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ABSTRACT With the sustained evolution and expeditious popularization of cloud computing, an ever-
increasing number of individuals and enterprises are encouraged to outsource data to cloud servers for
reducing management overhead and ease of access. Privacy requirements demand encryption of sensitive
information before outsourcing, which, on the other hand, diminishes the usability of data and makes
considerable efficient keyword search techniques used on plaintext inapplicable. In this paper, we propose a
secure multi-keyword ranked search scheme based on document similarity to work out the problem. In order
to achieve the goals of multi-keyword search and ranking search results, we adopt the vector space model
and TF-IDF model to generate index and query vectors. By introducing the secure kNN computation, index
and query vectors can be encrypted to prevent cloud servers from obtaining sensitive frequency information.
For the need of efficiency advancement, we adopt the B+-tree as the basic structure to build the index and
construct a similar document collection for each document. Due to the use of our unique index structure,
compared to linear search, the search efficiency is more exceptional. Extensive experiments on the real-world
document collection are conducted to demonstrate the feasibility and efficiency of the proposed solution.

INDEX TERMS Searchable encryption, B+-tree, cosine similarity, multi-keyword ranked search, cloud
security.

I. INTRODUCTION
Cloud computing [1] has achieved extraordinary devel-
opment over the past decade, both in the academic and
industrial communities [2]. Moreover, it has been regarded
as a brand-new model of technology infrastructure that is
capable of organizing unlimited storage space and pow-
erful computing capabilities, and enabling users to enjoy
pay-as-you-go, convenient and distinguished services from a
shared pool of configurable computing resources with excel-
lent efficiency and minimal management overhead [3]–[5].
In addition, the technique is able to decrease the capital
expenditure on hardware establishments, software and per-
sonnel maintenances [22]. Hence, enterprises and individuals
tend to outsource data to cloud servers by occasion of these
advantages [6].

Despite of the tremendous advantages of cloud services,
privacy concerns brought by outsourcing data, especially
sensitive data (e.g., emails, personal travel data, and com-
pany transaction records, etc.), to cloud servers restrict the
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promotion and popularization of the emerging model. Cloud
data may be misused by cloud service providers (CSPs) in
an unauthorized way, even maliciously, since data owners are
no longer directly in control of their data [24]. In order to
achieve more effective application and broader deployment
of cloud computing [8], [14], [15], data security and privacy
are indispensable considerations that must be well-addressed
to avoid monetary loss or damage to reputation arise from
cloud data leakage [9]. General approaches to protect data
confidentiality are cryptographic approaches such as encrypt-
ing data before outsourcing [10]. However, such methods
improve the difficulty of data utilization since many tech-
nologies applied on plaintext data, such as keyword-based
information retrieval, are no longer suitable for ciphertext
data. Furthermore, downloading and decrypting all cloud data
is unrealistic and infeasible, especially in the case of large
amount of data [11].

In order to decrease the impact of encryption on data avail-
ability, plenty of efforts have been put into contriving efficient
mechanisms for searching over encrypted cloud data. Some
general-purpose methodologies based on fully-homomorphic
encryption [12] and oblivious RAMs [13] have been proposed
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to address the above problem, while the overhead for com-
putation and communication presented in these schemes is
not acceptable for both cloud servers and users. Fortunately,
many methodologies used for special purposes based on
searchable encryption (SE) have been put forward to sat-
isfy different query requirements. However, among schemes
that have been proposed, the single keyword search lacks
sufficient intelligence to support complex query demands,
and network traffic overhead of the boolean search is
excessive [16], [26]. In contrast, the multi-keyword ranked
search receives increasing attention due to its better prac-
ticability. Recently, some constructive schemes based on
multi-keyword ranked search have been proposed to support
intelligent and economic queries over encrypted cloud data.
However, in most cases, these methodologies cannot simul-
taneously satisfy requirements of search efficiency and data
privacy protection.

Aiming at problems as are mentioned above in the field
of multi-keyword ranked search, in this paper, we propose
a secure and efficient multi-keyword ranked search scheme
based on B+-tree index, which has been extensively applied
in database systems. For supporting multi-keyword search,
we combine the vector space model and the TF-IDF model in
the process of generating index and query vectors. In addition,
to improve the query efficiency for the better quality of expe-
rience, we incorporate the cosine similarity measure [17],
[18], [21] to the index structure. Due to the particular structure
of our index, the search scheme proposed in this paper is
more exceptional than linear in terms of time overhead.More-
over, on the premise of ensuring the accuracy of relevance
score calculation between query vectors and index vectors,
we introduce the secure kNN (k-nearest neighbour) compu-
tation [19], [20] to encrypt vectors so as to improve the ability
of resisting statistical attacks from cloud servers. To defense
attacks initiated by cloud servers under different threat mod-
els, we design two secure index schemes, e.g., the basic
similarity-based multi-keyword ranked search (BSMRS)
scheme and the enhanced similarity-based multi-keyword
ranked search (ESMRS) scheme. The former can guarantee
the confidentiality of index and query vectors, the latter is
able to avoid sensitive frequency information being obtained
by cloud servers to satisfy more stringent privacy protection
requirements. Our contributions are summarized as follows:
1) We design a searchable encryption scheme that not only

supports accurate multi-keyword ranked search but also
ensures data privacy with little relevance score informa-
tion leakage.

2) By incorporating the cosine similarity measure and con-
structing the keyword index tree based on B+-tree, the
search efficiency of the proposed scheme is improved
significantly compared with [39] and [53].

3) Extensive experimental results demonstrate the feasibil-
ity and efficiency of the proposed scheme.

The rest of the paper is organized as follows. Section II
introduces the related work. Then, we briefly introduce
preliminaries, system model, threat models, and design goals

in Section III, followed by Section IV, which gives the speci-
fication of our schemes. Section V presents security analysis.
Experiments and performance evaluation are presented in
Section VI. Section VII covers the conclusion.

II. RELATED WORK
Searchable encryption (SE) has been extensively studied with
the aim of formalizing security definitions and improving
efficiency. It enables clients to outsource data in encrypted
form to cloud servers and conduct keyword search over
ciphertext. In accordance with differences of cryptography
primitives, searchable encryption can be divided into public
key searchable encryption [29], [55]–[58] and symmetric
searchable encryption [27], [28], [30]. On the ground of the
expensive computational overhead of public key searchable
encryption, this paper mainly pays attention to symmetric
searchable encryption.

A. SINGLE KEYWORD SEARCH
The first symmetric searchable encryption (SSE) scheme was
proposed by Song et al. [27]. The cloud server in their scheme
needs to traverse the entire document to determine whether it
contains a specific keyword. Thus time complexity of search
is linearly related to the number of documents in collection.
Goh [28] proposed a standardized description of the security
definition of SSE and constructed a secure index architecture
on the basis of pseudo-random functions and Bloom filter
to resist adaptive chosen keyword attack. However, the time
complexity of their scheme is O(n). To further enhance
security and search efficiency, SSE-1 and SSE-2 based on the
inverted list were proposed by Curtmola et al. [30]. Such two
schemes are more efficient than other works and can resist
chosen-keyword attack and adaptive chosen-keyword attack
respectively. However, the functionality of most of the above
schemes is restricted to single keyword search.

B. MULTI-KEYWORD BOOLEAN SEARCH
To improve query experience and enrich search functionality,
a great quantity of explorations [23], [31]–[38] have been
carried out by research fellows to achieve multi-keyword
boolean search, which enables users to query the most appro-
priate document by inputting several query keywords. In con-
junctive keyword search schemes [23], [31], [32], [38], only
documents containing all keywords are returned. Among
these works, the communication overhead of the scheme
proposed by Golle et al. [31] is linear with the number of
documents, and the scheme proposed by Cash et al. [38]
supports large databases. Unlike conjunctive keyword search,
all of documents containing one or more query keywords are
returned in disjunctive keyword search schemes [33], [34].
For the sake of supporting conjunctive keyword search and
disjunctive keyword search simultaneously, predicate search
schemes were proposed [35]–[37]. However, these schemes
above are not exceptional enough since the search results are
based on keywords that have existed, which are not capable
of providing satisfactory results ranking functionality [39].
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Consequently, some works have been proposed to han-
dle multi-keyword ranked search with the advantage of
bandwidth-saving.

C. MULTI-KEYWORD RANKED SEARCH
Due to the capability of implementingmore efficient and con-
venient search, multi-keyword ranked search is extensively
utilized in the field of information retrieval, it enables the
most relevant document to be retrieved in a short period
of time. It estimates the relevance between query keywords
and documents, and sends the top-k most relevant docu-
ments to users. Therefore, it can effectively diminish the
overhead of communication. Cao et al. [40] proposed a
privacy-preserving multi-keyword ranked search scheme and
demonstrated the security of the scheme. The searchable
index in their scheme is constructed on the basis of the
vector space model [41] and the ‘‘coordinate matching’’ is
selected as the scale of measurement. The scheme is capable
of ranking search results in light of the number of matched
keywords. However, the time complexity of search is linear
to the number of documents in collection since the cloud
server must traverse the whole indexes of the document
collection to confirm the number of matched keywords for
each query. On the other hand, the lack of consideration
of the importance of different keywords results in the loss
of precision. The vector space model and TF-IDF model
are combined in the multi-keyword ranked search scheme
with better-than-linear search time complexity proposed by
Sun et al. [5]. Moreover, authors incorporate the cosine sim-
ilarity measure to the index to provide similarity-based rank-
ing. Although the efficiency is improved, the scheme is not
accurate enough and vulnerable in protecting data privacy.
The scheme proposed by Orencik et al. [42] clusters similar
documents by utilizing LSH (local sensitive hash) functions.
The algorithm is appropriate for similarity search while the
ranking accuracy is not sufficient. By drawing on previous
research methods and indicators, Xia et al. [39] proposed
a ‘‘Greedy Depth-first Search’’ algorithm on the basis of
tree-based index. The efficiency of the scheme is better than
early works and the precision is excellent. However, the over-
head of search and the time complexity of trapdoor generation
remain high. Zhang et al. [43] and Zhong et al. [3] put for-
ward their multi-keyword ranked search scheme respectively,
while the efficiency it not ideal.

III. PROBLEM FORMULATION
A. COSINE SIMILARITY MEASURE
In this paper, we adopt the cosine similarity measure [5], [25],
[44] to calculate the similarity between plaintext documents
denoted as vectors. The closer the cosine value is to 1, the
higher the similarity between two documents. The similarity
between documents is calculated as follows:

cos(P,V ) =
P · V
‖P‖ ‖V‖

=

n∑
i=1

PiVi√
n∑
i=1

P2i

√
n∑
i=1

V 2
i

, (1)

TABLE 1. Notations.

where P, V respectively represent a vector of a document and
Pi,Vi denote their component.

B. VECTOR SPACE MODEL AND TF-IDF MODEL
Vector space model, in combination with TF-IDF model,
is extensively employed for supporting efficient multi-
keyword ranked search in the field of plaintext information
retrieval [41], [45], TF (term frequency) is used to evaluate
the importance of a specific term (keyword) in a document,
specifically, themore times a word appears in a document, the
more important it is to this document, and IDF (inverse doc-
ument frequency) is used to measure the ability of a keyword
to distinguish documents. If a keyword appears frequently in
a document but rarely in other documents, it indicates that the
discrimination coefficient of the keyword is excellent. In the
vector space model, each document is represented as a vector
Vu, which is composed of normalized TF values of keywords
in the dictionary W in the corresponding document. Simi-
larly, each query is represented as a vector and elements of
the vector are normalized IDF values of query keywords. The
dimensionality of index and query vectors equals to the total
number of keywords in the dictionary and the relevance of
query vectors and documents is quantitatively evaluated by
the dot product of Vu and Vq.

The definition of relevance computation function [39] is as
follows:

Score(Vu,Vq) = Vu · Vq =
∑
wi∈wq

TFwi × IDFwi , (2)

where TFwi is the normalized TF value of keyword wi, and
IDFwi is the normalized IDF value of keyword wi.
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If u is an internal node of the index tree I, TFwi is com-
puted according to index vectors in corresponding child nodes
and leaf node according to index vectors in corresponding
document records. If u is a document record, TFwi is calcu-
lated as:

TFwi =
TF ′f ,wi√ ∑

wi∈w
(TF ′f ,wi )

2
, (3)

where TF ′f ,wi is the TF value of wi in specific document f ,
TF ′f ,wi = 1 + lnNf ,wi , Nf ,wi is times of keyword wi appears
in document f .

In the query vector Vq, IDFwi is computed as [46]:

IDFwi =
IDF ′wi√ ∑

wi∈w
(IDF ′wi )

2
, (4)

where IDF ′wi is the normalized IDF value ofwi inD, IDF ′wi =
ln(1+Nd/Nwi ), Nwi is the number of documents that contain
keyword wi and Nd is the total number of documents.

C. KEYWORD B+-TREE
The B+-tree [47] is one of the most widely-used index struc-
tures for database systems and data-manipulation applica-
tions [48]. Solutions to the B+-tree are also often applied to
other tree-like index structures. The keyword B+-tree stores
data only in leaf nodes that do not have children, and internal
nodes store index vectors and pointers to corresponding child
nodes. The retrieval time of the index structure based on the
B+-tree is proportional to the height of the tree. Compared
with the red-black tree and the binary tree, the height of
the B+-tree is lower. Therefore, we utilize the B+-tree to
construct our index structure. The formal definition of u is
as follows:

u = 〈ID, child[N ],Vu,S〉, (5)

If u is a document record, ID stores document identity, S is
composed of ID and Vu of K documents most similar to the
current document in the document collection D and child is
set to null. If the u is a leaf node or a internal node, ID and
S are set to null, if the u is a leaf node, Vu denotes a vector
consisting of normalized TF values which are calculated as
follows:

Vu[i] = max{u.record[1]→ Vu[i], . . . ,

u.record[N − 1]→ Vu[i]}, (6)

and if the u is a internal node, Vu is calculated as follows:

Vu[i] = max{u.child[1]→ Vu[i], . . . ,

u.child[N ]→ Vu[i]}, (7)

where N is the order of the B+-tree.
The construction procedure is explained detailedly in

Section IV, which is denoted as IndexGen(D,K).

FIGURE 1. The system model of ranked search over encrypted cloud data.

D. THE SECURE kNN COMPUTATION
The secure kNN (k-nearest neighbour) computation, which
is proposed by Wong et al. [19], is designed to calculate the
Euclidean distance between a database record and a query
vector and then select k nearest database records. In the
secure kNN computation, the secret key K is composed of a
randomly generatedm-bit vector S̃ and two (m×m) invertible
matrices {M̃1, M̃2}, where S̃ is regarded as a splitting indicator
and {M̃1, M̃2} are used to encrypt database records and query
vectors, both of which are extended to m-dimension vectors.
The specific encryption process is introduced in Section IV.
More details of the secure kNN computation are referred to
in [19].

E. THE SYSTEM MODEL
As shown in in Figure. 1, data owner, data user and
cloud server are three different entities considered in this
paper.
Data owner needs to construct a dictionary W , which is

composed of distinct keywords extracted from document col-
lection D before outsourcing so that the data availability can
be maintained while protecting data privacy. And then, with
the dictionary and document collection, an unencrypted index
tree can be constructed. Finally, the data owner encrypts the
document collection and index tree and outsources encrypted
form of them to the cloud server.
Data user is able to obtain the authorization of accessing

a particular document from the data owner. In light of search
control mechanisms, the data user can generate a trapdoor T
with t query keywords and k encrypted documents will be
returned after the trapdoor is uploaded to the cloud server.
Finally, with the share secret key, the data user can decrypted
documents.
Cloud server is responsible for storing the encrypted doc-

ument collection D̃ and index tree Ĩ. After acquiring the
trapdoor T , search is executed by the cloud server over the
encrypted index tree Ĩ. To improve the retrieval accuracy and
decrease network traffic, the cloud server ranks search results
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and only the top-k most relevant documents are returned to
the data user.

F. THREAT MODELS
In this paper, we treat the data owner and the data user
as entities that can be fully trusted, but the cloud server is
regarded as ‘‘honest-but-curious’’, which reflects the view
taken in most of the related works whose research direc-
tion are secure schemes of search over encrypted cloud
data [49]–[51]. ‘‘Honest’’ is defined as executing instruc-
tions in the designated protocol correctly. ‘‘Curious’’ refers
to inferring and analyzing data received to gain additional
insight. Threat models adopted in this paper are the two
suggested by Cao et al. [40]. They differ primarily in term
of the information available to the cloud server.
Known ciphertext model. Information that is available to

the cloud server in this model is restricted to encrypted doc-
ument collection D̃, encrypted index tree Ĩ and encrypted
query vector, i.e., trapdoor T . In other words, the attack that
the cloud server can conduct is just ciphertext-only attack.
Known background model. The cloud server that utilizes

this stronger model possesses a greater degree of knowledge,
e.g., term frequency of a specific keyword, the correlation of
trapdoors submitted by the data user and related statistical
information of documents. The cloud server has the ability to
deduce or even identify a keyword in a query with knowledge
above [52].

G. DESIGN GOALS
Requirements that need to be satisfied include following three
aspects:
Accuracy-improved multi-keyword ranked search. Accu-

rately retrieving the document required by the data user is
the most primitive requirement. The scheme is not feasible
if documents returned by the cloud server are completely
inconsistent with the expectation of the data user.
Search efficiency. The efficiency objective of the scheme

is to diminish search time complexity to better than linear by
utilizing the B+ tree as the index structure and construct a
similar document collection S for each document.
privacy-preserving. Document collection and trapdoor

information involve privacy, so the scheme must take appro-
priate measures to prevent the cloud server from obtaining
relevant information. The following are privacy protection
requirements mainly concerned:

• Index and query confidentiality. The cloud server must
be adequately prevented from obtaining information of
plaintext of index vectors and trapdoors.

• Trapdoor unlinkability. The cloud server should not
have the ability to identify whether two trapdoors are
from the same query or not.

• Keyword privacy. Whether a certain keyword is included
in a query should not be speculated by the cloud server.
It is worth noting that protecting access pattern, i.e., the
sequence of documents that be returned to the data user,

is not the design objective of the scheme, for the sake of
efficiency concerns.

IV. THE PROPOSED SCHEMES
In this section, we first describe the basic similarity-based
multi-keyword ranked search (BSMRS) scheme, which guar-
antees the confidentiality of index and query. For defens-
ing attacks under a stronger threat model, i.e., the known
background model, we propose a more secure scheme,
i.e., the enhanced similarity-based multi-keyword ranked
search (ESMRS) scheme.

A. BSMRS SCHEME
By introducing the secure kNN computation [19], the
BSMRS scheme can be configured to satisfy privacy require-
ments within the known ciphertext model. Following are
detailed descriptions of each algorithm in the scheme.

• K← KeyGen(m) The algorithm is executed by the data
owner to generate the secret key K, including a m-bit
secret vector S̃ which is randomly generated and two
(m×m) invertiblematrices M̃1 and M̃2. Elements of S̃ are
0 or 1. Namely,K = {S̃, M̃1, M̃2}. The formal process is
presented in Algorithm. 1.

• Ĩ ← IndexGen(D,K) The algorithm is used to con-

struct the encrypted index tree Ĩ. Figure. 3 illustrates
an index tree. It is worth noting that, all data is stored
in leaf nodes and ordered according to keys, thus split-
ting operation needs to be executed in the process of
inserting to ensure the characteristic of order. The formal
description of inserting is presented in Algorithm. 4
and an example is shown in Figure. 4. The encryption
process is described as follows: first, the data owner
splits every index vectors Vu into two random vectors
{V ′u,V

′′
u }. Specifically, with the m-bit vector S̃ as the

splitting indicator, if S̃[j] = 0, j = 1, 2, . . . ,m,V ′u[j] and
V ′′u [j] are set equal to Vu[j]; if S̃[j] = 1, j = 1, 2, . . . ,m,
V ′u[j] and V

′′
u [j] are set as two random values while the

summation of V ′u[j] and V
′′
u [j] equals to Vu[j]. Finally,

the encrypted index tree Ĩ is constructed, as shown
in Figure. 2, and each u stores two encrypted index
vectors Ṽu = {M̃1

T
V ′u, M̃2

T
V ′′u }. The formal process is

presented in Algorithm. 2.
• T ← TrapdoorGen(Wq,K) The algorithm is used for
generating trapdoors and the specific description is as
follows: first, generating an unencrypted query vectorVq
whose dimensionality is m by query keyword set Wq,
if wj ∈ Wq, Vq[j] stores the normalized IDF value of
keyword wj, else the value of Vq[j] is 0. Similar to the
above IndexGen(D,K) algorithm, the query vector is
split into two random vectors V ′q and V

′′
q , on the contrary,

if S̃[j] = 0, j = 1, 2, . . . ,m, values of V ′q[j] and
V ′′q [j] are random and the summation of V ′q[j] and V

′′
q [j]

equals to Vq[j], if S̃[j] = 1, j = 1, 2, . . . ,m, V ′q[j] and
V ′′q [j] are set equal to Vq[j]. Finally, the algorithm returns

VOLUME 9, 2021 150869



H. Shen et al.: B+-Tree Based Multi-Keyword Ranked Similarity Search Scheme Over Encrypted Cloud Data

FIGURE 2. Overview of secure index scheme.

trapdoor T = {M̃1
−1
V ′q, M̃2

−1
V ′′q }. The formal process

is presented in Algorithm. 3.
• R ← Search(T , k, u) With the trapdoor T , the cloud
server can calculate the relevance score between u of the
encrypted index tree Ĩ and the query vector Vq as in the
formula (2). Therefore, upon obtaining the trapdoor T ,
the cloud server performs the designated search opera-
tion (Algorithm. 5 Search(T , k , u)) over the encrypted
index tree Ĩ. During the search process, attribute to the
utilization of the similar document collection, which is
composed of index vectors of the K most similar docu-
ments of a certain document, after finding the document
d̃i with the largest relevance score to the trapdoor, the
cloud server just need to calculate relevance scores of
similar documents of d̃i, instead of continuing to access
other nodes, because the similar document collection of
d̃i contains the top-k most relevant documents. There-
fore, the search efficiency is improved significantly.
After selecting and ranking the top-k documents, the
cloud server returns the query resultR. It is worth noting
that relevance scores computed from encrypted vectors
are identical with that computed from unencrypted vec-
tors, i.e., Ṽu· T = Vu ·Vq, where Ṽu = {M̃1

T
V ′u, M̃2

T
V ′′u }

and T = {M̃1
−1
V ′q, M̃2

−1
V ′′q }. The detailed proof pro-

cess is as follows:

Ṽu · T
= (M̃1

T
V ′u) · (M̃1

−1
V ′q)+ (M̃2

T
V ′′u ) · (M̃2

−1
V ′′q )

= (M̃1
T
V ′u)

T (M̃1
−1
V ′q)+ (M̃2

T
V ′′u )

T (M̃2
−1
V ′′q )

= V
′T
u M̃1M̃1

−1
Q′ + V

′′T
u M̃2M̃2

−1
V ′′q

= V ′u · V
′
q + V

′′
u · V

′′
q

= Vu · Vq
= Score(Vu,Vq) (8)

B. ESMRS SCHEME
In the BSMRS scheme, due to the introduction of the random
split, non-deterministic encryption can be provided, which
means that the same query vectors (e.g., identical query key-
words) will be encrypted into different trapdoors. Besides,

Algorithm 1: KeyGen(m)
Input: dimension m.
Output: secret key K.

1 Generate a m-bit vector S̃ and two (m× m) matrices M̃1

and M̃2;
2 for each element in S̃ do
3 S̃[i] = rand()%2;
4 end
5 for each matrix do

6 while
∣∣∣M̃i

∣∣∣ = 0 do

7 Regenerate M̃i;
8 end
9 end
10 Generate a secret key K = {S̃, M̃1, M̃2};
11 return K;

information outsourced to the cloud server is restricted to
encrypted vectors and the calculation involved is only inner
product operation. Accordingly, there is no information about
particular keywords that can be disclosed. Therefore, the
query unlinkability and the keyword privacy can be pro-
tected in the known ciphertext model. However, in the known
background model, the cloud server is equipped with more
knowledge. Moreover, the relevance score computed from
Ṽu and T is identical with that from Vu and Vq, thus the
cloud server is capable of identifying same query requests
in light of identical access paths and relevance scores, and
distinguishing keywords according to distribution differences
of keywords in the term frequency distribution histogram.
Consequently, the query unlinkability and the keyword pri-
vacy are in danger [7]. To enhance security and satisfy more
rigorous privacy requirements, the equality must be broken.
Therefore, some tunable randomness is introduced into the
procedure of relevance evaluating to disturb the score. Addi-
tionally, the randomness can be calibrated for the sake of
efficiency, ranked search accuracy, and keyword privacy.

The ESMRS scheme is basically consistent with the
BSMRS scheme in most aspects except that:
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FIGURE 3. An example of index tree with document collection D = {di |i = 1,2, . . . ,6}, m = 4,K = 2 and N = 3. In the construction procedure of the
index tree, we first construct a similar document collection for each document and generate a leaf node as the root node. Then, we insert documents
with splitting operation. This diagram also shows the search process using a query vector, in which the Vq is equal to (0.6,0.2,0.1,0.6) and k = 3 (the
data user will receive three documents at last). In light of the search scheme, the search begin from the root of the tree, the relevance score of
(0.5,0.6,0.2,0.6) to the query is 0.90, which is bigger than that of (0.8,0.6,0.9,0.4), similarly, the relevance score of (0.5,0.3,0,0.6) to the query is
0.98. Then, the algorithm calculates the relevance score of each similar document of d1 and ranks by descending order. Finally, {d1,d6,d5} are returned.

FIGURE 4. An example of inserting operation. Before inserting, the
B+-tree whose order is 3 is shown as (a). Now we try to insert a
document with ID 10. Firstly, we find the leaf node that meets the
condition is [8,9]. However, because the node is full, it is unable to
continue to insert, so it is necessary to split the node into [8] and [9].
Then the document is inserted into [9], and the ID 9 is inserted into the
parent node [7,8]. At this time, the parent node is full, and it is also
unable to continue to insert and needs to be reorganize globally. The tree
after inserting is shown in (b).

• K← KeyGen(m+ε) In this algorithm, the secret vector
S̃ is a (m+ε)-dimension vector, and M̃1 and M̃1 are (m+
ε)× (m+ ε) invertible matrices, where ε is the number
of phantom terms.

• Ĩ ← IndexGen(D,K) In this algorithm, the index vector
Vu is a (m + ε)-dimension vector, and Vu[j], j = m +
1, . . . ,m+ ε is set as a random value ηj.

• T ← TrapdoorGen(Wq,K) Similar to the index vector
Vu, the dimensionality of the query vector is increased to
(m+ ε) before encryption as well. The difference is that
values of a random number of extended elements are 1,
and others are 0.

• R← Search(T , k, u) After introducing some phantom
terms, the final relevance score of index vector Ṽu and
T equals to Vu · Vq +

∑
ηv, where v ∈ {j|Vq[j] = 1}.

V. SECURITY ANALYSIS
In this section, we analyze the security of the ESMRS
scheme. The security depends on the secure kNN
computation.

A. SECURITY PROOF
Theorem: Due to the introduction of the random split, the
scheme is capable of preventing the cloud server from
decrypting ciphertext if it does not get the secret key K.

Proof: For each index vector Vu, the cloud server knows
the encrypted value Ṽu = {Ṽua, Ṽub} = {M̃1

T
V ′u, M̃2

T
V ′′u }.

Without the splitting indicator S̃, the cloud server has to set
V ′u and V

′′
u as two random m-dimension vectors, and set the

following equations: Ṽua = M̃1
T
V ′u and Ṽub = M̃2

T
V ′′u . The

number of unknown variables in V ′u and V ′′u is 2m and that
in M̃1 and M̃2 is 2m2, but the number of equations is 2m.
Therefore, the information known by the cloud server is not
enough to crack matrices M̃1 and M̃2. Basically, the cloud
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Algorithm 2: IndexGen(D, K)
Input: the secret key K and the document collection

D = {d1, d2, . . . , dn} with identities
ID = {ID|ID = 1, 2, 3 . . . n}.

Output: the encrypted index tree Ĩ.
1 Generate a leaf node U ;
2 Initialize a new list CurrentRecordSet;
3 for each document dID in D do
4 Generate a record u for dID, with u.child = null,

u.ID = ID, and Vu[i] = TFdID,wi ;
5 Find the K most similar documents and insert {ID,

Vu} of them into u.S by using formula (1);
6 insert u into CurrentRecordSet;
7 end
8 while the number of records in CurrentRecordSet is

more than 0 do
9 Insert(u, U );
10 end
11 Clear CurrentRecordSet;
12 for each index vector Vu in the index tree do
13 Generate two index vectors V ′u and V

′′
u ;

14 for each element in V ′u and V
′′
u do

15 if S̃[i] = 0 then
16 V ′u[i] = V ′′u [i] = Vu[i];
17 else
18 V ′u[i] = η

′,V ′′u [i] = Vu[i]− η′;
19 end
20 end
21 Generate an encrypted index vector

Ṽu = {M̃1
T
V ′u, M̃2

T
V ′′u } and clear Vu,V ′u and V

′′
u ;

22 end
23 return the root of index tree Ĩ;

server is obliged to try out all configurations of splitting so
as to solve the matrices. Since there are 2m possible splitting
configurations, the introduction of random split makes the
scheme 2m more costly to attack. Accordingly, if m is large
enough, the cloud server is not able to decrypt the ciphertext
without the secret key.

B. PRIVACY ANALYSIS
1) INDEX AND QUERY CONFIDENTIALITY
With the introduction of the random split, index vectors are
encrypted by invertible matrices. Therefore, the cloud server
is not able to deduce initial vectors without the secret key,
which has been proved above. Moreover, the degree of dif-
ficulty of figuring out matrices is increased by introducing
phantom terms. Consequently, index confidentiality can be
protected. Based on the same principle, the query keywords
are invisible to the cloud server as well.

Algorithm 3: TrapdoorGen(Wq, K)

Input: the query keyword collectionWq and the secret
key K.

Output: the trapdoor T .
1 Generate a m-bit query vector Vq;
2 for each keyword inW do
3 if w[j] ∈Wq then
4 Vq[j] = IDFwj ;
5 else
6 Vq[j] = 0;
7 end
8 end
9 Generate two query vectors V ′q and V

′′
q ;

10 for each element in V ′q and V
′′
q do

11 if S̃[j] = 1 then
12 V ′q[j] = V ′′q [j] = Vq[j];
13 else
14 V ′q[j] = η

′,V ′′q [j] = Vq[j]− η′;
15 end
16 end

17 Generate a trapdoor T = {M̃1
−1
V ′q, M̃2

−1
V ′′q } and clear

Vq,V ′q and V
′′
q ;

18 return T ;

2) TRAPDOOR UNLINKABILITY
The introduction of random value ηj enables the ESMRS
scheme to generate different query vectors and obtain dif-
ferent relevance score distributions when search requests
are identical. That is to say, the trapdoor unlinkability is
enhanced. However, since the access pattern protection is not
the design objective of the proposed scheme from the effi-
ciency point of view, similarities contained in query results
from identical search requests can be taken advantage of by
the cloud server. In the proposed ESMRS scheme, the value
of
∑
ηv can be adjusted to keep the balance of efficiency and

privacy. The data user is able to make a trade-off between the
two options.

3) KEYWORD PRIVACY
By introducing the random value ηj and setting a random
number of extended elements of query vector as 1, the

∑
ηj

as a part of the final relevance score will not be identical
even search requests are the same. In consideration of ranked
search accuracy, ηj follows the identical uniform distribution
U (µ′ − ξ, µ′ + ξ ), where the mean is µ′, and the variance
as σ

′2 is ξ2/3. In light of the central limit theorem, the
summation of ω independent ηj, i.e.,

∑
ηj follows the nor-

mal distribution N (µ, σ 2), where the expectation µ and the
standard deviation σ can be calculated as:{

µ = ωµ′

σ 2
= ωξ2/3

(9)
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Algorithm 4: Insert(u, root)
Input: u = 〈ID, child[N ],Vu,S〉 and root.

1 Find the corresponding leaf node L whose range of ID
includes u.ID by binary search.

2 if the number of records of L < N − 1 then
3 Insert u into L;
4 Update the index vector Vu of L and its ancestor

nodes;
5 return;
6 else
7 if L.parent is not full then
8 Split L into two nodes L1 and L2;
9 L1← first half of records in the L;
10 L2← the rest records in the L;
11 Insert u into one of them;
12 Insert the middle ID of L1 and L2 into L.parent;
13 Link L2 to L2 with a live link;
14 Update index vector Vu of L1 and L2;
15 Update index vector Vu and child of ancestor

nodes of L1;
16 else
17 Execute global reorganization;
18 end
19 end

Thus, we can generate the random value ηj according to the
value of µ′ = µ/ω and ξ =

√
3/ωσ . The standard deviation

σ can be considered as a trade-off parameter between security
and ranked search accuracy. It is worth noting that σ needs to
be set small enough out of the concern of effectiveness, but it
will increase the risk that the cloud server gets more statistical
information of original scores. Therefore, σ can be adjusted
to keep the balance of accuracy and privacy.

VI. PERFORMANCE EVALUATION
The purpose of this section is to evaluate the performance of
our proposed schemes by performing extensive experiments
on the real-world document collection: the 20 Newsgroups
data set [54]. We implement all algorithms mentioned above
using Python language on a 1.80GHz Intel(R) Core(TM)
processor, Windows 10 operation system with a RAM of
8.00GB. The tests include 1) the precision and rank privacy of
search, and 2) the efficiency of index construction, trapdoor
generation and search.

A. PRECISION AND PRIVACY
As presented in Section IV. Phantom terms are introduced
to prevent the cloud server from linking identical search
requests for better data security. Therefore, the relevance
scores between index vectors and trapdoors will not be
exactly accurate. In the ESMRS scheme, there are two acces-
sible factors (i.e., the number of phantom terms and the
level of random value) that can influence the precision and
rank privacy. Similar to related works, the ‘‘precision’’ Pk is

Algorithm 5: Search(T , k , u)
Input: the trapdoor T , the number of documents to be

returned k and u
Output: the result collectionR

1 Initialize a new listR;
2 if u is not a leaf node then
3 MAX_SCORE = 0;
4 MAX_CHILD = u;
5 for each child in u.child[N ] do
6 score = u.child[i].Ṽu · T ;
7 if score > MAX_SCORE then
8 MAX_SCORE = score;
9 MAX_CHILD = u.child[i];
10 end
11 end
12 Search(T , k , MAX_CHILD);
13 else
14 Find the record whose relevance score with T is the

largest;
15 for each similar document in u.S do
16 Calculate the relevance score;
17 end
18 Rank u and its similar documents in descending

order according to relevance scores;
19 Insert the top-k {ID, Score} intoR;
20 end
21 returnR;

defined as [40]:

Pk = k ′/k (10)

where k ′ is the number of the real top-k documents that the
data user receives. Figure. 5(a) shows that the fluctuation of
precision of the ESMRS scheme attributes to the number of
phantom terms and the level of the random value, and with
small level of random value and number of phantom terms,
the capability of search is not influencedmuch. The definition
of ‘‘rank privacy’’ is obtained from [40] as well:

Rk =
∑
|li − l ′i |/k

2 (11)

where li is the rank number of document in the search results,
and l ′i is that in the real ranked documents. The larger rank
privacy means that the security is better, Figure. 5(b) shows
the rank privacy with various numbers of phantom terms and
levels of random value.

B. EFFICIENCY
1) INDEX TREE CONSTRUCTION
The procedure of index construction for document collection
D can be divided into three main steps, i.e., 1) finding the
K most similar documents for each document in light of
formula(1), 2) constructing an unencrypted B+-tree based
on the document collection D, and 3) encrypting all vec-
tors in the index tree. When constructing the index tree,
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FIGURE 5. The search precision (a) and rank privacy (b) with different
numbers of phantom terms and random value upper limit δ.

the number of documents in the collection D and the size of
keyword dictionaryW are principal factors that influence the
time overhead. Figure. 6(a) shows that the time consumed
to construct the index tree is basically linear with the num-
ber of documents. Figure. 6(b) shows that with the fixed
document collection, the time overhead is proportional to
the number of keywords in the dictionary when constructing
the index tree. Due to the expansion of vector dimensional-
ity, the ESMRS scheme consumes slightly more time than
the BSMRS scheme in constructing encrypted index tree.
It is worth noting that the index construction is a one-time
operation. In this paper, we compare our schemes with the
EDMRS scheme [39] and the DVMRS scheme [53]. The
results show that the time overhead of our schemes is less
than EDMRS and is approximate to DVMRS with increased
size of document collection, and is less than both of themwith
increased size of keyword dictionary. Note that, in the process
of encrypting leaf node, we store the encrypted index vector
of each plaintext index vector temporarily, which can be used
in the subsequent encryption process, so each index vector is
only encrypted once, and the number of similar documents
has little impact on the time overhead of index construction,
as shown in Figure. 6(c). Moreover, the order of the index tree
can influence the time overhead to a certain extent, as shown
in Figure. 6(d).

2) TRAPDOOR GENERATION
The trapdoor generation process includes two multiplications
of a matrix and a vector splitting operation. Therefore, the
time complexity is O(α2), where α = m + ε. Figure. 7(a)
shows that the time overhead of generating trapdoors primar-
ily contingents on the number of keywords in the dictionary
since most of the time is used to encrypt the query vector,
and the dimensionality of the vector contingents on the size
of the dictionary. Thus the time overhead increases as the size
of the keyword dictionary is enlarged. Moreover, the ESMRS
scheme consumesmore time because the dimensionality have
been extended compared to the BSMRS scheme. Figure. 7(b)
indicates that the generation time of trapdoor is almost unaf-
fected by the number of query keywords.

3) SEARCH EFFICIENCY
We improve the search efficiency in two ways: 1) introducing
B+-tree as the basic structure to build the index tree, 2) con-
structing a similar document collection for each document.

FIGURE 6. The time overhead of constructing the index tree: (a) for
different sizes of document collection with fixed size of dictionary,
m = 4000, (b) for different sizes of dictionary with fixed size of document
collection, n = 4000, (c) for different numbers of similar documents,
(d) for different levels of order of B+-tree.

FIGURE 7. The time overhead for generating trapdoor: (a) for different
sizes of dictionary with fixed number of query keywords, t = 10, and
(b) for different numbers of query keywords with fixed size of dictionary,
m = 4000.

The search process performed by the cloud server mainly
includes searching for the document which is most relevant
to the trapdoor and ranking the document and its K most
similar documents in descending order according to relevance
scores with the trapdoor. The search algorithm terminates
after the top-k documents are selected.We evaluate the search
efficiency of our proposed schemes and compare with the
EDMRS scheme and the DVMRS scheme under different
parameter settings. In particular, we study the effect of the
size of document collection and the cardinality of keyword
dictionary. In our schemes, B+-tree is the basic structure of
the index tree, the height of the tree is O(logN n), and the
computation times is N on each layer of the index tree, so the
time complexity of search is O(N logN n), it is better than
linear. In addition, benefit from the use of similar document
collection, the number of nodes that need to be visited is less
than other schemes, it contributes to the improvement of the
search efficiency as well. Results in Figure. 8 demonstrate
that our search scheme is significantly more efficient in terms
of time overhead. In particular, the efficiency of search in
EDMRS and DVMRS drops obviously with the increased
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FIGURE 8. The time overhead of search using 10 words as query
keywords: (a) for different sizes of document collection with fixed size of
dictionary, m = 4000, and (b) for different sizes of dictionary with fixed
size of document collection, n = 4000.

number of documents and cardinality of keyword dictionary,
while ours maintain high efficiency. Note that, for the purpose
of keeping the balance of accuracy and privacy, the number of
phantom terms that added to disturb the relevance score is 400
(10% of the number of keywords). Thus, the search efficiency
is not influenced apparently, so curves of the BSMRS scheme
and the ESMRS scheme in Figure. 8 are adjacent.

In conclusion, without losing the efficiency of index tree
construction, we effectively improve the efficiency of search,
which indicates that our scheme is feasible and efficient.

VII. CONCLUSION
In this paper, we conduct thorough research on the effi-
ciency and security issues of multi-keyword ranked search
over encrypted cloud data and propose a secure and efficient
search scheme. The scheme can not only achieve accurate
multi-keyword ranked search but also make the search time
better than linear. In terms of accuracy, the vector space
model and TF-IDF model are exploited to effectively acquire
accurate ranked search results. The secure kNN computation
is combined to protect the scheme against two threat models.
To improve the search efficiency, we construct the index
tree based on the B+-tree structure and construct a similar
document collection for each document before encryption.
Through thorough security analysis, our proposed scheme
is proved that it is secure and privacy-preserving while
maintaining the precision of multi-keyword ranked search.
Extensive experimental results on the real-world document
collection demonstrate the feasibility and efficiency of the
scheme.

In the proposed scheme, the similar document collection
increases the storage overhead to a certain extent. Therefore,
in our future work, we will explore schemes that support
better space efficiency.
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