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ABSTRACT An SDN switch newly added to a network needs to establish a control channel with an SDN
controller to manage control-plane traffic. The setup of such a channel is termed bootstrapping. In the case
of in-band control, bootstrapping involves setting up a control path that may traverse one or more switches
between the new switch and the controller, which is achieved through the configuration of layer-two to layer-
four parameters on relevant switches. Previous approaches either result in lengthy bootstrapping time due to
their level- by-level mechanisms, demand complicated modules, or lack some essential features. This paper
proposes an approach to fast automatic bootstrapping that overlaps the bootstrapping processes among a
set of switches. Our emulations using virtual switches completed the process of bootstrapping 50 switches
arranged in a chain in 2.0 seconds, which is a 98% time reduction compared with a prior study.

INDEX TERMS SDN, OpenFlow, in-band control, bootstrapping.

I. INTRODUCTION
Software-defined networking (SDN) is a trend in network
management that decouples the control plane from the
data plane. In an SDN network, a server called the
controller manages SDN switches through control messages.
OpenFlow (OF) is a de facto standard which defines the
communication between the controller and switches under
its management. When a new OF switch is put into an SDN
network, it needs to establish a control channel connected
to the controller. The control channel is for control-plane
traffic only and has two classifications: out-of-band and in-
band. An out-of-band channel uses a dedicated physical link
between a switch and a controller; it is not always feasible
(e.g., in a widely distributed network) or cost-effective.
On the other hand, an in-band control channel demands no
additional physical links, using existing ones because the
control-plane traffic is simply intermixed with data-plane
traffic in the SDN network. If the new switch has a direct
link to the controller, the link will serve as the in-band control
channel. Otherwise, the control channel between the switch
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and the controller need to be realized as a control path
traversing one or multiple other switches.

Establishing a control path requires configurations on
not only the OF switches and the controller but also
the intermediate switches, and possibly other assisting
servers. A manual configuration on all relevant switches and
the controller is usually time consuming and error-prone.
Therefore, the process of automatic configuration called
bootstrapping [1] is more desirable. Bootstrapping consists
of the setup of a bidirectional layer-two (L2) connection
between the switch and the controller, the acquisition of a
layer-three (L3) identifier for the switch, and the creation of
layer-four (L4) connectivity for an OF session between the
switch and the controller.

There have been some studies on automatic bootstrapping
mechanisms. Many approaches perform bootstrapping in
a level-by-level manner [1]–[6]. In these approaches, a
switch can only begin its configuration process once a
neighboring switch is configured. Consequently, the time it
takes to bootstrap a batch of switches is contingent on the
maximal length of the control path. Refer to Fig. 1a and
Fig. 1b for an illustration. An experimental study in [2]
reported that it took two seconds to bootstrap one switch,
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FIGURE 1. (a) A four-switch topology (b) Running of level-by-level
bootstrapping (c) Running of the proposed approach.

so a level-by-level approach spent 100 seconds configuring
50 switches arranged in a chain. There are other approaches
that do not operate level-by-level, but these approaches also
have weaknesses. Some designs demand the installation of
complicated modules [7], some likely cause performance
degradation due to their L2 designs [8], and some do
not consider the binding between L2 and L3 identifiers
(i.e., MAC and IP addresses) of the switch [9].

In this paper, we propose a fast and automatic bootstrap-
ping mechanism for a set of OF switches, named One-Pass
In-Band Automatic Bootstrapping (One-Pass IBAB). This
approach allows for the overlap of bootstrapping processes
among switches so as to reduce overall configuration
time. More explicitly, One-Pass IBAB allows a switch to
commence its configuration process as soon as one of its
neighboring switches has created a uplink control path to the
controller (refer to Fig. 1c). It can thus shorten significantly
time to bootstrap a batch of switches. We used virtual
switches to emulate the execution of One-Pass IBAB on
various network topologies. It took merely 2.0 seconds to
bootstrap a 50-switch chain, which is a 98% time reduction
compared with [2]. Moreover, One-Pass IBAB requires even
less time in other topologies than in chain topologies. We also
report on the topologies of all the final control paths in two
grid-based physical topologies.

The rest of this paper is organized as follows. Sec. II briefs
on background and related work. Sec. III details the proposed
bootstrapping approach. Numerical results are presented in
Sec. IV, and the last section concludes this paper.

II. BACKGROUND AND RELATED WORK
A. BACKGROUND
An OpenFlow switch processes an incoming packet based
on the flow rules specified in its flow table — for example,
dropping it, forwarding it to some port, or to the controller.
A new switch with an empty flow table will drop all
incoming packets by default. Therefore, when setting up an
in-band control channel, all existing designs assume that
default/hidden flows will be automatically added to an OF

switch when it boots up. These default/hidden flows are used
to forward in-band control messages to set up control paths.
OpenFlow also defines a virtual port in every OF switch (the
local port [1]) for control-plane communication between the
switch and a remote entity (i.e., the controller). Any packet
forwarded to the local port will be processed by a local
network stack in the switch.

Typical local network stacks include OF agent, Dynamic
Host Configuration Protocol (DHCP) client, and the agent
for bootstrapping. The goal of bootstrapping is to establish
a control path from the local port to the controller, which
involves the setup of an L2 connection, the acquisition
of an L3 identifier, and the creation of L4 connectivity
for the OF session between the switch and the controller.
OF switches use IP and Transmission Control Protocol (TCP)
as L3 and L4 protocols, respectively. The controller and a
neighboring OF switch can help a new OF switch set up
its L2 connection with the controller. If the new switch is a
hybrid switch that supports both OF and traditional Ethernet
switching, the switch can also use the normal mechanism [1]
(i.e., Ethernet switching) for L2 connection. For Ethernet
switching, switches useMAC learning to learn of the bindings
between their ports and the MAC addresses of the controller
and other switches in the network. These bindings are kept
in switching tables to facilitate frame forwarding for the
controller and other switches. Note that the physical topology
connecting these switches may contain cycles. The existence
of a cycle will induce a broadcast storm, which occurs when
a switch disseminates a broadcast frame or forwards a unicast
frame with a previously-unseen destination MAC address.
Therefore, whenever Ethernet switching is used, it should
be coupled with the Spanning Tree Protocol (STP) [10]
to maintain a loop-free logical tree on top of the physical
topology; a broadcast storm can be avoided by confining
frame forwarding to the tree. The downside is that STP
usually takes considerable time to converge.

The controller may itself manage its L2 connection with
a new switch (switch A for the purpose of this discussion)
if the switch has a physical link to either the controller or
a neighboring OF switch (switch B) that has already been
configured. Specifically, switchAmay broadcast an L2 frame
firstly to the controller or switch B for two reasons:
• A has yet to configure an IP address so A requests this
by broadcasting a DHCP Discover message;

• Or, A somehow acquires the IP addresses for both itself
and the controller but does not know the controller’s
MAC address, so A broadcasts an ARP (Address
Resolution Protocol) request message.

If this broadcast frame is received by the controller,
it will thereby detect the presence of this new switch. If the
broadcast frame is received by switch B, the message will not
match any rule in B’s flow table since A is a new addition.
Therefore, B will forward the message to the controller
using a packet-in message. Either way, the controller will
find a route from A to the controller. It will also instruct
switches along the route to add flow rules for the delivery
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of A’s message, if need be. If the controller manages its
L2 connection with a new switch this way (e.g., [6]), the
control path cannot be set up unless and until one of the
switch’s neighboring switch gets configured— an action also
managed by the controller. Consequently, the controller will
configure switches in a level-by-level manner.

Besides an L2 connection to the controller, a switch should
also configure its L3 and L4 parameters for the OF session
with the controller. We do not need an L3 routing protocol
because the switch and the controller are in the same network
segment. However, for identification purposes, the switch still
needs to configure an IP address for itself and acquire the
controller’s IP address. It may also need to configure other L3
parameters (the IP address of the gateway, the subnet mask,
etc.) for compatibility or other concerns.

It is common that a DHCP server is running at the
controller to assign IP addresses to hosts. In that case, a
new switch may also use DHCP to configure its IP setting
and, with an extension to DHCP, obtain the controller’s
information, including its IP address and transport-layer
parameters such as protocol type and port number. If this is
the case, the switch should also establish an L2 connectivity
with a DHCP server. Because the switchmay not have a direct
link to a DHCP server, other switches (both configured and
not, possibly with the intervention of the controller) should
cooperatively forward or relay DHCP-related messages
between the switch and the DHCP server. If the new switch’s
L2 connection with the controller has been set up, a simple
approach is to run a DHCP server in the controller as a
controller application. This approach is feasible even if there
is no DHCP server in the switch’s broadcast domain, because
the controller could act as a DHCP relay for the switch’s
requests.

After acquiring all the necessary controller information,
the switch then proceeds to create a TCP connection with the
controller, upon which an OF session between the switch and
the controller is established. The controller may then perform
authentication and send out probe message to explore the
network topology.

An OF switch becomes fully-configured after the estab-
lishment of an OF session between itself and the controller.
A fully-configured OF switch could then assist the controller
in bootstrapping other switches. Before a switch becomes
fully-configured, any data packet received by the switch will
be dropped by default.

B. RELATED WORK
OpenVSwitch (OVS) is a virtual switch that supports Open-
Flow protocol. Though an OVS is usually used to simulate
an OF switch in an SDN network, it can be embedded
to a real switch as an OF agent that communicates with
the controller. To perform bootstrapping, the OVS installs
hidden flows on the switch to run normal mechanisms for
L2 to L4 connectivities with the controller. It then creates
an OF session with the controller. The OVS does not
specify how it obtains the controller’s IP address, so the

network administrator may need tomanually configure this in
every OVS.

Sharma et al. [2] and [1] were the first to propose an
in-band automatic bootstrapping mechanism for OF net-
works. They used DHCP to assign IP addresses to switches
and extended it to include controller-related information,
such as the controller’s IP address, transport-layer protocol,
and port number. When new switches broadcast DHCP
Discover messages, only those directly connected to a DHCP
server can get configured. Afterwards, other switches directly
connected to these switches can be configured.

Schiff et al. [3] and [4] assumed that any new switch
is pre-configured with its own IP address and is aware
of the controller’s anycast addresses. When a new switch
broadcasts an ARP request (with the controller’s anycast
address), a neighboring switch that is already connected to
the controller will forward the request to the controller. The
controller can then set up flow rules in the intermediate
switches for the new switch. This approach were also adopted
in [5], [6].

All the aforementioned procedures work in a level-by-
level manner. The key to overlapped bootstrapping is to
initiate the establishment of a control path between a
new switch and the controller or DHCP server without
fully-configured intermediate switches.

Katiyar et al. [7] proposed using pre-configured VLAN
to lay a path (consisting of possibly non-SDN switches)
from a new SDN switch to a DHCP-based configuration
server. When the server receives DHCP Discover messages
from a switch, other modules will locate the switch’s
location and configure all intermediate switches between
the controller and the new switch. This scheme requires
some prior configuration in intermediate switches to ensure
the connectivity and allow the controller to handle MAC
address resolution. Another bootstrapping approach in [8]
uses normal mechanisms to deliver DHCP/ARP/TCP-SYN
messages. Once a switch has been configured, the controller
installs flow rules onto the switch to force it to forward
subsequent ARP requests to the controller. Though this
approach provides the necessary L2 connectivity, it will either
cause a broadcast storm or suffer from long convergence time
caused by STP.

Lopez-Pajares et al. [9] proposed an automatic bootstrap-
ping scheme that assigns hierarchical labels (i.e., MAC ad-
dresses) to switches to facilitate frame forwarding on the
control plane. The scheme assumes software-configurable
MAC addresses and assigns one or more MAC addresses to
each switch. EachMAC address consists of a fixed number of
fields that collectively encode a possible control path from the
controller to the switch. MAC address assignment is done by
flooding a special message. This approach provides resilience
against link failure by maintaining multiple control paths
from a switch to the controller. However, this design induces
switch overhead, and the length of the control path is limited
by the number of fields in the MAC address. The dynamic
binding of IP and MAC addresses may also create issues due
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to inconsistency when a switch changes its MAC address as a
response to a link failure. In fact, Lopez-Pajares et al. did not
discuss how to perform configuration of (possibly dynamic)
IP addresses.

A fundamental part of bootstrapping is to create a control
path between every switch and the controller. The control
paths may collectively form a ring structure [11] or, more
commonly, a spanning tree rooted at the controller. Such
a spanning tree has been exploited for other purposes
such as topology discovery [12], [13] and fast flow rule
installation [14]. Goltsman et al. [15] studied how to pre-
calculate recovery paths for a spanning tree to handle
possible link and switch failures. Their approach could
be complementary to One-Pass IBAB as it also creates a
spanning tree rooted at the controller for control paths.

III. PROPOSED APPROACH: ONE-PASS IBAB
This section elaborates on One-Pass IBAB, the proposed
bootstrapping design for SDN switches. Each switch will
undergo four phases in the proposed approach. The first is to
identify its root port and create an uplink control path to the
controller. The second is to create a downlink control path
from the controller to it. The third phase is executing DHCP,
and the last is creating an OF session with the controller.

A. ASSUMPTIONS AND REQUIREMENTS
We assume an OF controller and a set of switches to bootstrap
which are in the same network domain as the OF controller.
The proposed approach does not demand anymodification on
the OF controller but the ability to run a third-party controller
application or service. Each switch as well as the controller
has a unique MAC address used in the control plane. All
switches support normal mechanisms, which means each
switch has switching tables and ARP tables in addition to
flow tables. Switches can turn on or off MAC learning during
bootstrapping but do not need STP. Every switch uses DHCP
to configure its own IP address and other IP-layer parameters
(e.g., the IP address of the gateway and the subnet mask).
We also assume a DHCP server running on the controller.
Each switch by default runs a DHCP client to communicate
with the DHCP server.

We designate a default flow rule to be pre-configured in
newOF switches to override normal pipeline processing. This
default rule instructs the switch to forward all incoming IBAB
messages to its local port and drop all other messages.

There is an IBAB server running on the controller to
disseminate controller information and discover switches.
For each new OF switch, we require an agent that serves
as an IBAB client to exchange bootstrapping-related control
messages with the IBAB server. The IBAB client is a part of
the local network stack in addition to the DHCP client and
OF stack.

B. PHASE 1A: IDENTIFYING ROOT PORT
Every switch in IBAB needs to first identify its root port. The
root port is the switch’s portal to the controller. According to

the default rule, prior to setting up its root port, a new switch
will drop all incoming messages except IBAB messages.

To help switches identify their root ports, the IBAB server
proactively disseminates IBAB Adv messages using con
strained flooding. IBAB Adv is a User Datagram Proto-
col (UDP) broadcast message that contains the controller’s
MAC and IP addresses along with other transport-layer
parameters, such as the TCP port number of the OF session
to be created. It not only allows new switches to acquire
essential information to reach the controller, but also helps
switches identify their root ports.

When an IBAB client receives an IBAB Adv message
for the first time, it takes the incoming port (i.e., in_port)
as the root port of the switch and forwards the message to
every other port. It also drops any future IBABAdv messages
coming from ports other than this root port. This rule cuts off
redundant flooding of IBAB Adv messages, thus alleviating
the potential for a broadcast storm problem. To periodically
disseminate IBAB Adv, however, the switch still forwards
subsequent IBAB Adv messages coming from the root port
to all other ports. Tables 1 and 2 exhibit the rules that a new
switch uses to handle incoming frames/messages before and
after setting up its root port, respectively.

When a switch detects a link-down event in the root port,
the switch should reset all settings and restart the bootstrap-
ping process.

C. PHASE 1B: CREATING UPLINK PATH
The uplink path of a switch si, denoted by up(si), is the
control path from si to the controller. In IBAB, up(si) becomes
available when si first receives IBAB Adv message from a
upstream switch sj. The only thing si needs to do is to take its
root port as the portal to the controller. This is done by:

• Adding an entry to the switching table that binds the
controller’s MAC address with the root port. This is
for the delivery of subsequent control messages during
bootstrapping.

• Adding a new rule in the flow table that directs all
frames with a destination MAC address matching the
controller’s to the root port. This will be used after the
switch completes its bootstrapping process (while some
other switches may not ).

Afterwards, when an agent (e.g., IBAB client or DHCP client)
running on switch si wants to send a control message to
the controller, it does so through si’s root port to sj. Upon
receiving the message, sj then forwards it to sj’s root port.
In this way, the message is delivered all the way to the
controller.

Accordingly, a switch si can proceed to subsequent phases
as soon as it has set up its root port. This is true even if
some or all switches along up(si) have not yet configured
their L3/L4 parameters or established OF sessions with the
controller. Refer to Fig. 2 for an illustration. This is the main
difference between the proposed approach and other level-by-
level methods.
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TABLE 1. Before setting up the Root Port (RP).

TABLE 2. After setting up the Root Port (RP).

D. PHASE 2: CREATING DOWNLINK PATH
The downlink path of a switch si, denoted by down(si), is the
control path from the controller to si. In IBAB, down(si) is
the reverse of up(si) because the setup of down(si) is based
on up(si). More explicitly, the setup of down(si) demands
the delivery of an IBAB Reply message from si back to the
controller.

After setting up the root port, the IBAB client in si sends
back an IBAB Reply message to the IBAB server. IBAB
Reply is a unicast UDP message that includes si’s MAC

address. Since the switch is not yet fully-configured, it needs
to configure a temporary IP address — which can be a
fake or default IP address — for itself as the source IP
address. For the rest of the reply, the IBAB client has the
following two implementation options. Their performances
will be empirically analyzed in the next section.
• Since the client already has all the information needed
to encapsulate the message in a unicast frame, it can use
a raw socket (i.e., bypassing the protocol stack in the
kernel) to send the frame.
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FIGURE 2. Overlapping bootstrapping in One-Pass IBAB for the
four-switch topology shown in Figure 1.

FIGURE 3. A scenario where dynamic ARP does not work in Phase 2.

• Alternatively, the IBAB client can make a system call
to send out an IBAB Reply as a UDP datagram, i.e.,
by requesting a UDP socket from the kernel. The IBAB
client should specify the IP address and transport-
layer parameters (e.g., port number) of the controller.
To prevent the kernel from issuing an ARP request,
the IBAB client also needs to add a static entry to the
switch’s ARP table beforehand thatmaps the controller’s
IP address to the controller’s MAC address. This is
possible since the IBAB client has already acquired
these two parameters from the IBAB Adv.
We use static ARP instead of dynamic ARP request/
reply, not because the latter is more time-consuming,
but because dynamic ARP does not work at this stage.
Indeed, an ARP request message sent by a switch can be
delivered all the way to the controller without difficulty,
given that the uplink path has already been created.
However, because this request is a broadcast message,
its delivery will not trigger source MAC learning in
the switches along the uplink path. Consequently, the
corresponding ARP reply message cannot be delivered
back to the source switch unless the switch has a direct
link to the controller. Fig. 3 illustrates an example with
three switches S1, S2, and S3 arranged in a chain. Switch
S1 can receive the ARP Reply sent by the controller as
they are directly connected. On the other hand, other
switches fail to receive their replies since S1 will drop
them (refer to Table 2).

The delivery of an IBAB Reply all the way back to the
controller is as follows. First, because si’s switching table
already binds si’s root port to the controller’s MAC address,
the IBAB Reply is sent through si’s root port to the next
upstream switch (with respect to down(si)).

When the message reaches an upstream switch sj, sj binds
si’s MAC address with its in_port and forwards the message
to sj’s root port (refer to Table 2). When the IBAB server
receives an IBAB Reply from si, the server will recognize
its presence and take the si’s MAC address as its identifier.
The controller will also bind si’s address with the in_port
of this message. Hence, the IBAB client in si and the IBAB
server have established a bidirectional path based on L2
identifiers, i.e., MAC addresses. However, for an OF session
using IP addresses and higher layer identifiers, the switch
should further perform DHCP and other activities.

E. PHASE 3: RUNNING DHCP
A switch initiates DHCP by broadcasting a DHCP Discover
message. If the switch has set up its root port, the default
rules, as specified in Table 2, will send out the message
through the root port. Therefore, a switch that has a direct
link to the controller can deliver the DHCPDiscover message
to the controller as soon as it sets up its root port. Other
switches require the assistance of intermediate switches.
An intermediate switch that receives these messages will
forward them to its root port if the root port has been
set up; otherwise, it will drop these messages. Since the
switch’s uplink path has already been created in Phase 1,
the DHCP Discover message can be delivered all the way to
the controller.

After receiving the DHCP Discover message, the DHCP
server should respond with a unicast DHCP Offer. This
message can be delivered to a destination switch si because
down(si) has been created in Phase 2. The subsequent DHCP
messages, i.e., DHCP Request and DHCP Ack, can be
respectively delivered along up(si) and down(si).

F. PHASE 4: CREATING OF SESSION
In case that the OF session between a switch and the
controller is built upon a TCP connection, the OF client
on a switch should create a TCP connection and instantiate
an OF session with the controller after the switch has been
configured IP layer parameters.

The OF client in switch si creates a TCP connection with
the controller by executing the three way handshake protocol.
To send its first TCP SYN message, si needs the binding
of the controller’s IP address and MAC address. This is
straightforward if the corresponding ARP entry has been
statically created in Phase 2 with the implementation option
of UDP socket. If not, the switch itself may autonomously
broadcast an ARP request asking for the controller’s MAC
address (which is out of the IBAB client’s control). In this
case, si’s ARP request will be delivered along up(si), which is
identical to the way its DHCP Discover message is delivered.
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Note that switch si sends back IBAB Reply messages to
the controller before acquiring si’s IP address; the source IP
address in the IBAB Reply is a fake or default IP address.
While the IBAB server already has switch si’s MAC address,
it may acquire si’s IP address after receiving si’s ARP request.
Alternatively, the controller may broadcast an ARP request to
reply to si’s TCP connection request. In this case, the delivery
of the ARP request from the controller to si is identical to the
delivery of an IBAB Adv message.

After the TCP connection is established, an OF session
can then be launched using the TCP connection. The
bootstrapping is completed when every switch in the network
has established an OF session with the controller. The
controller then proceeds to topology discovery and other
routine management activities, which falls under the scope
of OpenFlow.

G. DISCUSSION
We are now in a position to address several aspects that merit
closer investigation. First, one concern may arise when some
of data-plane flow rules overlap or conflict with ours for in-
band control. If this is the case, there remains no need to
introduce any conflict resolution scheme such as in [16] for
the following reasons.

1) Flow rules of the in-band control plane (flow rules we
need) have a higher priority than those in the data plane.
In other words, the former will override the latter if
there is any overlapping or conflict.

2) In practice we can designate a VLAN for in-band
control as a way to isolate in-band control-plane traffic
from data-plane traffic. Since the controller is fully
aware of the existence of this VLAN, the controller
is enabled to identify any flow rule for the data plane
in conflict with those for the in-band control plane
(i.e., any data-plane flow rule that is conditioned on the
designated VLAN). The controller can thus simply rule
out such flow rules or ignore them in that the flow rules
of the in-band control plane will override these conflict
rules anyway.

3) Flow rules of the control-plane are not visible nor
accessible to the controller. As they are de facto hidden
to the controller, they are unlikely to be analyzed or
modified for conflict resolution purposes.

One-Pass IBAB relies on ARP protocol. As far as ARP
vulnerabilities are concerned, ARP spoofing, ARP cache
poisoning, and ARP flooding are important types of cyber-
attacks linked to other threats. Such vulnerabilities can be
redressed with techniques presented in [17], [18] which are of
avail to strengthen our architecture. Among others, Sun et al.
devised a practical scheme [18] that utilizes a cluster of
controllers, with reference to a database, to detect forged
ARP packets and monitor statistical characteristics of traffic
on each port of edge switches. The scheme was shown to
efficiently withstand attacks against ARP in an SDN-based
cloud computing environment.

On the other hand, we argue that our design of One-
Pass IBAB is not weakened unduly due to typical ARP
vulnerabilities. Observe that ARP is used in our bootstrapping
Phase 2 and Phase 4. Sec. III-D describes the rationale of our
development adopting static ARP instead of dynamic ARP
request/reply during Phase 2, which rules out the possibility
that a malicious node masquerades as a host intercepting
traffic on the network. Thanks to static ARP, switches in our
paradigm do not involve ARP message exchanges as cache
entries exist.

During Phase 4, a new switch si in our architecture might
opt to broadcast an ARP request for resolving the controller’s
MAC address (Sec. III-F) Another likely scenario takes place
when the controller generates an ARP request in response
to si’s TCP connection request. In either case, the controller
has learned of si’s MAC address upon receipt of the IBAB
Reply message earlier during Phase 2 and, thus, is able
to validate the new switch. Accordingly, the controller is
enabled to prevent any non-si hosts from compromising the
network. Additionally, in view that an ARP attacker must
have direct access to the local network, we may stipulate
that immediate neighbor switches whitelist the bootstrapping
si which has undergone prior phases, so neighbor switches
allow ARP packet forwarding for si via the root port but
drop ARP packets coming from other uncertified local nodes.
This delimits scope for ARP vulnerabilities. We mention
in passing that nowadays some operating systems like
OpenBSD or software tools are available to deal with ARP
spoofing.

We remark that our bootstrapping Phases 1 and 2 involve
IBAB Adv/Reply in a flavor nearly identical to the All-Path
protocol [19] in sense of exploring the network as well as
finding the fastest path between two nodes. However, afore-
mentioned potential ARP vulnerabilities are worth noting
and warrant treatment if ARP is employed to implement
the path-discovery process of the protocol. In comparison,
IBAB Adv and Reply messages are UDP-based which
can be digitally signed for authenticity protection as well.
Further, our design differs from All-Path in that, more
than finding a forwarding path as an essential part, our
scheme focuses on speeding up the entire bootstrapping
processes on a plurality of switches in a pipelined fashion.
We contrive means out of several feasible measures to inter-
relate switches by overlapping network operations of layers
2 up to 4 to the greatest extent possible, resulting in significant
performance improvement as shall be corroborated in the next
section.

When multiple controllers coexist in the same network, the
proposed approach still works if only one controller is active
while all others are standby. If two or more controllers are
active at the same time, there will be multiple controllers
broadcasting IBAB Adv messages. In that case, multiple
spanning trees could be formed provided that each switch
identifies the controller MAC address when processing
relevant IBAB Adv/Reply messages. More explicitly, after
a switch receives the first IBAB Adv message and thus
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FIGURE 4. Emulation environment (for a three-switch chain).

recognizes the controller MAC address, IBAB Adv from any
other controller should be discarded silently.

IV. NUMERICAL RESULTS
We used OVS to emulate SDN switches and measured the
bootstrapping time of the proposed approach. We replaced
all hidden rules in the OVS kernel with a default rule, which
stipulates all incoming IBAB messages to be forwarded
to the local port and others to be dropped. Two virtual
machines (VMs) were used for our emulations: one equipped
with 8 CPUs and 100 GBmemory, the other equipped with 24
CPUs and 20 GB memory. The former was used to emulate
the controller; the latter was used to emulate the network
environment, within which various topologies were created
using linux shell scripts. Each OVS had its own network
namespace to run its own protocol stack (Fig. 4). Mininet
could also be used provided that each OVS has its own
network space.

A. TESTING IMPLEMENTATION OPTIONS: RAW VS. UDP
Recall that an IBAB client may use either a raw socket or
a UDP socket to send IBAB Reply messages back to the
controller. We refer to these two options as Raw and UDP,
respectively, and compared their performances. To simplify
the effects of network topology, we arranged all switches in
a chain topology and varied the number of switches (i.e., the
length of the chain) from 10 to 70.

We first measured the control path creation time (Phases 1
and 2) of the whole network. This process begins with the
broadcast of the first IBAB Adv message, and ends when
the controller receives the last IBAB Reply message. Fig. 5
details the measured results. The control path creation time
with Raw is significantly lower than with UDP. This is due
to the extra time needed to add a static ARP entry when using
UDP socket.

We next measured Phase 3, IP configuration time, and
Phase 4, OF session creation time, for each switch in the
chain respectively. The IP configuration time of a switch
begins when the switch first broadcasts a DHCP Discover
message, and ends when the switch configures its IP address.
The OF session creation time is the time between the switch
sending out its first TCP SYN and receiving the OF feature
reply message, the latter of which indicates the creation of

FIGURE 5. The control path creation time of the whole chain.

FIGURE 6. The averaged sum of the IP configuration time and the OF
session creation time per switch.

its OF session. Let Yi be the sum of these two components
in switch i. Fig. 6 displays the averaged value of Yi (i.e.,
Ȳ =

∑n
i=1 Yi/n). The result shows that Ȳ increased with

the length of the chain. Raw and UDP performed similarly
concerning these two time components.

Finally, we measured the time it takes to bootstrap all
switches. This begins with the broadcast of the first IBAB
Adv and ends at the moment in which the last switch creates
its OF session. Fig. 7 displays the results. The bootstrapping
time was around 2.0 seconds for a 50-switch chain. For
comparison, Sharma et al. [2] reported a bootstrapping time
of around 100 seconds for a 50-switch chain. Our approach
thus yielded a 98% time reduction.

Although Raw had relatively low control path creation
time compared with UDP, the resulting bootstrapping time
difference between these two is inconsequential. The reason
is that control path creation time is relatively short compared
with the rest of the bootstrapping process. Once the control
path of the whole network is created, the rest of the procedure
for all switches can overlap. Let Ŷ = maxi{Yi} and X
be the total span of control path creation time. Taking into
account the overlapping, the overall bootstrapping time can
be roughly estimated as X + Ŷ (refer to Fig. 8). Accordingly,
X � Ŷ is the factor that dominates overall bootstrapping time
in our approach.
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FIGURE 7. The bootstrapping time of a chain.

FIGURE 8. Estimating the bootstrapping time of the whole network.

FIGURE 9. The estimated and measured bootstrapping time in Raw.

FIGURE 10. The estimated and measured bootstrapping time in UDP.

We used Ȳ (instead of Ŷ ) to estimate bootstrapping
time. Figs. 9 and 10 respectively demonstrate the estimated

FIGURE 11. The value of a in a chain topology.

FIGURE 12. Topologies tested (a) chain (b) double-chain (c) ring (d) full
binary tree.

and measured bootstrapping time in Raw and UDP. Since
Ȳ ≤ Ŷ , the estimated time was lower than the measured time
as expected.

Although X constitutes only a small portion of the overall
network bootstrapping time, it directly determines the time
fromwhich all switches start IP configuration and OF session
creation with the controller. Let a = X/Ȳ . We have a > 1 for
any level-by-level bootstrapping. The overlap between IP
configuration andOF session creation among switches is only
possible when a < 1. In this case, the degree of overlapping
is inversely proportional to the value of a. Fig. 11 displays
how the value of a changes with the number of switches in a
chain.

B. CONTROL PATH CREATION TIME IN VARIOUS
TOPOLOGIES
Since control path creation time of the whole network is
critical to overall performance, we studied it in four different
types of physical topologies: chain, double-chain, ring, and
full binary tree (Fig. 12). We further increased the number
of switches and measured their control path creation times.
We tested the full binary tree topology with 15, 31, 63,
and 127 switches. For the other topologies, we tested with
20 to 180 switches with increments of 20. Fig. 13 shows the
measured results. Observe that the chain topology had the
highest control path setup time. The results of the double-
chain topology was nearly half of the chain topology’s. This
is because the maximum length of the control path in the
double-chain topology is only half the length of the control
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FIGURE 13. Control path creation time in various topologies.

FIGURE 14. The uplink spanning tree in a 10 × 10 crossbar.

FIGURE 15. The uplink spanning tree in a 10 × 10 2-dim diagonal grid.

path in the chain topology. The ring-topology fared even
worse than the double-chain topology. This is because the
maximum length of the control path in the ring topology was
not always the half of the number of switches due to the
race condition of switches when setting up control paths. The
full binary tree topology had the best performance, but its
superiority is not very significant.

To study the topology of the uplink spanning tree from
every switch to the controller, we also tested a 10 × 10
crossbar and a 10 × 10 2-dim diagonal grid. The numbers

in Figs. 14 and 15 indicate the lengths of the control paths
from each switch to the controller. In these two settings, the
controller was placed in the same location as the switch with
the minimal length value of 1. In the crossbar, the maximal
length value of 11 belongs to the switch in the upper right
corner, while the length value for the same switch in the
2-dim diagonal grid is 8. Furthermore, the results show that
the control paths for some switches are not the shortest paths
for them to reach the controller. This is also due to the race
condition of switches when setting up control paths.

V. CONCLUSION
We have presented a faster bootstrapping scheme for
OpenFlow switches in which switches set up control paths
in a partially overlapping manner. In this scheme, a switch
can relay control messages for its neighboring switches to
the controller, even if the switch has not yet configured its
L3/L4 setting. We have detailed how to create control paths,
configure IP addresses, and create TCP connections and OF
sessions. Emulations demonstrated a significant reduction in
bootstrapping time with this approach.

Future works include an extension to controller-clustering
environment, faster failover design for link or path fail-
ure [11], control path monitor [14] and autonomic control
plane [20].
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