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ABSTRACT In this paper, we explore Android applications’ file access characteristics, and find out that
smartphone file accesses are different from traditional desktop applications in terms of the following aspects.
1) There exist a limited number of hot blocks, which are accessed consistently during the entire execution of
an application. 2) Block accesses in Android are highly biased such that the top 20% blocks account for 80%
of total accesses. 3) Hot blocks of the top 100 rankings are mostly involved in SQLite. 4) Unlike desktop
applications, file accesses in Android applications are write-intensive. 5) In predicting future file accesses in
Android applications, frequency is a better estimator than temporal locality. 6) The effect of traditional buffer
cache is limited in Android as file I/O in Android has a lot of synchronous writes, which incurs immediate
storage flushing. Based on these analyses, this paper presents the implication of buffer cache management
in Android. Specifically, we add a small non-volatile write buffer and present how this write buffer can be
managed efficiently. Experimental results show that the proposed scheme improves the storage write traffic
by an average of 21.7% and a maximum of 48.1% compared to the conventional buffer cache system.

INDEX TERMS Android, file access, application, smartphone, buffer cache, non-volatile memory.

I. INTRODUCTION
Due to recent advances in mobile platform technologies
and the explosion of applications based on it, smartphones
have become an essential computing device in our daily
life [1]–[3]. People are increasingly working with their smart-
phones, and various types of applications including social
media, location-based services, and multimedia streaming
services emerge every day [3]–[5]. Currently, the hardware
specification of smartphones has reached a certain level close
to that of desktops [2]. For example, Google Pixel 5 consists
of 2.4 GHz Octa-core CPU, 8GB DRAM, and 128GB Flash
storage, which is sufficient to concurrently execute traditional
desktop applications [6]. Such trends are expected to continue
as desktop applications tend to extend their execution plat-
form to smartphones.

Studies on smartphone performances reported that the stor-
age subsystem is the performance bottleneck of smartphones
rather than processor cores or wireless networks [7]. In order
to improve the storage performances, buffer cache is widely
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used in various computing environments. Buffer cache stores
requested file blocks read from storage in a certain part of
memory area, which allows fast accesses of the same file
blocks in subsequent requests [8]–[10].

As traditional buffer cache uses volatile memory (i.e.,
DRAM), modified file blocks should be flushed to storage
immediately to prevent inconsistency or loss of data upon sys-
tem crashes. To do so, file systems usually perform journaling
or flush operations that reflect the modifications to storage
periodically [11], [12]. In case of Android, applications also
perform journaling or logging operations by making use
of SQLite [11], [13]. Though such storage writes improve
the reliability of file data, they degrade the effectiveness of
buffer cache significantly due to frequent storage accesses
even when the cache space is sufficient [12]. That is, read
operations can benefit from the buffer cache, but even with
large cache space, write operations cannot be absorbed by the
buffer cache, resulting in heavy storage traffic.

Non-volatile memory technologies have caught interest
as an attempt to reduce the number of storage writes in
buffer cache [14], [15]. Non-volatile memory such as PRAM
(phase change random access memory) and STT-MRAM
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(spin-transfer torque magnetic random access memory) is a
byte-addressable medium like DRAM but it is non-volatile
and thus cached data are safe from power failure situations
although they are not flushed to storage [16]–[18].

Figure 1 compares the traditional buffer cache architecture
consisting of volatile memory and a new architecture by
adding non-volatile memory as write cache or write buffer.
Though volatile and non-volatile hybrid buffer cache has
already been studied [14], [19], we show that previous solu-
tions are not efficient for Android buffer cache because of
some distinct file access characteristics in smartphone appli-
cations. Specifically, we explore the file access characteristics
of Android applications, and find out that smartphone file
accesses are different from desktop or server systems in terms
of the following aspects.

• There exist a limited number of hot file blocks in
Android applications, which are accessed consistently
during the entire execution of an application.

• File block accesses in Android are highly biased such
that the top 20% blocks account for 80% of total
accesses. This is different from file access in desktops
where the top 50-60% blocks account for 80% of all
accesses.

• We investigate the identities of hot file blocks in Android
applications, and find out that the top 100 blocks in the
popularity ranking are mostly involved in SQLite.

• Unlike desktop applications, file accesses in Android
applications are write-intensive. Specifically, write oper-
ations account for 50-90% of total file accesses although
it depends on application types.

• In predicting future file accesses in Android applica-
tions, frequency is a better estimator than temporal local-
ity.

• File accesses in Android applications contain a lot of
synchronous writes, which incurs immediate storage
flushing.

As most of storage writes incurred by smartphone applica-
tions cannot be buffered by traditional buffer cache, we sug-
gest the adding of a small non-volatile write buffer and
present how it can be efficiently managed. Specifically,
we selectively flush modified blocks to either write buffer or
storage based on the write characteristics of Android block
accesses. Specifically, hot blocks are absorbed in write buffer,
whereas cold blocks are directly flushed to storage. As the
size of write buffer is limited, some hot blocks in the write
buffer should be flushed to storage eventually when there is
no free space. Selecting victim blocks in our write buffer is
also performed judiciously by annotating the write count of
blocks while storing them in the write buffer. We perform
experiments with real Android workload traces and show that
our scheme reduces the storage write traffic by 21.7% on
average and up to 48.1% compared to the conventional buffer
cache and by 10.8% on average and up to 18.1% compared
to the same non-volatile write buffer architecture without our
judicious management.

TABLE 1. Brief characteristics of the android file access traces used in
this paper.

The remainder of this paper is organized as follows.
In Section II, we present the analysis of file accesses
in Android applications. Section III presents how Android
buffer cache can be accelerated by the proposed scheme:
hybrid flush and hotness-aware eviction in the write buffer.
Section IV evaluates the performance of the proposed scheme
in comparison with the system that does not use it. Finally,
Section V concludes this paper.

II. ANALYZING FILE ACCESSES IN ANDROID
APPLICATIONS
In this section, we analyze the file access characteristics of
Android applications from various aspects including tempo-
ral characteristics, access skewness, re-access estimation, and
read/write characteristics. To collect file block access traces,
we make use of the strace utility, which has the ability of
tracing the system calls of a process [20]–[22].

We collect the file read/write access traces from seven
Android applications, namely, Facebook a social network
service, Farmstory a social game, Youtube an online video-
streaming service, Farmstory a networked game, TicToc an
instant messenger, Navermap, a map service application, No5
a puzzle game, and an Android Web browser. The duration of
the trace collection period is in the range of 15-20 minutes
for each application. We also collect a mixed trace while per-
forming multiple applications consisting of Facebook, Web
browser, Youtube, Navermap, and TicToc for 20minutes. The
characteristics of these traces are listed in Table 1.

Figure 2 plots the file block accesses as time progresses
for the eight workload traces we collected. In the figure, the
x-axis represents the logical time, which is increased by one
for each block access and the y-axis shows the logical block
number. We separately show the read and write accesses;
the blue and red plots, respectively, represent read and write
accesses. As shown in the figure, a certain number of low
block numbers are accessed from the launch time of applica-
tions, and they are consistently accessed as time progresses.
This implies the existence of hot blocks, which should be the
main target of caching.
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FIGURE 1. Comparison of traditional buffer cache and hybrid buffer cache with non-volatile memory.

To analyze the file access characteristics of Android appli-
cations further, we investigate the identities of the hot blocks.
Figure 3 shows the distributions of block accesses as the pop-
ularity rankings are varied. In the figure, the x-axis represents
the ranking of blocks sorted by their total access count and
the y-axis represents the number of accesses on that ranking.
In the figure, we separately show the block accesses involved
in SQLite and others. Note that SQLite is a lightweight
database library used in most Android applications for file
manipulations, which incurs a lot of synchronous write oper-
ations to storage. As shown in the figure, the top 100 blocks
in the popularity ranking are mostly involved in SQLite
except for Farmstory. Note that Farmstory does not make
use of SQLite in file manipulations when the application was
developed. Based on this observation, we can estimate that
buffer cache should maintain file blocks related to SQLite for
improving the cache hit ratio. However, as SQLite performs
journaling, which incurs synchronous writes to storage, tra-
ditional volatile buffer cache has limitations in reducing the
number of storage writes, which implies the necessity of the
non-volatile buffer cache.

Figure 4 shows the cumulative ratio of block accesses for
the given ratio of top blocks in popularity. Note that the
x-axis is the ratio of accessed blocks sorted by their access
count and the y-axis represents the ratio of accesses for the
given fraction of top ranked blocks. For example, 20% in
the x-axis implies the top 20% blocks, and the corresponding
value in the y-axis represents the ratio of block accesses they
generated.

As shown in the figure, block accesses generated by
Android applications are extremely skewed. Specifically,
20% of the top ranked blocks account for about 80% of total
accesses in most cases, implying that file block accesses in
Android applications mostly result from some hot blocks.
Unlike other applications, Farmstory does not exhibit a strong
bias towards file block accesses, where 20% of the top
ranked blocks account for only 40% of total block accesses.
From this analysis along with the result in Figure 3, we can
conclude that the source of the strong bias in Android file
accesses are from SQLite. Note that Farmstory does not
use SQLite as shown in Figure 3 and its cumulative block
accesses in Figure 4 do not exhibit a strong bias. When com-

pared to desktop or server systems, the skewness of Android
file accesses is very strong as it is known that 50-60% of the
top ranking blocks account for 80% of file accesses in server
systems [23], [24].

Figure 5 shows the ratio of reads to writes for the file
access traces we captured. As shown in the figure, all appli-
cations we considered exhibit write-intensive access patterns.
In some applications such as Navermap, writes are over
90%. Also, as most Android applications use SQLite in file
manipulations, which incurs synchronous writes to storage,
such a large ratio of write operations increases storage traf-
fic dramatically, leading to severe slowdown of smartphone
systems [11], [13]. Note that this is different from traditional
desktop applications, where read operations account for a
large portion of file accesses [25]–[28].

To improve the file system performances, buffer cache
should absorb as many I/O accesses as possible. As the size
of buffer cache is limited, we need to estimate the re-access
likelihood of cached blocks accurately and evicts those blocks
not likely to be re-accessed from the buffer cache if there is
no free cache space. Temporal locality and access frequency
are the two well-known characteristics used to predict the
re-access likelihood of file blocks [9], [29], [30].

We compare the two characteristics from the viewpoint
of Android file accesses in Figure 6. That is, the effects
of temporal locality and access frequency on the re-access
likelihood of file blocks are compared. In the figure, the
x-axis represents the block rankings in terms of the tempo-
ral locality and frequency, and the y-axis is the number of
re-accesses that occur on the block ranking of the x-axis.
The gray plot and the black plot represent the block rankings
based on temporal locality and access frequency, respectively.
For example, ranking 1 in the gray plot represents the re-
access count of the most recently used position in the cache
whereas ranking 1 in the black plot represents the re-access
count of the most frequently used position.

As shown in the figure, the black plots are located above
the gray plots in high rankings. This implies that the re-access
likelihood of hot blocks can be estimated more accurately
by access frequency than temporal locality in Android file
accesses. This implies that blocks that have been accessed
frequently in the past are likely to be re-accessed in the
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FIGURE 2. Accessed block number of Android applications as time progresses; blue plot = read; red plot = write.
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FIGURE 2. (Continued.) Accessed block number of Android applications as time progresses; blue plot =

read; red plot = write.

FIGURE 3. Number of accesses that occurs on the given rankings of file blocks sorted by their access count.

future. Thus, when eviction of blocks from the buffer cache
is necessary due to the space limitation, it is better to evict
less frequently accessed blocks, implying that the least fre-
quently used (LFU) replacement algorithm will perform bet-
ter than the least recently used (LRU) replacement algorithm
in Android buffer cache.

However, it is also noticeable that the top ranking blocks
(rankings 1 and 2) of temporal locality exhibit larger number
of re-access count than those of frequency. This implies that

if we aim to maximize the benefit of buffer cache, it would
be necessary to maintain the most recently accessed blocks in
the buffer cache although their frequency count is not large.

III. HYBRID FLUSH AND HOTNESS-AWARE EVICTION
FOR ANDROID BUFFER CACHE
In this section, we present how Android buffer cache can be
accelerated based on our analysis result in Section II. Buffer
cache manages file data in block units, and the cached blocks
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FIGURE 4. Cumulative ratio of block accesses for the given ratio of top blocks sorted by their access count.

FIGURE 5. Ratio of read and write counts for the Android file access
traces we captured.

can be divided into clean and dirty. A clean block means that
the cached data has not been modified since it was loaded
into buffer cache, and is therefore identical to the original
block in storage. A cached block becomes dirty when a write
operation on that block has been performed. If a clean block
is selected as the victim candidate, it can simply be removed

from buffer cache. On the contrary, if a dirty block is selected
as the victim, it should be written to storage before removed
from buffer cache. To guard against system crashes or power
outages, modern file systems like Ext4 periodically flush
modifications to storage without delaying the flush of dirty
blocks until they are removed from buffer cache [12], [14].
For example, Ext4 flushes dirty blocks to storage every
5 seconds. In case of Android, applications usually perform
synchronous writes by making use of SQLite, which also
trigger the storage flushing of all dirty blocks in buffer cache.
After completion of storage flushing, dirty blocks return to
clean.

In Section II, we showed that a certain number of hot
blocks in Android file accesses account for a large portion
of storage I/O, and lots of them are involved in synchronous
writes, which cannot be improved by traditional volatile
buffer cache. To cope with such situations, we present two
novel schemes that we call, hybrid flush and hotness-aware
eviction. Figure 7 briefly shows the overall structure of the
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FIGURE 6. Number of accesses that occur on the ranking of accessed blocks based on temporal locality (gray) and frequency (black) of accesses.

proposed schemes. A small size (non-volatile) write buffer
is located between the original (volatile) buffer cache and
storage. The basic idea of hybrid flush is to eliminate the
excessive write traffic to storage by flushing hot blocks to
write buffer instead of storage. To do so, we classify blocks
in the buffer cache based on their write access count. If the
count is 1, we classify it as a cold block and flush it to storage.
If it is more than 1, we flush the block to the write buffer.
During flushing to the write buffer, the write access count of
the block is also passed to the write buffer and maintained.
As the write buffer we use is small, some blocks in the write
buffer should be flushed to storage if there is no available
space. Our hotness-aware eviction selects the victim block of
the write buffer based on the write count of the blocks passed
from the buffer cache. This is because frequency is known

to estimate the re-access likelihood of Android file accesses
well as analyzed in Section II.

Now, let us explain the details of our scheme with the
example given in Figure 7.When a file block is requested, it is
retrieved from storage and inserted into the buffer cache. For
each cached block, we maintain the write count as well as the
dirty bit of the block. That is, when a write operation on a file
block occurs, the dirty bit of the block is set to 1 and also the
write count is increased by 1. When a synchronous write or
a (periodic) flush request occurs, all dirty blocks in the buffer
cache are flushed to either storage or write buffer. Blocks
with their write count of 1 are flushed to storage whereas
those of the others are flushed to the write buffer. This is
different from existing approaches adopting the non-volatile
write buffer, which flush all dirty blocks to write buffer first
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FIGURE 7. Our architecture with the two proposed schemes: hybrid flush
and write-aware eviction.

instead of storage. Note that our write buffer absorbs only
frequently written blocks and prohibits written-once blocks
from entering the write buffer, improving the space utilization
of the limitedwrite buffer. After flushing all dirty blocks, their
dirty bits are reset to 0 (i.e., changed from dirty to clean).
Similar activities are also performed when a dirty block is
selected as the victim block in the (volatile) buffer cache.
In this case, instead of flushing all dirty blocks in the buffer
cache, only the victim block is flushed.

Flushing to write buffer also passes the write access count
of blocks, which will be used for selecting the eviction victim
when free space in the write buffer is needed. Specifically,
we select the block with the least write count as the victim
block, and flush it to storage. After flushing, we remove it
from the write buffer. For example, in Figure 7, among the
three blocks with their write count of 8, 5, and 3 in the write
buffer, our write-aware eviction selects the block with the
write count of 3 as the victim block.

However, if the victim block is the most recently accessed
block or the secondmost recently accessed block in the buffer
cache, we do not evict it from the write buffer as temporal
locality is stronger than frequency in case of the top rankings
(rankings 1 and 2) as shown in Figure 6 of Section II.

IV. EXPERIMENTAL RESULTS
We perform trace-driven simulations to assess the effec-
tiveness of our scheme. For a comparison purpose, we
additionally simulate two architectures: Flush-storage and
Flush-NVM. Flush-storage does not use non-volatile write
buffer, and thus dirty blocks are directly flushed to storage.
Flush-NVM uses the non-volatile write buffer similar to our
scheme, but it flushes all dirty blocks to the write buffer first
and does not use our write-aware eviction when an eviction

is needed in the write buffer. In our simulation, the block size
is set to 4KB and the flush period of Ext4 is set to 5 seconds,
which is the default setting of Android and Linux.

Figure 8 shows the storage write traffic of our scheme
in comparison with Flush-storage and Flush-NVM for each
workload as the write buffer size is varied. As shown in the
figure, our scheme reduces the storage write traffic signifi-
cantly for a variety of workloads and a wide range of the write
buffer size.

Specifically, the reduced write traffic of the proposed
scheme is an average of 21.7% and up to 48.1% compared
to Flush-storage and an average of 10.8% and up to 18.1%
compared to Flush-NVM. This is mainly because our scheme
reduces frequent storage writes caused by hot blocks making
use of the small size write buffer and judicious software
management.

Let us discuss the detailed comparison of our scheme and
Flush-NVM. In case of Web browser, Navermap, Facebook,
and No5, the reduced write traffic of our scheme against
Flush-NVM is over 10%. This is because the popularity
bias of blocks in these applications is clearly observed in
Figures 3 and 4. Thus, selective flushing of hot blocks to
write buffer and hotness-aware eviction are effective in these
applications. In contrast, the improvement of our scheme
against Flush-NVM is relatively small in Youtube, TicToc,
Farmstory, and Mixed. Specifically, the improvement of our
scheme against Flush-NVM is only 1% to 2% in Farmstory.
This is because Farmstory does not make use of SQLite,
and the popularity bias of blocks is very low as shown in
Figures 3(f) and 4(f).

Now, let us compare our scheme with Flush-storage.
In case of Youtube, TicToc, and No5, the reduced write traffic
of our scheme against Flush-storage is over 30%. This is
becausemost hot blocks in these applications can be absorbed
by a small size write buffer. As shown in Figure 3, top
10-100 blocks account for most storage accesses in these
applications. In Navermap, Facebook,Web browser, andMix,
the reduced write traffic is relatively small. Although block
accesses in these workloads are skewed, blocks of rankings
over 100 also account for a certain large portion of storage
accesses as shown in Figure 3. Thus, a small write buffer
has limitations in absorbing most of storage accesses in these
applications.

To see the effectiveness of the proposed scheme further,
we compare the total storage access time of Flush-NVM,
Flush-storage, and the proposed scheme by simulating buffer
cache, storage, and write buffer together. In our simula-
tion, the read/write performances of NVM write buffer and
flash storage are set to the maximum throughput of UFS
3.1 storage [39] and OptaneTM memory [40]. Figure 9 shows
the storage access time of our scheme in comparison with
Flush-storage and Flush-NVM for each workload as the write
buffer size is varied. In the figure, we separately plot the
latency caused by storage read, storage write, and NVMflush
operations. Similar to the write traffic result in Figure 8, our
scheme reduces the storage access time significantly for a
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FIGURE 8. Comparison of the proposed scheme with Flush-storage and Flush-NVM with respect to the storage write traffic.

variety of workloads and a wide range of the write buffer size.
Specifically, the reduced storage access time of the proposed
scheme is an average of 18.5% and up to 41.0% compared
to Flush-storage and an average of 7.6% and up to 16.0%
compared to Flush-NVM. This is mainly because smartphone
applications perform frequent synchronous writes to storage,
which accounts for the major portion of storage access time.
As shown in the figure, the latency of NVM flush accounts
for very small portion, and the relative impact of storage write
is higher than that of storage read in all cases. Specifically,
storage read in Navermap accounts for the lowest portion
among the applications we simulated as shown in Figure 9(b).
This is consistent with the read/write ratio of file accesses
analyzed in Figure 5, where only 6% of file accesses are reads
in Navermap. In contrast, Mixed has the highest ratio of reads
and also it has the largest number of read accesses in the trace,

and thus the relative impact of storage read is quite high as
shown in Figure 9(h). However, in any case, reads are mostly
absorbed by the buffer cache, so using any scheme made little
difference, whereas writes showed a large performance gap
depending on the schemes used.

V. RELATED WORKS
A. FILE ACCESSES AND USER BEHAVIOR
Similar to traditional desktop or server systems, file accesses
in smartphone applications are generated by the program
activities of applications in execution. However, we observed
some unique file access characteristics in smartphone appli-
cations from several perspectives and investigated their
potential implications at the buffer cache layer. Program
behaviors are essentially influenced by user activities, and
as smartphones have various input devices such as touch
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FIGURE 9. Comparison of the proposed scheme with Flush-storage and Flush-NVM with respect to the storage access time.

interfaces and sensors for detecting user activities, one may
wonder if the peculiar access patterns come from user behav-
iors. However, our observations have shown that a user’s
input behavior does not significantly affect the file access
patterns in smartphones. Specifically, during our trace col-
lection process, we ran the same applications several times
with different user’s input behaviors, but the file access trends
did not show meaningful differences. That is, the file access
pattern of smartphones seems to be mainly affected by the

characteristics of an application itself and the development
process, i.e. libraries and tools used, rather than the user’s
input behavior. Although the file access patterns of an appli-
cation are not significantly affected by user behaviors, how-
ever, application access patterns are highly dependent on
user behaviors. Thus, studies on smartphone user behaviors
mainly focus on the usage patterns of applications throughout
a day (e.g., frequency and duration of using each application)
rather than file access patterns by user activities.
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Falaki et al. analyze the smartphone usage pattern of
255 users and find that the application usage patterns are
very different among users, but the application popularity can
be modeled using an exponential distribution with different
parameters for each user [31]. Li et al. characterize and
compare the behaviors of Android, iOS, andWindows smart-
phone users, with respect to network traffic and application
types. They identify the mobile platform of each smartphone
based on HTTP signatures, and analyze that web browser and
instant message services are the two important applications
that attract users for choosing their mobile platforms [32].
Ding et al. explore the relationship between energy consump-
tion and user behavior in smartphones [33]. To capture user
behavior such as application preference and usage time, they
design user behavior models and also analyze hardware usage
patterns for each application type. Based on this model, they
provide the implications of the proposed model for smart-
phone manufacturers and application developers.

B. BUFFER CACHING WITH NVM
Buffer cache management techniques have been extensively
studied to bridge the latency gap in memory and storage
accesses. A lot of research has focused on the cache replace-
ment algorithms to improve the cache hit ratio under slow
HDD storage. Recently, as storage becomes increasingly fast
and the application characteristics are different from tra-
ditional systems, cache management policies for emerging
hardware and software environments are suggested [34], [35].
Kim et al. propose a smartphone buffer cache management
policy customized for flash storage systems [34]. Their pol-
icy, which is called Spatial-CLOCK, sorts blocks in the buffer
cache by the sector number in flash storage and selects victim
blocks based on the sector number order. This has the effect
of managing flash storage efficiently as cached items whose
original storage locations are adjacent are evicted together.
Lee et al. investigate the effectiveness of buffer cache for
fast storage media, and show that caching is still efficient
because of the I/O stack overhead and the access patterns of
workloads [8]. However, since the gain of caching becomes
small, they argue that caching is beneficial only for the data
that are certain to be accessed again in the future, and thus
some admission control mechanism is necessary. Lee et al.
show that the effectiveness of buffer cache is limited in NVM,
and in some cases, direct I/O performs better than using
the buffer cache [18]. Also, they show that I/O traffic is
more important than I/O frequency in NVM storage, and thus
reducing I/O traffic should be further emphasized in buffer
cache management.

Non-volatile buffer cache has been studied to improve
the reliability of cached data. Lee et al. propose a buffer
cache system that unifies the function of caching and jour-
naling [14]. Their policy allows the in-place journaling that
eliminates storage accesses while commit, but still provides
the same reliability level by simply changing the state of
the cached block. Kim and Ahn present the BPLRU (Block
Padding Least Recently Used) algorithm for the write buffer

replacement in flash storage [36]. BPLRUgroups dirty blocks
from the same flash storage location, and evicts them together
based on the LRU algorithm. When a write access occurs,
blocks in the same group are moved together to the high-
est priority position in the LRU list to reflect the temporal
locality. Lee et al. present a journaling file system for NVM
that aims at reducing the write traffic in journaling [37].
Their file system manages journaling writes efficiently by
considering the size ofmodifications within a block. Shi et al.
present a write buffer management scheme called ExLRU
(Expectation-based LRU) [38]. ExLRU maintains the refer-
ence history of blocks in the write buffer and selects a block
with the minimum cost as an eviction victim when free space
in needed.

VI. CONCLUSION
In this paper, we analyzed the file access characteristics of
Android applications and showed that there exist a limited
number of hot write blocks, which cannot be buffered under
traditional buffer cache as they incur immediate storage flush-
ing. We also analyzed that the re-access likelihood of these
hot blocks can be estimated better by frequency rather than
temporal locality. Based on these observations, we presented
an efficient buffer cache management scheme for smartphone
systems by making use of a small non-volatile write buffer.
Unlike previous studies, our scheme selectively flushes dirty
blocks to write buffer or storage based on the write charac-
teristics of Android block accesses. Eviction in write buffer
is also performed judiciously by making use of the write
count annotated during the flush operation from buffer cache.
Experiment results with real Androidworkload traces showed
that our scheme reduces the storage write traffic by 21.7%
on average and up to 48.1% compared to conventional buffer
cache and by 10.8% on average and up to 18.1% compared
to the same non-volatile write buffer architecture without our
judicious management.

In this study, we did not consider the user behaviors in
file accesses. As program behaviors are affected by the user
behaviors and various sensor and touch devices in smart-
phones detect user behaviors, it will be interesting to find
the dependency between smartphone user behaviors and file
access patterns. This will be a good direction for our future
research.
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