lacks any nodes at all. These challenges make it
difficult to apply typical terrestrial sensor network protocols
in UWSNs.

In this paper, a balanced routing protocol based onmachine
learning for UWSNs (BRP-ML) is proposed, which works
in four phases: the initialization phase, discovery phase,
clustering phase, and data forwarding phase. Q-learning
is used in the data forwarding phase, where routing is
performed. Q-learning is a model-free reinforcement learning
algorithm that approximates the optimal policy without
knowing the model [10]. Moreover, within the clustering
phase, another unsupervised learning algorithm is used
to divide the nodes into clusters. Clustering extends the
network lifetime and balances the energy consumption.
A modified version of K-means is applied to the 3D network
to cluster the nodes. K-means is a partitioning clustering
algorithm. The magnetic induction (MI) technique is used as
a communication method due to its benefits.

The rest of this paper is organized as follows: section II
conducts a literature review of existing routing protocols
designed for UWSNs. Section III provides a theoreti-
cal background of machine learning, including reinforce-
ment learning, the Markov decision process (MDP), and
Q-learning. In addition, it provides a review of underwater
communication methods and energy models. Section IV
describes the details of the BRP-ML methodology, including
the clustering and routing processes, policy, and reward
function. Section V discusses the simulation results and
analysis performed to test the approach. It also includes
the results of comparing our approach with other routing
protocols. Section VI concludes the paper and suggests future
work.

II. LITERATURE REVIEW
Recently, UWSNs have attracted the attention of researchers
due to the widespread demand for understanding the
underwater environment. In [11], a Q-learning-based routing
protocol (QELAR) was suggested to extend the lifetime of
acoustic UWSNs. In this protocol, each node exchanges its
metadata with neighboring nodes. When a packet is sent, the
node attaches the metadata with the packet. Then, other nodes
can overhear the traffic, extract the metadata, and drop the
packet if it is not the eligible forwarder. If the receiver node is
the eligible forwarder, it will calculate the Q-value and select
the next forwarder. The QELAR reward function depends
on the residual energy only, which means that it will always
choose nodes with the highest residual energy regardless of
the delay cost. Therefore, if the number of nodes increases,
longer paths with a greater number of hops will be created,
which causes more delay and energy consumption. This
protocol also provides a mechanism to detect transmission
failure.

[12] proposed a machine learning (QDAR)-based routing
algorithm to extend the lifetime of UWSNswhile considering
the delivery latency. Two types of packet structures are used
in QDAR: the data-ready packet and the interest packet. The
data-ready packet is transmitted from the source node to
the sink node containing the node’s necessary information.
Moreover, the interest packet is transmitted from the sink
node to the source node to determine the routing path. The
algorithm consists of five phases. The first phase is the data-
ready phase, where the node’s data are collected to plan the
routing path, which is where the data-ready packet is sent.
The source node sends a broadcast to the sink node requesting
a routing path. The second phase is the routing decision
phase, where the QDAR algorithm determines the routing
path. The third phase is the interest phase, where the sink
node sends the interest packet to the source node following
the output path of the QDAR algorithm. The fourth phase
is the package forwarding phase, where data are sent from
the source node to the sink node according to the set path.
The final phase is the acknowledgment phase, where path
reliability is checked. If the source node does not receive
an acknowledgment (ACK) message, it returns to the first
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phase. Otherwise, it loops between the fourth and fifth phases.
Once the path is determined, the following packets coming
from the same node follow the same path until the path fails.
In the simulation, the latency was reduced compared with
other routing protocols, but the network lifetime was reduced
to achieve latency reduction. This unexpected behavior was
caused by using a mechanism that allowed the source node to
use the same route repeatedly until failure, which caused node
exhaustion, leading to a reduction in the network lifetime.

In [13], the study aimed to increase the network lifetime
and decrease the transmission delay by using MI. According
to transmission time and energy consumption, reinforcement
learning (Q-learning) is applied to create multihop paths.
Only one node can send data at a time for its cluster head.
There are two algorithms used to apply the protocol. The
first proposed algorithm goes through the initialization phase
to initialize some variables. Then, it enters a loop where it
computes an H-table for each node that determines the next
possible hops. If the node has accessible hops, it will compute
the Q-table values and the reward based on the distance-
based path (Dhop) and energy-based path (Ehop). Finally,
it updates the Q-table and the Q-value for the next state, while
the second proposed algorithm is used to find an optimal path.
The suggested algorithm outperformed the other algorithms
in terms of energy consumption, throughput, and lifetime
performance. In contrast, the transmission delay was not very
low. A higher throughput was expected since the data rate was
higher withMI communication. The results of the simulations
were compared with acoustic-based protocols, which tend
to have low propagation speed and high latency. Then, the
transmission delay was higher, as expected.

[14] considered an underwater optical network that suffers
from a low delivery ratio and high energy consumption.
It suggested using a multiagent reinforcement learning
protocol (MARL) to consider more information exchange
among nodes. It was assumed that a single-agent approach
would focus only on its state, causing the residual energy to
be unevenly distributed in the network. Furthermore, since
the network used optical communication, the data link was
more vulnerable than acoustic links. Thus, the link quality
was considered while designing this protocol. The protocol
works as follows: first, it initializes the routing table and
sends a broadcast packet periodically every communication
routing step to determine the states of the neighboring nodes
and update the routing table. Then, it calculates the reward
function based on the link quality of the possible next hop
and all nodes’ residual energy. After that, it updates the Q-
value and V-value and then tries to choose the next hop with
the highest V-value. In the simulation, MARL used a small
number of relay nodes, which reduced the convergence time.
Although the proposed protocol offered less broadcast time
and stronger adaptability to water dynamics, it chose a fast
route that caused more energy consumption.

[15] focused on extending the network lifetime and
balancing the residual energy of nodes while solving the
void node problem. In this protocol, each node is considered

an agent. Moreover, the node’s behavior must be optimized
according to the reward function. The suggested reward
function attempts to increase the network lifetime and balance
the consumption of energy. To solve the void node problem,
this study used a mechanism called the adjacent node
technique (ADN) to choose a trained and optimal node that
is near the source node. Each node that faces the void
problem should select another optimal path that maximizes
and satisfies its reward function. After using Q-learning, the
performance is enhanced in terms of the energy tax. The
energy consumption has been reduced even with a large
network radius. However, the network lifetime has decreased
when using the ADN mechanism.

In [16], the authors proposed Q-learning combined with
a deep neural network (DQELR) to consider multiple
metrics, such as network lifetime, node mobility, globally
optimal paths, energy consumption, and end-to-end latency,
in underwater acoustic sensor networks. It adopted two
kinds of neural network training on routing decisions:
off-policy routing and on-policy routing. The off-policy
(offline) training is executed before the network is deployed
underwater, where the network topology and node state are
known and saved into an experience pool. Then, after the
network is deployed underwater, on-policy (online) training
starts. The experience pool of the off-policy training is used
in the on-policy training to help make better decisions. Each
node must store neighbor information and its Q-values with
every neighbor, depth, residual energy, and the parameter
variation (w) of the neural network. DQELR uses an
asynchronous strategy to update w, meaning that when a new
loss value is found, w is not updated instantly. The old value
of w is stored and accumulated with the loss gradient and
updated after a particular time, which archives the neural
network noncorrelation input requirement. The multilayer
perceptron model used in the suggested protocol consists
of an input layer, an output layer, and three hidden layers.
The hyperbolic tangent (tanh) function is implemented as
the activation function. In the simulation, DQELR achieved
a high energy efficiency and network lifetime. In terms
of end-to-end latency, it was higher than other protocols.
Additionally, its packet delivery ratio was higher than those
of other protocols for a low packet generation rate (λ).
By increasing the value of λ to 0.05, the packet delivery rate
of DQELR decreases compared to those of other protocols.
In the proposed protocol, each node can send packets, which
causes more frequent packet collisions. Consequently, this
improves the network efficiency only for low values of λ.

In [17], a Q-learning-aided ant colony routing protocol
(QLACO) was proposed, which differs from the other
work because it used ant colony optimization (ACO) with
reinforcement learning. The path is selected based on the
reward function and the critical ants. The architecture of the
network is composed of several surface sinks, many sensor
nodes, and several AUVs. The AUV travels and gathers the
data from the sensors. Routes are discovered by artificial ants,
and then the Q-table is updated. There are two main concepts
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introduced in this phase: forward ants (FANTs) and backward
ants (BANTs). Each node periodically maintains a Q-table
by sending FANTs and broadcast messages. The next hop of
packets chosen by FANTs should satisfy the highest Q-value.
FANTs collect destination node information before reaching
the node location. As a result, the sink has an overview of
the network to determine the optimal path. Finally, FANTs
change to BANTs when reaching the destination node and
return to the source node. The data of all nodes located
on the return path are collected to calculate the Q-value by
BANTs. Then, the reward function is calculated based on
residual energy, time delay, and transmission delay. QLACO
was compared with two approaches based on measuring
time delay, delivery ratio, and energy consumption in the
simulation. The overall performance of QLACO was better
than that of the QELAR and the depth-based protocol (DBR).
However, the QLACO did not mention how the AUVs fit in
the algorithm and how the tasks are distributed among them.

Although the discussed algorithms achieve good perfor-
mance, there remains room for improvement. Moreover,
to overcome the limitations and find the appropriate balance
between energy consumption and delay, this study proposes
an efficient machine learning-based routing protocol. This
study considers the void region issue while enhancing
the performance of 3D UWSNs by using MI underwater
communications, which is a new promising technology. The
suggested protocol uses two machine learning algorithms
that are utilized for clustering and routing. An unsupervised
machine learning algorithm is applied for clustering, and
reinforcement learning is applied for routing. The protocol
is partitioned into four phases, which makes it adaptive
and flexible. The performance analysis is conducted through
simulations and experiments. The simulation results show
that BRP-ML can achieve high delivery rates, shorter delays,
and a longer network lifetime.

III. BACKGROUND
The UWSN architecture basically consists of sensor nodes
(underwater or at the water surface), sink nodes, and AUVs
if they exist. There can be one or more sink nodes.
If the network has multiple sinks, then sensing nodes have
alternative paths along which they can send data packets. The
sensor node architecture contains a managing energy unit and
power supply, CPU, communication module that applies the
used communication method, sensing module, data storage
used to store the sensed data, and depth control component,
which is a measuring system [18].

A. COMMUNICATION METHOD
MI is based on Faraday’s law of induction using two wired
coils to interchange data [19]. The modulated sinusoidal
current in the transmitting coil (TC) initially generates a
magnetic field that changes with time (time-varying) in space,
from which the sinusoidal current in the receiving coil (RC)
is then induced accordingly. The data are subsequently
recovered by demodulating the mediated current. There is

no need to equip a power source with MI communications
at the receiver. To transmit the data, the magnetic field must
be altered according to the waveforms where the data are
delivered. The coils’ radiation resistance is far less than that
of the electric dipole. In other words, only a small amount
of energy is radiated across the channel. Therefore, in MI
waves, multipath fading is not a concern. In addition, the
MI magnetic permeability above water is the same as that
underwater and is not affected by water quality, which often
changes with the region, time, and depth. Thus, the MI
channel behavior is more predictable and steadier than the
previously mentioned techniques [20].

Because MI waves travel much faster than acoustic
waves, MI waves significantly enhance the underwater
communication delay efficiency and provide timely data
transmission. A shorter delay improves the design and
deployment of underwater communication protocols such
as localization, routing, and medium access control (MAC).
In addition, the synchronization of the physical layer between
wireless devices is reliable and more accessible due to the
stable channel response and the slight delay of the MI waves.
Moreover, MI waves work by using unseen and unheard
waves [21]. Consequently, it facilitates energy-saving and
secure communication between wireless devices that can
serve military and civil objectives and other applications.

Therefore, MI can be utilized for many underwater appli-
cations, such as long-term underwater monitoring, military
purposes, disaster detection, and gas or oil leakage detection.
Table 1 illustrates a summary comparing optical, acoustic,
EM, and MI technologies based on several characteristics.

To accomplish energy-efficient underwater communica-
tion, an accurate MI channel model must be built. The energy
consumptionmodel contains twomain parts: transmitting and
receiving power. Since MI communication is used, the MI
transmitter is modeled as the primary coil and theMI receiver
as the secondary coil of a transformer. The primary coil works
at a low frequency and aims to increase the field strength
and enhance the magnetic moment. The power used in the
primary coil loop is equivalent to the transmitting power, and
the power used in the load impedance is equivalent to the
receiving power [22]. The transmitting power Pt for a single
hop is the real part of the complex number from (1):

Pt (r) = Re{
U2
s

Zt + Z ′t
} (1)

The notations used in the equations of this section are
defined in Table 2. The receiving power for a single hop
depends mainly on the data processing power plus the receive
power, where the energy consumption Erecive per receive is
expressed as [23]

Erecive =
L(Pr + Ptrans)

αmB(l)
(2)

The delay for each packet in a single hop is [23]

Thop =
L

αmB(l)
+
Dnm
S

(3)
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TABLE 1. Underwater communication technology comparison.

Since our method follows a multihop path, the distance
between the source node n and the destination node (sink

node) is the sum of distances in between (Dns =
k∑
i=1

Dnmi).

Then, the total delay is the sum of multiple single-hop delays
T(Dns) and the queuing delay [13]:

Ttotal =
L

αmB(l)
+
Dns
S
+ C ∗ h (4)

Table 2 shows the definitions of the notations used in the
previous equation. Note that the equations mentioned in this
section are used in the simulations for energy consumption
calculations.

B. INTELLIGENT ROUTING PROTOCOLS
Routing in UWSNs is a challenging issue. There are special
methods of routing applied only in terrestrial wireless
networks. These routing methods are based on reinforcement
learning, ACO, fuzzy logic, genetic algorithms, or neural
networks [24].

1) REINFORCEMENT LEARNING-BASED METHOD
This is the most popular method applied for UWSNs,
as discussed in the previous section. Reinforcement learning
is implemented easily and adaptable to topology variations.
This is the main reason why it is the most common method
used for distributed problems.

TABLE 2. Power equations notations.

2) ACO-BASED METHOD
The ACO algorithm imitates an ant’s behavior, where each
ant leaves a trace after it walks that makes the coming
ants follow the most visited path [17]. This method is
a common routing solution for solving wireless sensor
networks. However, balancing convergence and avoiding
prematurity must be considered when applying this method.

3) FUZZY LOGIC-BASED METHOD
In traditional logic, an element value can be represented by
1 or 0, where 1 is true and 0 is false. In fuzzy logic, an element
can be partially true or false by a certain value between 0 and
1 [25]. This method can be applied to routing optimization
and achieve multiple criteria simultaneously. However, it can
produce nonoptimal solutions and cannot easily adapt to
topology variations.

4) GENETIC ALGORITHM-BASED METHOD
The genetic algorithm is an approach used to solve con-
strained and nonconstrained optimization problems using
natural selection [26]. This method uses a fitness function
to obtain a value that represents the solution efficiency.
It can work with multiple objective optimization problems,
but it is computationally expensive and requires many
resources.

5) NEURAL NETWORK-BASED METHOD
A neural network is a set of algorithms that attempts to detect
a relationship between data based on a procedure that mimics
how the human brain works. Neural networks consist of three
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types of layers: input, hidden, and output layers. Flexibility
and scalability are the main features of neural networks when
applied to UWSNs. In addition, it can work with multicriteria
objectives. However, it is known to be a computationally
expensive and time-consuming approach [16].

C. REINFORCEMENT LEARNING
Machine learning is a system that learns from data and
produces a model that predicts outcomes over time [27].
Machine learning is a subfield of artificial intelligence.
Reinforcement learning is a machine learning model training
method to perform actions and choices. The difference
between reinforcement learning algorithms and classic
dynamic programming is that reinforcement learning targets
large MDPs and does not assume the exact MDP mathemat-
ical model. Figure 1 demonstrates the classic reinforcement
learning framework.

FIGURE 1. Reinforcement learning framework [28].

a) Reward Rt: This is a numerical value that is received by
the agent for taking action to move from one state to another
in the environment [29].

b) Policy π : This defines the agent’s behavior at a given
time.

c) Discount factor (rate) γ : This factor is used in the future
cumulative reward (return) equation to define the return for
infinite series [30].

d) Agent: The agent’s goal is to obtain a policy π that maps
states to actions optimizing any long-run reinforcement mea-
sure. At a given time t, the agent observes the environment,
and using some policy, it decides how to take action [31].
Then, it selects an action from a set of available actions. After
that, the environment replies by a reward or a penalty and
moves to a new state St+1. The agent tries to take actions
that achieve the highest total reward (value or return). As a
function of history, the agent can select any action andmodify
the following policy. It repeats until it reaches the optimal
policy.

e) The Bellman equation is useful for reinforcement
learning to obtain the value of the current state by knowing
the value of the next state. This information assists in finding
the optimal Q-function q∗ and therefore finding π∗, where
Q(s, a) is the expected return starting from state s by selecting
action a following π , Rt is the total expected reward for
following π in state s selecting action a, and maxaQ(s′, a′) is
the maximum expected discounted return for any s′ selecting
action a′.

D. Q-LEARNING
Q-learning is an off-policy learner that learns the optimal
policy value without the use of the agent’s action. The process
of updating the Q-values repeatedly for every state-action
pair with the use of the Bellman equation until the equation
becomes the optimal Q-function is known as value iteration.
The Q-values are stored in the Q-table. To choose the right
action, a balance must be struck between exploration and
exploitation. The epsilon greedy strategy is used to find that
balance. When ε = 1, the action taken depends only on the
exploration, and as new episodes come, ε decreases. ε is
usually updated when an episode finishes. A random number
is generated between 0 and 1 to determine whether the agent
chooses exploitation or exploration at each time step [32].
A reward function is derived from the Bellman equation.
After several iterations, this function converges to the optimal
Q-function (Q∗) [33].

Qt+1 (st , at) = Qt (st , at)+ κ(rt+1
+ γ maxa Qt (st+1, a)− Qt(st , at)) (5)

where κ is the learning rate. It represents a value between
0 and 1 that defines the extent to which the new Q-value
overrides the old Q-value. The agent adapts quickly to the
new Q-value if the learning rate is high.

The process of the Q-learning algorithm is iterative. The
basic steps that it follows begin by creating the Q-table. The
learning rate, discount rate, number of episodes, number of
steps in each episode, and epsilon must be initialized to a
specific value. Then, an action is chosen based on what was
explained in the previous sections. After that, the reward is
calculated, and the Q-table is updated using the Q-function.
The algorithm repeats the steps except for creating theQ-table
until the episode finishes.

IV. METHODOLOGY
One of the most critical challenges in UWSNs is how to
collect and route the sensed data from the distributed sensors
to the sink node. This protocol suggests efficient routing
that considers UWSN environmental characteristics, such as
power limitations and latency. This can be achieved following
a machine learning method that applies reinforcement
learning-based (Q-learning) routing that reduces the network
latency and energy consumption of UWSNs. The BRP-ML
method aims to route the sensed data from the source node
to the sink node using a route that consumes less energy
and less delay, which is the route that has the maximum
Q-value. The design of the proposed routing protocol
consists of four phases: initialization phase, discovery phase,
clustering phase, and data forwarding phase.

A. INITIALIZATION PHASE
In this phase, the nodes are deployed in their configured
locations, and the necessary initializations are set, such as
the routing tables, Q-tables, node locations, and initial node
energy.
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B. DISCOVERY PHASE
In this phase, each node sends broadcast messages to other
nodes to update their tables. This information exchange is
useful for the clustering phase and the data forwarding phase.
Each node that receives a broadcast message calculates the
distance between the sending node and itself.

C. CLUSTERING PHASE
In the clustering phase, the optimal number of clusters is
chosen, and then the nodes are clustered using a suggested
clustering algorithm. Cluster head and edge node selection
are performed in this phase. Again, a broadcast message must
be used to inform the other nodes about the clustering results.
Although this could be considered communication overhead,
it is necessary for dynamic topologies. This information
exchange could decrease unnecessary data forwarding and
balance the energy consumption among nodes.

D. DATA FORWARDING PHASE
After the clustering process, each node knows its cluster ID
and its type, whether it is a normal node, cluster head, or edge
node. When a normal node has sensed data, it transmits
the sensed data to the cluster head, and then the cluster
head transmits them to one of the other cluster heads to
receive a reward. The reward is calculated using the equations
discussed in section IV, and the Q-values in the Q-table are
updated. Based on the updates, the node chooses a route using
a policy. The void area mechanism (VAM) is applied in this
phase to address the void area problem. When the cluster
head has collected all data from its cluster’s nodes, it can
transmit them to another cluster head, edge node, or sink
node. It chooses the node that has the highest Q-value. The
edge node assists the sink node in reducing the load on the
cluster head by making the cluster head transmit the data to a
closer node, decreasing the total energy consumption at the
cluster head. Furthermore, the edge node can transmit the
data to other cluster heads, edge nodes, or the sink node.
Figure 2 shows the protocol overview.

1) VOID AREA MECHANISM (VAM)
The void area is the area without nodes or the area in which
the nodes have drained their batteries. When a node has
a packet to send, there are no neighboring nodes that can
receive the packets. To solve this problem, a mechanism is
suggested named VAM. Assume node A has a packet to
transmit, and there are no neighboring nodes between the
sink and node A. Some other routes could handle the data
through nodes. By using VAM, node A transmits the data to
the node with the highest Q-value and starts a timer and waits
for an ACKmessage from the chosen node. Assume that node
A chooses node C, and it waits for an ACK message from
node C. If node A receives an ACK message from node C,
no action is needed since it means that the path to the sink
node can go through node C and there is no intermediate
void area. Moreover, if the timer has expired and no ACK

FIGURE 2. Protocol overview.

message has returned to node A, then the Q-value of node
C will be reduced, and an alternative path will be chosen to
deliver the packet. Because the nodes with low Q-values have
a low probability of being selected, the routes that bypass
the void areas are excluded in this mechanism. Figure 3 is
an illustration of the discussed case.

FIGURE 3. Illustration of the network architecture.

2) STRUCTURE OF DATA PACKETS
Three types of data packets are used in the BRP-ML
algorithm. Each type is used for a different purpose.
These are intended to facilitate the information exchange
among nodes and properly achieve both the clustering and
routing processes. The three types of packets are broadcast
packets, data packets, and ACK packets. The broadcast
packet contains the packet ID, node type (cluster head, edge
node, normal node), timestamp, source node ID, cluster-ID,
residual energy, and max Q-value. The broadcast packet is
used to exchange information among nodes and maintain the
updated information. The broadcast is among all live nodes,
and it is performed periodically. Each time the clustering
process is executed, broadcasts must be exchanged. The data
packet includes the ID, type, timestamp, previous node ID,
previous node max Q-value, previous node residual energy,
destination node ID, and data. The previous node information
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TABLE 3. Structures of packets.

in data packets is the information of the previous hop chosen.
The unicast data packet is used to transfer the sensed data to
the sink node using a multihop path. Having different types
of packets benefits the routing protocol. To accomplish the
clustering process, only broadcast packets are used. Then, for
the routing process, both types of packets are used. Finally,
the ACK packets are used to ensure that the data packets
reach the destination. The ACK packets can be sent from
any node in the network. Each time a node transmits a data
packet, it waits for an ACK packet from the destination node
to guarantee that the data packet is received. The average
round trip time is calculated and used as an ACK expiry time.
Table 3 summarizes the details of the packet structures used.

3) CLUSTERING PROCESS
The clustering process is the method used to divide any data
points or population into groups such that the points in the
same group have similar traits. In UWSNs, the communica-
tion interference is known to be high, and by using clustering,
the interference can be reduced. Furthermore, the energy
consumption is more balanced, which extends the network
lifetime. The network is divided into groups or clusters, where
each cluster has a cluster head. The sensors communicate
only with their cluster head. Then, the cluster head transfers
the aggregated data to the sink node either by a multihop path
or a single hop. This process enhances the performance of
UWSNs [34].

K-means is a partitioning-based algorithm. It splits the
nodes based on centroids where the similarity among clusters
depends on the node closeness to the cluster centroid [35].
It is a common algorithm because it is easy to implement
and has low computational complexity and low memory
consumption [36].

K-means++ is an enhanced version of the K-means
algorithm that addresses the poor initialization problem [8].
It is a simple algorithm that can provide more accurate results
than the standard K-means.

BRP-ML uses an adaptive clustering technique to adapt
to network changes. In the network, the sensor nodes are
clustered, where each cluster has a cluster head and an edge
node. The cluster head is responsible for aggregating the data
packets from the other nodes in the cluster and transmitting
them to the sink using a multihop path. The edge node
assists the cluster head in aggregating and transmitting the
data. By using clustering, most nodes transmit the data using

short hops, which consumes less energy and extends the
network lifetime. Clustering in UWSNs is usually performed
in three steps: define the number of clusters (k), perform
the clustering process, and assign the cluster head and edge
node. The clustering process is the procedure of grouping
the nodes into k clusters. This process can be repeated
when the number of alive nodes decreases. As mentioned,
K-means++ is applied to form clusters that are modified
to adapt to the nature of the underwater environment. In the
underwater three-dimensional coordinate system, each node
has a location vector (x, y, z). Assume that node A has
coordinates (x1, y1, z1) and node B has coordinates (x2, y2,
z2). Then, the distance between two nodes A and B in a 3D
system is

DAB =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (6)

a: PREREQUISITES AND ASSUMPTIONS
1. The shapes of the clusters are not important to our

algorithm, which means that it does not depend on a
particular cluster feature.

2. Since MI is used as a communication method in this
work, the received magnetic field strength (RMFS)-
based localization technique is applied. It utilizes a
tri-directional antenna to increase the estimation accu-
racy [37]. Therefore, each node can obtain its three-
dimensional coordinates.

3. The location of each node is configured before the
deployment, and the nodes can adjust their locations
following the configuration.

4. Sensor nodes are deployed randomly in a 3D coordinate
system.

5. All sensor nodes have the same initial limited energy,
except the sink node, which has an unlimited power
supply.

6. Three types of nodes are used: normal nodes that sense
and transmit data to a cluster head using a single hop; a
cluster head, which is responsible for aggregating the data
from normal nodes and sending data to the sink node using
a multihop path; and the edge node, which is used as a
cluster head assistant.

7. Each cluster has one cluster head, one edge node, and
multiple normal nodes.

Figure 4 shows an illustration of the network architecture
used, where the deployed nodes are clustered, and each
cluster has a cluster head, edge node, and normal node.

b: CHOOSING THE OPTIMAL NUMBER OF CLUSTERS (K)
Neither the K-means nor K-means++ algorithm specifies the
number of clusters (k), which should be assigned prior to
the clustering process. It is important to choose the optimal
number of clusters since it affects the network lifetime.
Having many clusters could increase the communication
overhead, and having few clusters causes the formation
of large clusters, which increases the power consumption.
Therefore, BRP-ML uses a combination of two methods to
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FIGURE 4. Illustration of the network architecture.

obtain the accurate optimal value of k . The first method is
the silhouette method that calculates a silhouette coefficient,
which shows the goodness of the clustering algorithm,
performance wise.

Silhouette coefficient =
d2− d1

max(d1, d2)
(7)

where d2 is the mean distance of the nearest cluster, and d1
is the mean intracluster distance for each data point. After
selecting random values of k , the silhouette coefficient is
calculated for each of them. Thus, k with a higher coefficient
is the optimal value [38]. Although this method gives an
obvious numeric outcome, its time complexity is very high
if calculated for each possible k, and with high-dimensional
problems, it takes more time to converge. The other method is
the elbow method. The elbow method calculates the within-
cluster sum of squared errors (WSS) for each k . WSS is the
mean of the squared distance between each data point and the
closest cluster center. WSS can be visualized as a curve, and
the optimal value of k is the elbow of the curve [39]. This
method is faster than the silhouette method, but sometimes
the elbow method can be ambiguous and uncertain.

The number of clusters can vary from 2 to (n-1)/2, where
n is the number of data points. The elbow method is used
first as a decision rule. If the value of k is obvious, the rest
of the clustering algorithm will continue to execute. If the
value of k is vague, the silhouette method will be applied as a
validation method only for the doubtful values of k . Note that
the most doubtful value is the largest value at which distortion
declines. This step guarantees that k is the optimal valuewhile
reducing the time complexity and avoiding having a few
clusters to reduce energy consumption. Algorithm 1 shows
how the optimal value of k is obtained.
Algorithm 2 shows the steps of the clustering process,

which applies K-means++ with modifications to be applied
in 3D environments. The algorithm requires the value of
k, which is the output of Algorithm 1. The first centroid
is selected randomly. The subsequent centroids are selected
with probability P = D(x ′)2∑

x∈X
D(x)2

. D(x), which is the distance

between node x and the previously chosen centroid c, and

Algorithm 1 Selecting Optimal k Value
Input: All nodes X = {x1 . . . , xn} where n = number of
nodes, All nodes X locations
Output: Optimal k value
% Decision rule%
1. For i = 2 to i = (n-1)/2:

2. Run the K-means algorithm.
3. Calculate the WSS for each data point to its

centroid.
4. Save the values of distortions.
5. Array A = doubtful k values.

% Validation %
6. For each doubtful value in A:

7. Calculate the silhouette coefficient
8. k = highest silhouette score
9. Return k

D(x′) is the distance between previously chosen centroid c
and the new centroid ci+1. After that, the previous steps are
repeated until k centroids are reached. Finally, it follows the
standard K-means steps that assign each data point to the
nearest centroid.

Algorithm 2 Clustering Process
Input: All nodes X = {x1 . . . , xn} where n = number of
nodes, Value of k .
Output: K clusters
1. A random centroid c1 is selected where c1 ∈ X.

2. For j = 1 to j = k-1
3. For i = 1 to i = n

4. Distance between xi and previously
chosen centroid ci is calculated
using (6)

5. A new centroid ci+1 = x‘∈ X =
{x1 . . . , xn} is selected with probabil-
ity P

6. Repeat
7. For i = 1 to i = n

8. For j = 1 to j = k
9. Calculate the distance between xi and

cj
10. Assign xi to the nearest c.
11. Update the cluster center to the average

location.
12. Until convergence

c: CLUSTER HEAD AND EDGE NODE ASSIGNMENT
In BRP-ML, there must be a node that is responsible for
aggregating the data from the cluster nodes and transmitting
them to the base station by a multihop route. Two factors are
considered when assigning cluster heads. First, the cluster
head must be the node that has the maximum residual energy
because it performs an energy-consuming task. Second,
it must be the closest cluster member to all nodes within
the cluster. The edge node assignment is selected after the
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TABLE 4. Constant notations.

clustering process. Normally, in each cluster, there is one
cluster head and multiple normal nodes. The cluster head
collects the data from its cluster members and forwards the
data to the sink by multiple hops through other cluster heads.
However, in our approach, there is an edge node used to
reduce the load on the cluster heads. Therefore, each cluster
includes the following node types:

Normal nodes: Sense data and transmit them to the cluster
head.

Cluster head: Aggregates the data from normal nodes and
transmits them to the sink node through other cluster heads
or edge nodes.

Edge node: Receives the data from cluster heads and
transmits them to the sink node using a multihop path through
edge nodes or other cluster heads.

In the routing phase, the Q-learning algorithm can forward
the data packets through either cluster heads or edge nodes.
There are two factors for selecting an edge node. First, the
edge node must be the node with the maximum residual
energy after the cluster head within the cluster. Second,
it must be the nearest node among the cluster nodes to the
sink. After the clusters are formed, cluster heads and edge
nodes are assigned. The nodes send broadcast messages
indicating the type of node, status, and cluster number.
Usually, the cluster head consumes more energy than normal
nodes, which shortens the cluster head lifetime. In some
cluster head assignment approaches, a node is assigned to
be a cluster head and does not assign another node until
the cluster head energy drains. In contrast, our proposal is
based on the reselection process approach, where cluster
heads change periodically. This means that when a cluster
head residual energy becomes less than a certain threshold,
another node is selected as the cluster head automatically
using the same factors described previously. The new cluster
head broadcasts a packet notifying other nodes regarding the
changes. Applying this process prolongs the network lifetime.
The following rule shows the threshold value ETh. where
Eave is the average residual energy of within-cluster nodes:
ETh = Eave. Algorithm 3 shows the steps of selecting a cluster
head:

The edge node selection process is the same as the cluster
head selection process except that the edge node selection
rule is different, noting that the complexity of both algorithms
is O(n).

4) POLICY AND REWARD FUNCTION
In this section, the reward and Q-function are described.
Tables 4 and 5 contain the notations used in the following
equations.

Algorithm 3 Cluster Head Selection Process
Input: Residual energies of Xn where Xn = {x1 . . . , xm}
and m = number of nodes within cluster, location of each
x ∈ Xn, Maximum Communication Distance (MCD).
Output: Cluster head CH
1. Calculate Eave.
2. For each x ∈ Xn and >Eave:

3. Calculate the distance between xi and other x’s.
4. Calculate CH selection criteria following the

rule.
5. CH = the value with the highest selection

criteria.
6. If there are more than one node with the same

results:
7. Choose CH to be Max (residual energy).

8. Return CH

Algorithm 4 Edge Node Selection Process
Input: Residual energies of Xn where Xn = {x1 . . . , xm}
and m = number of nodes within cluster, location of each
x ∈ Xn, Maximum Communication Distance (MCD), sink
node location, CH.
Output: Edge node EN
1. Calculate Eave.
2. For each x ∈ Xn and!= CH and > Eave:

3. Calculate the distance between xi and the sink
node.

4. Calculate EN selection criteria following the
rule.

5. EN =Max(A).
6. If there are more than one node with the same

results:
7. Choose EN to be Max (residual energy).

8. Return EN

TABLE 5. Variable notations.

In BRP-ML, we assume that node i attempts to forward
a packet to node j, where the state of that agent is si using
action ai. The transmission reward is Rsuccess in the case of
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successful transmission is

Rsuccess = −ω − β1
[
c (Ei)+ c

(
Ej
)
+ α ∗ c

(
Dij
)]

(8)

where 0 < ω <1, 0 < β1 < 1, and 0 < α < 1.
Our reward function focuses on two main parts: the energy

cost and delay cost. The constant cost ω is added due to
node communication, which occupies channel bandwidth.
Additionally, a delay sensitivity factor is added to balance
energy and delay when determining the transmission route.
If the delay sensitivity factor is set to one, the selected path
considers only the delay. Therefore, the sensitivity factor is
the weight given to the delay cost in the equation.

The energy cost function uses the initial node energy and
the residual node energy. For each node, the higher the energy,
the lower the cost it will be assigned. Therefore, a node with
higher residual energy is more likely to be selected. Hence,
the energy cost function is

c(Ei) = 1−
E ires
E iini

, c(Ej) = 1−
E jres

E jini
(9)

The transmission delay between nodes i and j is used to
calculate the delay cost. If that delay between nodes i and j is
high (tdelay), the delay cost is high. (10) shows the delay cost
function:

c
(
Dij
)
= 1−

1
tdelay + 1

(10)

In the case of transmission failure, the delay and the energy
costs are doubled. Considering that the delay cost is the
time consumed due to communication failure T cfij plus the
transmission delay between nodes i and j, the reward function
is defined as

Rfail = −ω − β2[2 ∗ c (Ei)+ c
(
Ej
)
+ α ∗ c

(
Tij + T

cf
ij

)
]

(11)

Since the Q-learning functions are based on MDP, the
probability of transition from one state to another must be
considered to calculate the direct reward function. Therefore,
the successful transition probability and the failed transition
probability are used to compute the direct reward function.
The direct reward is defined as

Reward = (1− Pfail)Rsuccess + PfailRfail (12)

where the probability of failed transmission is the number of
lost packets divided by the number of transmissions. Thus, the
failed transmission probability is shown in (13). Furthermore,
when the sum of the failed transmission probability and
successful transmission probability is equal to one, the
probability of successful transmission is 1-Pfail:

Pfail =
nLp
ntp

(13)

Thus, combining (12) and (13), the direct reward can be
rewritten as

Reward =
(
1−

nLp
ntp

)
∗ Rsuccess +

(
nLp
ntp

)
∗ Rfail (14)

After combining (8), (11), and (14), the action utility
function is expressed as

Q (si, ai) = Reward+ γ
[(
1− Pfail

)
∗ Q∗ (si)
+Pfail ∗ Q∗

(
sj
)]

= Reward+ γ
[(

1−
nLp
ntp

)
∗ Q∗ (si)

+

(
nLp
ntp

)
∗ Q∗

(
sj
)]

(15)

5) ROUTING PROCESS
By this phase, the nodes are clustered, and each cluster has
a cluster head and an edge node. Data packets are routed
to the sink node only through cluster heads or edge nodes.
Choosing the next hop depends on the result of the reward
function andQ-table.Whenever a normal node has a packet to
transmit, it transmits that packet directly to the cluster head.
After that, the cluster head aggregates the sensed data from
its cluster nodes. The data forwarding algorithm is where the
Q-learning process happens. First, it initializes the Q-table
where rewards are to be stored. If the node type is normal,
then it will transmit the packet. Otherwise, if the node type
is a cluster head or edge node, it will make a list of possible
hops, where the possible hops are toward other cluster heads
or edge nodes within the communication distance. After that,
it calculates the reward using the direct reward function (14)
and the Q-value using the Q-function (15). Then, a timer
starts, which is used for the VAM. Using the results of the
Q-function, the next hop is chosen such that its value has the
highest Q-value. If the timer terminates and no ACK packet
is received by the sending node, the reward of the chosen hop
will be lowered, and another hop will be selected. Finally, the
Q-table is updated. Algorithm 5 shows the steps of the fourth
phase, which is the data forwarding.

Algorithm 5 Data Forwarding Protocol
Input: Node location, Node residual energy, Node cluster
ID, Node Type, Sensed data, Maximum Communication
Distance (MCD).
Output: Optimal route.
1. Initialize Q-table
2. If (node type is Normal node) then:
3. Transmit the sensed data to the cluster head.
4. Else:
5. For each nonempty node Ni do:
6. For each node not in the same cluster & its type =

cluster head or edge node do:
7. Calculate distance between Ni and Nj.
8. Let Nij = neighboring nodes where distance <=

MCD.
9. While the next hop is not Sink node do:

10. Calculate the direct reward.
11. Start a timer. // used for the void mechanism
12. Calculate the Q-value.
13. Select the next hop Nx with the highest Q-value.
14. If (timer ends and ACK not received):
15. Lower the reward of the chosen hop.

16. Go to step 10.
17. Update the Q-table.
18. Ni = Nx//Update current Node
19. End
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V. SIMULATION AND RESULTS
In this section, simulations are conducted to evaluate the
performance of BRP-ML using Sublime Text 3.2.2 on a local
PCwith an Intel i7 8th generation 3.20 GHz processor, 16 GB
of RAM, and the Windows 10 platform. The 3D network
figures in this section are plotted using MATLAB R2020b.

A. SIMULATION METRICS
The measured metrics are as follows:

1. Energy efficiency = Output energy
Input energy

2. Average delay: average time required for data to reach the
sink node.

3. Delivery rate = Number of delivered packets
Total number of transmitted packets

4. Network lifetime: total routing time until the first node
expires.

5. Alive node percent: percent of alive nodes among all
nodes.

6. Execution time: time it takes to run the algorithm.

The results of the simulations are compared with the
QL-EDR [13] and QELAR [11] routing protocols.

B. SIMULATION CASES
Four simulation cases are executed to test the path changes,
energy consumption, and delay on different network sizes
in terms of the number of nodes. The nodes are distributed
uniformly in a 250 m × 250 m × 80 m area. The selected
values of α, β1, and β2 are based on the tests performed
in subsection D that achieve the best result. Each simulation
case is tested three times. In the first and second runs, the
starting locations of nodes are the same. The second run is
considered to compare the chosen path, delay, and consumed
energy with the first run. The third run is when half the nodes
have depleted their energy. The tracked packets are generated
from the same node in all runs. In the first simulation case
(test-One), a network is deployed in a 3D environment with
120 nodes and one surface sink node where the nodes are
labeled with IDs ranging from 0 to 120. The optimal number
of clusters for this case using the proposed algorithms is four;
therefore, the number of clusters formed in this test is four
clusters.

In test-One, node number 70 is selected randomly to tack
the generated packets. In the first and second runs, the same
path is chosen by the BRP-ML algorithm, and four hops is
the length of the path to the sink node. In the third run, the
path has changed, but the number of hops has decreased to
three. However, the delay decreases by 5%, and the consumed
energy increases by 20%. The reason is that the number of
hops has decreased, which causes the delay to decrease and
the energy to increase.

In the second simulation case (test-Two), a network is
deployed in a 3D environment with 150 nodes and one surface
sink node where the nodes are labeled with IDs ranging
from 0 to 150. The number of clusters formed in this test
is three. Node number 70 is also selected by the BRP-ML
algorithm randomly as a starting node. Similar to test-One,

the same path is chosen in the first and second runs, and
four hops is the length of the path to the sink node. In the
third run, the number of hops is also four, but the chosen
nodes as a path have changed. Both delay and energy have
increased. The delay and energy have increased by 8% and
18%, respectively. This is because the number of hops is the
same, but the route has a longer distance, which causes the
delay and the energy to increase.

In test-Three, the network has 170 nodes with the same
starting node number 70. The results of the first and second
runs are similar to those of test-Two because the network
does not change significantly. In the third run, the path
is different from test-Two because the chosen hops have
depleted their energy, which causes the algorithm to change
the path. Because the hops are less than those in the first and
second runs, the delay has decreased by 6%, and the energy
consumption has increased by 17%. The energy has increased
due to having hops with longer distances.

Finally, in the fourth test, 200 nodes are deployed in the
network. In the first and second runs, the delay is less than in
all previous tests because the nodes are denser and there are
more likely hops to choose from. Additionally, the number of
hops is only three. The delay and energy consumption exhibit
an inverse relationship, which means the energy consumption
increases due to delay reduction. That is why in the third run,
the algorithm attempts to balance the delay and energy by
choosing a path with more hops to keep that balance. The
delay has increased by 9%, and the energy consumption has
decreased by 10%.

FIGURE 5. Energy consumption comparison for all cases.

Figure 5 demonstrates the effect of network size on energy.
The energy consumption is higher for networks with a smaller
number of nodes. The energy consumption decreases for
networks between 100-170 nodes and then increases again
with networks of 200 nodes, noting that all networks have the
same area size. Although the energy consumption increases in
a 200-node network, the delay is reduced, which achieves the
targeted balance. Figure 6 shows the effect of network size on
the delay. The delay wavers for networks with a small number
of nodes, and it obtains almost the same delay for networks
with 100-200 nodes. The delay is higher for small networks
because the network area size is the same for all of them,
and there are gaps between the nodes that cause long delays.
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In conclusion, the outcome performance does not depend on
one feature. Both matrices work along with each other, and
the algorithm balances them out.

FIGURE 6. Delay comparison for all cases.

FIGURE 7. Number of hops example.

In conclusion, when two cases have the same number
of hops, the delay and energy could have different values
because the route distance is not the same. Figure 7 simplifies
this conclusion. Assume that node number 70 is the source
node and node number 45 is the cluster head, and all nodes’
batteries are full. There are two paths available to reach the
sink, using either node 63 or node 28. The total distance of
the red path is 30 m, and the total distance of the blue path is
25 m. The algorithm chooses the blue path since it costs less
than the red path. After a while in the simulation, the battery
levels change. According to the algorithm, the red path may
be chosen if the energy of node 63 is higher than that at node
28 to avoid draining the node’s battery. In both cases, the
number of hops is three, but the blue path delay is less than
the red path. The BRP-ML algorithm balances the delay and
energy consumption.

C. COMPARISONS OF BRP-ML PROTOCOL,
QELAR, AND QL-EDR
Table 6 summarizes the simulation parameters used in
the comparisons of the BRP-ML protocol, QELAR, and
QL-EDR. The underwater network model is built based
on known network models, including the principle of node
data transmission and the connectivity characteristics of the
network. The same model was followed in [11] and [13].

TABLE 6. Simulation parameters.

FIGURE 8. Delivery rate comparison.

1) DELIVERY RATE
Figure 8 shows a comparison between BRP-ML, QELAR,
and QL-EDR in terms of delivery rate with different packet
generation rates (λ). The packet generation rate is on
a per node basis where it follows the Poisson process,
and the duration between each packet generation follows
an exponential distribution. The delivery rate decreases
as the packet generation rate increases because there
are more packets to transmit, making the node’s energy
deplete faster. Therefore, the number of packets that reach
the sink is reduced. BRP-ML improves the delivery rate
by approximately 25% compared with QELAR and 6%
compared with QL-EDR. BRP-ML uses the void area
mechanism, which increases the delivery rate.

FIGURE 9. Average delay comparison.

2) AVERAGE DELAY
Figure 9 demonstrates a comparison between BRP-ML,
QL-EDR, and QELAR in terms of average delay with
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different packet generation rates. The average delay increases
as the packet generation rate increases. This is because when
the number of sent packets increases, the transmission failure
increases, and there are more packets to retransmit, which
increases the average delay. QELAR has a higher average
delay than BRP-ML by 18%, whereas QL-EDR has a 13%
higher average delay than BRP-ML. This is because the
reward function of BRP-ML considers both the delay and
the energy. The difference is not significant because the
retransmitted packets take a longer path, which takes more
time and increases the delay.

FIGURE 10. Energy efficiency comparison.

3) ENERGY EFFICIENCY
Figure 10 shows a comparison between BRP-ML, QL-EDR,
and QELAR in terms of energy efficiency with different
packet generation rates. The energy efficiency decreases
as the packet generation rate increases. The reason is that
the more packets there are to transmit, the more energy
is consumed by the nodes, which reduces the network
lifetime. BRP-ML outperforms QELAR and QL-EDR by
16% and 9%, respectively. The design of our reward function
and approach balances the energy consumption better than
QELAR.

FIGURE 11. Network lifetime comparison.

4) NETWORK LIFETIME
Figure 11 demonstrates the relationship between the nor-
malized network lifetime and packet generation rate.
The network lifetime decreases as the packet generation
rate increases. The reason is that an increase in packet
transmission results in the consumption of more energy,

which reduces the network lifetime. The QELAR algorithm
achieves the lowest network lifetime, whereas BRP-ML
achieves the highest network lifetime among the compared
algorithms.

FIGURE 12. Network lifetime comparison.

5) ALIVE NODE PERCENT
Figure 12 shows the alive node percent. The alive node
percent decreases as the packet generation rate increases.
This is because more packets are transmitted, which drains
the nodes’ batteries. BRP-ML achieves a better result
than the other two algorithms. It has a 14% enhancement
compared with QELAR and a 5% enhancement compared
with QL-EDR.

6) EXECUTION TIME
To evaluate the energy consumption, the time required for the
execution of the algorithm must also be considered. The cost
of computing energy Erun can be investigated using (16) [14].

Erun = Ptrun (16)

FIGURE 13. Average-case execution time comparison.

where trun is the execution time, and P is the hardware power.
The computing energy must be lower than the transmission
energy to achieve a longer network life. One of the important
factors that affects the learning process is the number of
nodes. Because exploitation and exploration consume long
computational times, various node-density networks are
tested using the same hardware to assess the efficiency of
BRP-ML. Figure 13 shows the relation between the number
of nodes and the algorithm’s average-case execution time.
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The algorithms are run 25 times to obtain the average-case
execution time. The number of nodes ranges between 130 and
230. When the number of nodes = 130, the fastest approach
is QELAR, followed by BRP-ML, which has a similar QL-
EDR execution time.When the number of nodes reaches 230,
the QL-EDR execution time increases by 23% compared to
the case when the number of nodes = 170. In BRP-ML, the
execution time increases by 22%, while QELAR increases by
30%. Themore time it takes to execute the learning algorithm,
the more energy it consumes. Therefore, execution time is
a critical factor in designing routing protocols for scalable
networks.

FIGURE 14. Energy efficiency with different parameter values.

D. COMPARISONS OF DIFFERENT PARAMETER VALUES
Different coefficients are tested to investigate the influence
on the energy efficiency and delivery rate. Figure 14 shows
the energy efficiency with different β coefficients. These
coefficients are equivalent to the coefficients of the reward
functions β1 = β2 with values varying between 0.1 and 1,
and the values of α vary between 0.2 and 0.8 with
a step of 0.2.

FIGURE 15. Delivery rate with different parameter values.

When β1 and β2 are set to high values, the route selection
decision differentiates based on the energy consumption,
while this decision considers the delay when α is assigned
high values. The energy efficiency increases as α increases.
This is because the node’s remaining energy affects the
routing with a higher value of ω in the reward function. Thus,
nodes that have more energy are more likely to be selected to
forward the packet.

Figure 15 illustrates the delivery rate of different coeffi-
cients. The delivery rate decreases as α decreases. This is
because relying on minimizing delay while choosing the path

by the algorithm causes uneven distribution of the energy.
When β1 and β2 are set to high values and α = 0.8, the
delivery rate drops by 25% compared to low values of β1 and
β2. Therefore, to balance the energy efficiency and delivery
rate, choosing α should consider both delay and node residual
energy. To achieve a high delivery rate and energy efficiency,
the referral values to choose are α= 0.7 and β1= β2= 0.6 to
consider both energy consumption and delay.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have presented amachine learning algorithm
to address some of the UWSN limitations. We focused on
extending the network lifetime by decreasing the delivery
delay while balancing energy consumption. A BRP-ML
routing protocol was proposed, which is a reinforcement
learning (Q-learning) algorithm used to route the sensed data
to the surface sink node for further data analysis. The protocol
functions in four phases to ensure that each phase is working
effectively and is more flexible for any future modifications.
BRP-ML uses a clustered network that helps adapt to network
changes and reduces communication interference. For the
clustering phase, K-means++ is used to divide and group
the nodes. To validate the clustering process, the silhouette
score was used as an internal validation method to measure
the algorithm performance. BRP-ML considers the void area
issue, which is a common problem in UWSNs. We presented
a VAM to address void regions and increase the delivery rates.
We demonstrated that BRP-ML could effectively enhance
network performance. Simulation results showed that it could
balance the energy consumption and delivery delay while
considering the void area. The results showed that BRP-
ML increased the delivery rate up to 25% and decreased the
average delay up to 18%while achieving energy efficiency up
to 16% compared to the QELAR and QL-EDR algorithms.

For future work, we will consider deploying a multi-sink
node to study the effect on the packet delivery rates and delay.
Recently, some researchers have used AUVs for underwater
wireless charging. We will consider deploying such AUVs to
charge the nodes before the nodes deplete their energies to
prolong the network lifetime and enhance the performance.
Additionally, a machine learning algorithm was designed for
an AUV to choose the route it takes to charge nodes. The
normal head will make a forwarding decision in which it
decides whether to forward it to the cluster head or edge node
to save time and energy.
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