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ABSTRACT Bit permutations are efficient linear functions often used for lightweight cipher designs.
However, they have low diffusion effects, compared to word-oriented binary and maximum distance
separable (MDS) matrices. Thus, the security of bit permutation-based ciphers is significantly affected by
differential and linear branch numbers (DBN and LBN) of nonlinear functions. In this paper, we introduce
a widely applicable method for constructing S-boxes with high DBN and LBN. Our method exploits
constructions of S-boxes from smaller S-boxes and it derives/proves the required conditions for smaller
S-boxes so that the DBN and LBN of the constructed S-boxes are at least 3. These conditions enable us
to significantly reduce the search space required to create such S-boxes. Using the unbalanced-Bridge and
unbalanced-MISTY structures, we develop a variety of new lightweight S-boxes that provide not only both
DBN and LBN of at least 3 but also efficient bitsliced implementations including at most 11 nonlinear bitwise
operations. The new S-boxes are the first that exhibit these characteristics.

INDEX TERMS Lightweight S-boxes, differential and linear branch numbers, higher-order masking.

I. INTRODUCTION
The fourth industrial revolution encompasses a wide range of
advanced technologies. One of its core elements is the Inter-
net of Things (IoT), which binds together people, objects,
processes, data, applications, and services. However, trust-
worthy systems are required to enable secure and reliable IoT-
based infrastructures, and an essential building block for such
systems is cryptography.

Since most devices in the IoT environment have limited
resources and are small, lightweight cryptography is essen-
tial to provide their security. ISO/IEC has even standardized
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some lightweight block ciphers, such as PRESENT [1] and
CLEFIA [2]. In addition, a lightweight cryptography standard-
ization project is ongoing at NIST.

In 1996, Paul Kocher first introduced side-channel attacks,
which extract secret information by analyzing side-channel
information [3]. Since the security against side-channel
attacks cannot be provided by the resistance to classical
mathematical cryptanalysis, various countermeasures have
been studied. As side-channel attacks become more sophis-
ticated and the costs of the associated equipments decrease,
the application of side-channel countermeasures to cryptog-
raphy becomes important. Recently, various studies have
been actively conducted on efficient implementations of
side-channel countermeasures, especially on efficientmasked
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implementations. To minimize the resource overhead used in
masked implementations, these studies focus on reducing the
number of nonlinear operations. Several lightweight block
ciphers, with the design goal of low nonlinear operation
count, have been proposed [4]–[6].

A. MOTIVATION
Constructing cryptographically secure 8-bit S-boxes is a topic
that is being actively studied, and S-boxes using various
methods such as polynomial or chaotic mappings have been
proposed [7]–[9]. A highly secure 8-bit S-box constructed
by perfect nonlinear transformation was adopted for the
Advanced Encryption Standard (AES) design [10]. However,
it is known that at least 35 nonlinear operations are still
required to implement the S-box of AES [11]. Although there
are many S-box construction methods that guarantee cryp-
tographic security, the implementation efficiency must be
considered in order to be used as a component of block cipher.
Considering the implementation of side-channel countermea-
sures, there is a need for the S-box that can be implemented
with fewer nonlinear operations.

There were a few lightweight block ciphers such as Zorro,
Fantomas, Robin, SKINNY, and FLY that are intended for
use in side-channel protected environments. The block cipher
Zorro adopted lightweight S-box using a polynomial S-box
construction [12]. In Midori and SKINNY, 8-bit S-boxes con-
structed with two 4-bit S-boxes are adopted [13], [14]. The
block ciphers Fantomas, Robin, and FLY use 8-bit S-boxes
constructed from three small S-boxes [6], [15].

Based on the S-box construction methods presented so
far, we considered that block cipher designers need S-box
construction methods that satisfy all four conditions below.

1) It should be possible to efficiently secure the logic of
bitsliced implementation.

2) The number of nonlinear operations required for imple-
mentation should be small.

3) Both DBN and LBN should be greater than 2.
4) It should have sufficient cryptographic security to be

used as a component of block cipher.

The first two conditions are necessary for efficient imple-
mentations of side-channel countermeasures in a resource
constrained environment. The third condition is to supple-
ment the weak diffusion effect of bit permutation with the
characteristic of S-box. High DBN and LBN help to secure
resistance to differential and linear attacks in fewer rounds.
It is also important that the cryptographic security should not
be inferior to the S-boxes used in lightweight block ciphers.

The lightweightness of block ciphers and the efficiency
of their side-channel protected implementations depend sig-
nificantly on their nonlinear functions. Many of lightweight
block ciphers use 4-bit S-boxes [1], [4], [16]–[18] or 8-bit
S-boxes [2], [6], [14], [15], [19] as nonlinear functions. One
of the main design approaches of lightweight 8-bit S-boxes
is to use existing structures, such as Feistel, Lai-Massey
and MISTY, employing smaller S-boxes (e.g., 3, 4, or 5-bit

S-boxes). However, most related studies have focused on the
S-box construction to combine with the linear functions such
as word-oriented binary or MDS matrices [6], [19], [20].

B. CONTRIBUTIONS
This paper is an expanded version of the conference
paper [21] presented at ICISC 2020. In particular, we gen-
eralize and extend the S-box design proposed in [21].

In this paper, we introduce a construction method for a
different type of lightweight 8-bit S-boxes that are well-
suited to a linear bit permutation layer, based on which we
develop many of new S-boxes with both DBN and LBN of at
least 3 and with efficient masked software implementations.
Our S-box construction methodology enables both DBN and
LBN of at least 3, and this property, in combination with
a bit permutation, enhances security. It can be used in the
construction of a variety of S-boxes from smaller S-boxes.
In this study, the Feistel, Lai–Massey, unbalanced-MISTY,
and unbalanced-Bridge structures have been analyzed. Our
framework eliminates all the input and output differences
(or masks) where the sum of their Hamming weights is
two, during which some conditions of the employed smaller
S-boxes are induced. These conditions could accelerate the
S-box search, resulting in more than 10,000 new lightweight
8-bit S-boxes with both DBN and LBN of 3. Some of their
bitsliced implementations include 11 nonlinear bitwise oper-
ations each. Ourmethodologywas also used to findmore than
1,000 8-bit S-boxes with DBN of 4 and LBN of 3. To the
best of our knowledge, all the aforementioned S-boxes are
the first S-boxes with such properties. Furthermore, we found
6 and 7-bit new S-boxes with both DBN and LBN of 3 which
are more efficient than existing ones.

C. ORGANIZATION
In section II, we introduce a method for constructing S-boxes
with DBN and LBN greater than 2. Using this method,
section III constructs new S-boxes and provides comparison
of our and existing S-boxes. Section III-D shows an appro-
priate application of our S-box as a block cipher component.
Finally, section IV concludes the paper, and suggests future
studies.

D. NOTATION AND DEFINITIONS
The following notations and definitions are used throughout
this paper.

DDT Difference Distribution Table of an n-bit S-box
whose (1α,1β) entry is #{x ∈ Fn2|S(x) ⊕ S(x ⊕
1α) = 1β}, where 1α,1β ∈ Fn2.

LAT Linear Approximation Table of an n-bit S-box
whose (λα, λβ ) entry is #{x ∈ Fn2|λα • x = λβ •

S(x)}− 2n−1, where λα, λβ ∈ Fn2, and the symbol •
denotes the canonical inner product in Fn2.
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FIGURE 1. Constructions of 8-bit S-boxes from smaller S-boxes.

Differential uniformity
max

1α 6=0,1β
#{x ∈ Fn2|S(x)⊕ S(x ⊕1α) = 1β}.

Non-linearity
2n−1−2−1× max

λα,λβ 6=0
|8(λα, λβ )|, where8(λα, λβ )

=
∑
x∈Fn2

(−1)λβ•S(x)⊕λα•x .

DBN Differential Branch Number of an S-box defined as
min
a,b 6=a

(wt(a⊕ b)+ wt(S(a)⊕ S(b))).

LBN Linear Branch Number of an S-box defined as
min

a,b,8(a,b) 6=0
(wt(a)+ wt(b)).

II. CONSTRUCTION OF S-BOXES WITH DIFFERENTIAL
AND LINEAR BRANCH NUMBERS GREATER THAN 2
In this section, we describe how to construct S-boxes with
DBN>2 and LBN>2. In [22], Ruisanchez proposed algo-
rithm to construct 8-bit S-boxes with a DBN of 3, but did
not consider LBN. And Sarkar et al. proposed a method
for constructing S-boxes with both DBN and LBN of 3
using resilient Boolean functions, and designed such 5 and
6-bit S-boxes [23]. Our method takes a different approach:
it uses smaller S-boxes to create S-boxes with DBN>2 (or
LBN>2) by eliminating all the input and output differences
(or masks) where the sum of their Hamming weights is 2.
During this elimination process, relevant conditions of the
employed smaller S-boxes can be induced. In this section,
we focus on the construction of bijective 8-bit S-boxes.

Several methods have been proposed in the liter-
ature to construct 8-bit S-boxes from smaller ones.
These methods typically rely on one of the Feistel,
Lai-Massey, or (unbalanced-)MISTY structures, as depicted
in Fig. 1-(A), (B), and (C), respectively [6], [15], [19], [20],
[24]–[26]. The unbalanced-Bridge structure (Fig. 1-(D)) was
mentioned in [27], but an S-box constructed using it has not
been presented so far. In Fig. 1, S ji represents the j-th and i-bit
S-box. Among the structures in Fig. 1, both (A) and (B) use

three 4-bit S-boxes and 12 XOR operations on a bit level,
whereas both (C) and (D) use one 3-bit and two 5-bit S-boxes
and 6 XOR operations.

In this section, we use the following notation.

ρc : F5
2→ F5

2, ρc(x||y) = y||x, for x ∈ F3
2, y ∈ F2

2,

τn : F5
2 → Fn2, τn(x||y) = x, for x ∈ Fn2, y ∈ F5−n

2 ,

n ∈ {1, 2, 3, 4},

τ ′n : F5
2 → Fn2, τ

′
n(x||y) = y, for x ∈ F5−n

2 , y ∈ Fn2,
n ∈ {1, 2, 3, 4},

F1
A : F

3
2→ F5

2, F1
A(X ) = (S15 )

−1(X ||A) for A ∈ F2
2,

F2
A : F

3
2→ F5

2, F2
A(X ) = S25 (X ||A) for A ∈ F2

2,

0(i) : i-bit zeros.
The unbalanced-Bridge structure depicted in Fig. 1-(D)

can be defined as follows. Let S8(XL ||XR) = CL(XL ,XR)||
CR(XL ,XR), where XL and XR represent the input variables of
S8 which are in F5

2 and F
3
2, respectively. Then, CL(XL ,XR) =

τ3(S15 (XL)) ⊕ S3(XR) and CR(XL ,XR) = ρc(S25 (S
1
5 (XL) ⊕

(S3(XR)||0(2))))⊕ (0(2)||S3(XR)) with CL : F5
2×F3

2→ F3
2 and

CR : F5
2 × F3

2 → F5
2. Proposition 1 shows the conditions for

which an 8-bit S-box constructed using Fig. 1-(D) is bijective.
The proof of this proposition can be found in [21].
Proposition 1 [21]: The 8-bit S-box constructed using the

unbalanced-Bridge structure of Fig. 1-(D) is bijective if and
only if the following three conditions are all satisfied:
i) S3 is bijective.
ii) S15 is bijective.
iii) For all y ∈ F3

2, fy(x) = τ ′2(S
2
5 (y||x)) is a bijective

function with fy : F2
2→ F2

2.
In order to guarantee the bijectivity of S-boxes generated

from the Lai-Massey and unbalanced-MISTY structures, all
the smaller S-boxes except for S14 should be bijective, whereas
the Feistel structure always offers bijective S-boxes regard-
less of the smaller S-boxes.

Since all the structures in Fig. 1 have two input
branches, S-boxes with DBN>2 can be constructed by elim-
inating four cases (10||1a,10||1c), (10||1a, 1d ||10),
(1b||10,10||1c), (1b||10,1d ||10), where (1α,1β)
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represents the input and output difference pair of the S-boxes,
and wt(1a) = wt(1b) = wt(1c) = wt(1d) = 1. S-boxes
with LBN>2 can be made in the same way. Some conditions
of the employed smaller S-boxes are required to rule out these
four cases.

The following theorems present the necessary and suffi-
cient conditions of smaller S-boxes so that the 8-bit S-boxes
constructed by the Feistel, Lai-Massey, unbalanced-MISTY
and unbalanced-Bridge structures have both differential and
linear branch numbers greater than 2.
Theorem 1: The DBN of bijective 8-bit S-boxes, con-

structed using the Feistel structure depicted in Fig. 1-(A),
is greater than 2 if and only if conditions i) – iv) are all satis-
fied (1α and 1β below represent arbitrary 4-bit differences
where wt(1α) = wt(1β) = 1). For each 1α and 1β;
i) the entry of the (1α,10) in DDT of S24 is 0,
ii) at least one entry of the (1α,1β) in DDT of S24 and

(1β,1α) in DDT of S34 is 0,
iii) at least one entry of the (1α,1β) in DDT of S14 and

(1β,1α) in DDT of S24 is 0,
iv) at least one of S24 (Y )⊕S

2
4 (Y ⊕S

1
4 (X )⊕S

1
4 (X⊕1α)) =

1α⊕1β and S34 (S
2
4 (Y )⊕X )⊕S

3
4 (S

2
4 (Y )⊕X⊕1β) =

S14 (X )⊕S
1
4 (X⊕1α) has no solution pair (X ,Y ), where

X ,Y ∈ F4
2.

Proof: The expression of the CL and CR is

CL(XL ,XR) = XL ⊕ S24 (XR ⊕ S
1
4 (XL)),

CR(XL ,XR) = XR ⊕ S14 (XL)⊕ S
3
4 (XL ⊕ S

2
4 (XR ⊕ S

1
4 (XL))).

We define the following notation for ease of expression.

Y = XR ⊕ S14 (XL), Z = XL ⊕ S24 (Y ).

(0(4)||1a, 0(4)||1c): It happens if and only if there exists at
least one (XL ,XR) satisfying both CL(XL ,XR)⊕CL(XL ,XR⊕
1a) = 10 and CR(XL ,XR) ⊕ CR(XL ,XR ⊕ 1a) = 1c. The
first equation is expressed as

XL ⊕ S24 (XR ⊕ S
1
4 (XL))⊕ XL ⊕ S

2
4 (XR ⊕1a⊕ S

1
4 (XL))

= S24 (XR ⊕ S
1
4 (XL))⊕ S

2
4 (XR ⊕1a⊕ S

1
4 (XL)) = 10.

By applying Y , we obtain

S24 (Y ) ⊕ S
2
4 (Y ⊕1a) = 10. (1)

Similarly, the second equation is expressed as

XR ⊕ S14 (XL)⊕ S
3
4 (XL ⊕ S

2
4 (XR ⊕ S

1
4 (XL)))⊕ XR ⊕1a

⊕S14 (XL)⊕ S
3
4 (XL ⊕ S

2
4 (XR ⊕1a⊕ S

1
4 (XL)))

= S34 (XL ⊕ S
2
4 (XR ⊕ S

1
4 (XL)))

⊕S34 (XL ⊕ S
2
4 (XR ⊕ S

1
4 (XL)⊕1a))⊕1a

= 1c.

By applying equation (1), we get

1a = 1c.

Therefore, the (10||1a,10||1c) case is an impossi-
ble case if 1a 6= 1c. Otherwise, since the function

(XL ,XR) 7→ (XL ,Y ) is bijective, the (10||1a,10||1c) case
does not happen if and only if there is no Y satisfying equa-
tion (1). This means the entries of the (1a,10) in DDT of
S24 have to be zero, which is equivalent to condition i) where
1α = 1a.
(0(4)||1a,1d ||0(4)): It happens if and only if there exists at

least one (XL ,XR) satisfying both CL(XL ,XR)⊕CL(XL ,XR⊕
1a) = 1d and CR(XL ,XR)⊕ CR(XL ,XR ⊕1a) = 10. The
first equation is expressed as

XL ⊕ S24 (XR ⊕ S
1
4 (XL))⊕ XL ⊕ S

2
4 (XR ⊕1a⊕ S

1
4 (XL))

= S24 (XR ⊕ S
1
4 (XL))⊕ S

2
4 (XR ⊕1a⊕ S

1
4 (XL)) = 1d

By applying Y , we have

S24 (Y ) ⊕ S
2
4 (Y ⊕1a) = 1d (2)

Similarly, the second equation CR(XL ,XR)⊕CR(XL ,XR⊕
1a) = 10 is expressed as

XR ⊕ S14 (XL)⊕ S
3
4 (XL ⊕ S

2
4 (XR ⊕ S

1
4 (XL)))⊕ XR ⊕1a

⊕S14 (XL)⊕ S
3
4 (XL ⊕ S

2
4 (XR ⊕1a⊕ S

1
4 (XL)))

= S34 (XL ⊕ S
2
4 (XR ⊕ S

1
4 (XL)))

⊕S34 (XL ⊕ S
2
4 (XR ⊕ S

1
4 (XL)⊕1a))⊕1a = 10

By applying equation (2) and using the definition of Z ,
we obtain

S34 (Z ) ⊕ S
3
4 (Z ⊕1d) = 1a. (3)

Since the function (XL ,XR) 7→ (Y ,Z ) is bijective, the
(0(4)||1a,1d ||0(4)) case does not happen if and only if there
is no (Y ,Z ) satisfying both equations ((2 and 3)), which is
equivalent to condition ii) where 1α = 1a, 1β = 1d .
(1b||0(4), 0(4)||1c): It happens if and only if there exists

at least one (XL ,XR) satisfying both CL(XL ,XR)⊕ CL(XL ⊕
1b,XR) = 10 and CR(XL ,XR) ⊕ CR(XL ⊕ 1b,XR) = 1c.
The first equation is expressed as

XL ⊕ S24 (XR ⊕ S
1
4 (XL))

⊕XL ⊕1b⊕ S24 (XR ⊕ S
1
4 (XL ⊕1b))

= S24 (XR ⊕ S
1
4 (XL))⊕ S

2
4 (XR ⊕ S

1
4 (XL ⊕1b))⊕1b

= 10.

It becomes

S24 (XR ⊕ S
1
4 (XL))⊕ S

2
4 (XR ⊕ S

1
4 (XL ⊕1b)) = 1b. (4)

Similarly, the second equation CR(XL ,XR) ⊕ CR(XL ⊕
1b,XR) = 1c is expressed as

XR ⊕ S14 (XL)⊕ S
3
4 (XL ⊕ S

2
4 (XR ⊕ S

1
4 (XL)))

⊕XR ⊕ S14 (XL ⊕1b)

⊕S34 (XL ⊕1b⊕ S
2
4 (XR ⊕ S

1
4 (XL ⊕1b)))

= S14 (XL)⊕ S
3
4 (XL ⊕ S

2
4 (XR ⊕ S

1
4 (XL)))⊕ S

1
4 (XL

⊕1b)⊕ S34 (XL ⊕1b⊕ S
2
4 (XR ⊕ S

1
4 (XL ⊕1b)))

= 1c.
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By applying equation (4), we get

S14 (XL)⊕ S
1
4 (XL ⊕1b) = 1c. (5)

By applying equation (5) and using the definition of Y ,
equation (4) is rewritten as

S24 (Y )⊕ S
2
4 (Y ⊕1c) = 1b. (6)

Since the function (XL ,XR) 7→ (Y ,XR) is bijective, the
(1b||0(4), 0(4)||1c) case does not happen if and only if there
is no (Y ,XR) satisfying both equations (5) and (6), which is
equivalent to condition iii) where 1α = 1b, 1β = 1c.
(1b||0(4),1d ||0(4)): It happens if and only if there exists

at least one (XL ,XR) satisfying both CL(XL ,XR)⊕ CL(XL ⊕
1b,XR) = 1d and CR(XL ,XR) ⊕ CR(XL ⊕ 1b,XR) = 10.
The second equation is expressed as

XR ⊕ S14 (XL)⊕ S
3
4 (XL ⊕ S

2
4 (XR ⊕ S

1
4 (XL)))⊕ XR

⊕S14 (XL ⊕1b)⊕ S
3
4 (XL ⊕1b⊕ S

2
4 (XR ⊕ S

1
4 (XL ⊕1b)))

= S14 (XL)⊕ S
3
4 (XL ⊕ S

2
4 (XR ⊕ S

1
4 (XL)))⊕ S

1
4 (XL ⊕1b)

⊕S34 (XL ⊕1b⊕ S
2
4 (XR ⊕ S

1
4 (XL ⊕1b)))

= 10.

It becomes

S34 (XL ⊕ S
2
4 (XR ⊕ S

1
4 (XL)))

⊕S34 (XL ⊕1b⊕ S
2
4 (XR ⊕ S

1
4 (XL ⊕1b)))

= S14 (XL)⊕ S
1
4 (XL ⊕1b). (7)

Similarly, the first equation CL(XL ,XR) ⊕ CL(XL ⊕
1b,XR) = 1d is expressed as

XL⊕S24 (XR⊕S
1
4 (XL))⊕ XL ⊕1b⊕S

2
4 (XR⊕S

1
4 (XL ⊕1b))

= S24 (XR ⊕ S
1
4 (XL))⊕ S

2
4 (XR ⊕ S

1
4 (XL ⊕1b))⊕1b

= 1d .

It becomes

S24 (XR ⊕ S
1
4 (XL))⊕ S

2
4 (XR ⊕ S

1
4 (XL ⊕1b))

= 1b⊕1d . (8)

Therefore, (1b||0(4),1d ||0(4)) case does not happen if and
only if there is no (XL ,XR) satisfying both equations (7)
and (8), which is equivalent to condition iv). �
Theorem 2: The LBN of bijective 8-bit S-boxes, con-

structed using the Feistel structure depicted in Fig. 1-(A),
is greater than 2 if and only if conditions i) – iv) are all
satisfied (λα and λβ below represent arbitrary 4-bit masks
where wt(λα) = wt(λβ ) = 1). For each λα and λβ ;
i) #{(X ,Y ) ∈ (F4

2)
2
|(Y ⊕ S14 (X )) • λα = (Y ⊕ S34 (X ⊕

S24 (Y ))) • λβ} = 27,
ii) at least one entry of the (λα, λβ ) in LAT of S14 and

(λβ , λα) in LAT of S24 is 0,
iii) at least one entry of the (λα, λβ ) in LAT of S24 and

(λβ , λα) in LAT of S34 is 0,
iv) the entry of the (0, λα) in LAT of S24 is 0.
Proof: We use CL , CR, Y , and Z defined in the proof of

Theorem 1.

(0(4)||λa, 0(4)||λc): Its bias can be calculated by the number
of (XL ,XR) satisfyingXR•λa = CR(XL ,XR)•λc. The equation
is expressed as

XR • λa = (XR ⊕ S14 (XL)⊕ S
3
4 (XL ⊕ S

2
4 (XR ⊕ S

1
4 (XL)))) • λc.

It follows

(XR ⊕ S14 (XL)) • λa ⊕ S
1
4 (XL) • λa

= (XR ⊕ S14 (XL)⊕ S
3
4 (XL ⊕ S

2
4 (XR ⊕ S

1
4 (XL)))) • λc.

The equation becomes

Y • λa ⊕ S14 (XL) • λa = (Y ⊕ S34 (XL ⊕ S
2
4 (Y ))) • λc (9)

by using the definition of Y . As mentioned before, the func-
tion (XL ,XR) 7→ (XL ,Y ) is bijective. The (0||λa, 0||λc) case
has zero bias if and only if the equation (9) is not biased. This
means #{(X ,Y ) ∈ (F4

2)
2
|(Y ⊕ S14 (X )) • λa = (Y ⊕ S34 (X ⊕

S24 (Y ))) • λc} = 27, which is equivalent to condition i) of
Theorem 2.

(0(4)||λa, λd ||0(4)): Its bias can be calculated by the number
of (XL ,XR) satisfying XR • λa = CL(XL ,XR) • λd . The
equation is expressed as

XR • λa = (XL ⊕ S24 (XR ⊕ S
1
4 (XL))) • λd .

It follows

(XR ⊕ S14 (XL)) • λa ⊕ S
1
4 (XL) • λa
= (XL ⊕ S24 (XR ⊕ S

1
4 (XL))) • λd .

The equation becomes

XL • λd ⊕ S14 (XL) • λa = Y • λa ⊕ S24 (Y ) • λd (10)

by using the definition of Y . Note that the function
(XL ,XR) 7→ (XL ,Y ) is bijective. The (0(4)||λa, λd ||0(4)) case
has zero bias if and only if the equation (10) is not biased,
which is equivalent to condition ii) where λα = λd , λβ = λa.

(λb||0(4), 0(4)||λc): Its bias can be calculated by the number
of (XL ,XR) satisfyingXL•λb = CR(XL ,XR)•λc. The equation
is expressed as

XL • λb= (XR ⊕ S14 (XL)⊕ S
3
4 (XL ⊕ S

2
4 (XR ⊕ S

1
4 (XL)))) • λc.

It follows

(XR ⊕ S14 (XL)) • λc ⊕ S
2
4 (XR ⊕ S

1
4 (XL)) • λb

= (XL ⊕ S24 (XR ⊕ S
1
4 (XL))) • λb

⊕S34 (XL ⊕ S
2
4 (XR ⊕ S

1
4 (XL)))) • λc.

The equation becomes

Y • λc ⊕ S24 (Y ) • λb = Z • λb ⊕ S34 (Z ) • λc (11)

by using the definition of Y and Z . Note that the function
(XL ,XR) 7→ (Z ,Y ) is bijective. The (λb||0(4), 0(4)||λc) case
has zero bias if and only if the equation (11) is not biased,
which is equivalent to condition iii) where λα = λc, λβ = λb.
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(λb||0(4), λd ||0(4)): Its bias can be calculated by the number
of (XL ,XR) satisfying XL • λb = CL(XL ,XR) • λd . The
equation is expressed as

XL • λb = (XL ⊕ S24 (XR ⊕ S
1
4 (XL))) • λd .

It follows

XL • (λb ⊕ λc) = S24 (XR ⊕ S
1
4 (XL)) • λd .

The equation becomes

XL • (λb ⊕ λc) = S24 (Y ) • λd (12)

by using the definition of Y . Since the left side of the equation
is always not biased, only need to consider the right side. The
equation (12) is not biased if and only if

0 = S24 (Y ) • λd (13)

is not biased. The (λb||0(4), λd ||0(4)) case has zero bias if and
only if the equation (13) is not biased, which is equivalent to
condition iv) where λα = λd . �
Theorem 3: The DBN of bijective 8-bit S-boxes,

constructed using the Lai-Massey structure depicted in
Fig. 1-(B), is greater than 2 if and only if conditions i) – iv)
are all satisfied (1α and 1β below represent arbitrary
4-bit differences where wt(1α) = wt(1β) = 1). For each
1α and 1β;
i) at least one entry of the (1α,10) in DDT of S14 and

(1α,1β) in DDT of S34 is 0,
ii) at least one entry of the (1α,1α) in DDT of S14 and

(1α,1β) in DDT of S24 is 0,
iii) at least one entry of the (1α,1α) in DDT of S14 and

(1α,1β) in DDT of S34 is 0,
iv) at least one entry of the (1α,10) in DDT of S14 and

(1α,1β) in DDT of S24 is 0.
Proof: The expression of the CL and CR is

CL(XL ,XR) = S24 (XL ⊕ S
1
4 (XL ⊕ XR)),

CR(XL ,XR) = S34 (XR ⊕ S
1
4 (XL ⊕ XR)).

We define the following notation for ease of expression.

Y = XL ⊕ XR, Z = XL ⊕ S14 (XL ⊕ XR),

W = XR ⊕ S14 (XL ⊕ XR).

(0(4)||1a, 0(4)||1c): It happens if and only if there exists at
least one (XL ,XR) satisfying both CL(XL ,XR)⊕CL(XL ,XR⊕
1a) = 10 and CR(XL ,XR) ⊕ CR(XL ,XR ⊕ 1a) = 1c. The
first equation is expressed as

S24 (XL ⊕ S
1
4 (XL ⊕ XR))

⊕S24 (XL ⊕ S
1
4 (XL ⊕ XR ⊕1a)) = 10.

By applying (S24 )
−1 and using the definition of Y , we obtain

S14 (Y )⊕ S
1
4 (Y ⊕1a) = 10. (14)

Similarly, the second equation CR(XL ,XR)⊕CR(XL ,XR⊕
1a) = 1c is expressed as

S34 (XR ⊕ S
1
4 (XL ⊕ XR))

⊕S34 (XR ⊕1a⊕ S
1
4 (XL ⊕ XR ⊕1a)) = 1c.

By applying equation (14) and using the definition of W ,
we obtain

S34 (W )⊕ S34 (W ⊕1a) = 1c. (15)

Since the function (XL ,XR) 7→ (Y ,W ) is bijective, the
(0(4)||1a, 0(4)||1c) case does not happen if and only if there
is no (Y ,W ) satisfying both equations (14) and (15), which
is equivalent to condition i) where 1α = 1a, 1β = 1c.
(0(4)||1a,1d ||0(4)): It happens if and only if there exists at

least one (XL ,XR) satisfying both CL(XL ,XR)⊕CL(XL ,XR⊕
1a) = 1d and CR(XL ,XR)⊕ CR(XL ,XR ⊕1a) = 10. The
second equation is expressed as

S34 (XR ⊕ S
1
4 (XL ⊕ XR))

⊕S34 (XR ⊕1a⊕ S
1
4 (XL ⊕ XR ⊕1a)) = 10.

By applying (S34 )
−1 and using the definition of Y , we obtain

S14 (Y )⊕ S
1
4 (Y ⊕1a) = 1a. (16)

Similarly, the first equation CL(XL ,XR) ⊕ CL(XL ,XR ⊕
1a) = 1d is expressed as

S24 (XL ⊕ S
1
4 (XL ⊕ XR))

⊕S24 (XL ⊕ S
1
4 (XL ⊕ XR ⊕1a)) = 1d .

By applying equation (16) and using the definition of Z ,
we obtain

S24 (Z )⊕ S
2
4 (Z ⊕1a) = 1d . (17)

Since the function (XL ,XR) 7→ (Z ,Y ) is bijective, the
(0(4)||1a,1d ||0(4)) case does not happen if and only if there
is no (Z ,Y ) satisfying both equations (16) and (17), which is
equivalent to condition ii) where 1α = 1a, 1β = 1d .
(1b||0(4), 0(4)||1c): It happens if and only if there exists

at least one (XL ,XR) satisfying both CL(XL ,XR)⊕ CL(XL ⊕
1b,XR) = 10 and CR(XL ,XR) ⊕ CR(XL ⊕ 1b,XR) = 1c.
The first equation is expressed as

S24 (XL ⊕ S
1
4 (XL ⊕ XR))

⊕S24 (XL ⊕1b⊕ S
1
4 (XL ⊕1b⊕ XR)) = 10.

By applying (S24 )
−1 and using the definition of Y , we obtain

S14 (Y )⊕ S
1
4 (Y ⊕1b) = 1b. (18)

Similarly, the second equation CR(XL ,XR) ⊕ CR(XL ⊕
1b,XR) = 1c is expressed as

S34 (XR ⊕ S
1
4 (XL ⊕ XR))

⊕S34 (XR ⊕ S
1
4 (XL ⊕1b⊕ XR)) = 1c.

By applying equation (18) and using the definition of W ,
we obtain

S34 (W )⊕ S34 (W ⊕1b) = 1c. (19)

Since the function (XL ,XR) 7→ (Y ,W ) is bijective, the
(1b||0(4), 0(4)||1c) case does not happen if and only if there
is no (Y ,W ) satisfying both equations (18) and (19), which
is equivalent to condition iii) where 1α = 1b, 1β = 1c.
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(1b||0(4),1d ||0(4)): It happens if and only if there exists
at least one (XL ,XR) satisfying both CL(XL ,XR)⊕ CL(XL ⊕
1b,XR) = 1d and CR(XL ,XR) ⊕ CR(XL ⊕ 1b,XR) = 10.
The second equation is expressed as

S34 (XR ⊕ S
1
4 (XL ⊕ XR))

⊕S34 (XR ⊕ S
1
4 (XL ⊕ XR ⊕1b)) = 10.

By applying (S34 )
−1 and using the definition of Y , we obtain

S14 (Y )⊕ S
1
4 (Y ⊕1b) = 10. (20)

Similarly, the first equation CL(XL ,XR) ⊕ CL(XL ,XR ⊕
1a) = 1d is expressed as

S24 (XL ⊕ S
1
4 (XL ⊕ XR))

⊕S24 (XL ⊕1b⊕ S
1
4 (XL ⊕1b⊕ XR)) = 1d .

By applying equation (20) and using the definition of Z ,
we obtain

S24 (Z )⊕ S
2
4 (Z ⊕1b) = 1d . (21)

Since the function (XL ,XR) 7→ (Z ,Y ) is bijective, the
(1b||0(4),1d ||0(4)) case does not happen if and only if there
is no (Z ,Y ) satisfying both equations (20) and (21), which is
equivalent to condition iv) where 1α = 1b, 1β = 1d . �
Theorem 4: The LBN of bijective 8-bit S-boxes, con-

structed using the Lai-Massey structure depicted in
Fig. 1-(B), is greater than 2 if and only if conditions i) – iv)
are all satisfied (λα and λβ below represent arbitrary 4-bit
masks where wt(λα) = wt(λβ ) = 1). For each λα and λβ ;
i) at least one entry of the (0, λα) in LAT of S14 and

(λα, λβ ) in LAT of S34 is 0,
ii) at least one entry of the (λα, λα) in LAT of S14 and

(λα, λβ ) in LAT of S24 is 0,
iii) at least one entry of the (λα, λα) in LAT of S14 and

(λα, λβ ) in LAT of S34 is 0,
iv) at least one entry of the (0, λα) in LAT of S14 and

(λα, λβ ) in LAT of S24 is 0.
Proof: We use CL , CR, Y , and Z defined in the proof of

Theorem 3.
(0(4)||λa, 0(4)||λc): Its bias can be calculated by the number

of (XL ,XR) satisfyingXR•λa = CR(XL ,XR)•λc. The equation
is expressed as

XR • λa = S34 (XR ⊕ S
1
4 (XL ⊕ XR)) • λc.

It follows

S14 (XL ⊕ XR) • λa
= (XR ⊕ S14 (XL ⊕ XR)) • λa
⊕S34 (XR ⊕ S

1
4 (XL ⊕ XR)) • λc.

The equation becomes

S14 (Y ) • λa = W • λa ⊕ S34 (W ) • λc (22)

by using the definition of Y and W . Note that the function
(XL ,XR) 7→ (Y ,W ) is bijective. The (0(4)||λa, 0(4)||λc) case

has zero bias if and only if the equation (22) is not biased,
which is equivalent to condition i) where λα = λa, λβ = λc.

(0(4)||λa, λd ||0(4)): Its bias can be calculated by the number
of (XL ,XR) satisfying XR • λa = CL(XL ,XR) • λd . The
equation is expressed as

XR • λa = S24 (XL ⊕ S
1
4 (XL ⊕ XR)) • λd .

It follows

(XL ⊕ XR) • λa ⊕ S14 (XL ⊕ XR) • λa
= (XR ⊕ S14 (XL ⊕ XR)) • λa
⊕S24 (XR ⊕ S

1
4 (XL ⊕ XR)) • λd .

The equation becomes

Y • λa ⊕ S14 (Y ) • λa = W • λa ⊕ S24 (W ) • λd (23)

by using the definition of Y and W . Note that the function
(XL ,XR) 7→ (Y ,W ) is bijective. The (0(4)||λa, λd ||0(4)) case
has zero bias if and only if the equation (23) is not biased,
which is equivalent to condition ii) where λα = λa, λβ = λd .

(λb||0(4), 0(4)||λc): Its bias can be calculated by the number
of (XL ,XR) satisfyingXL•λb = CR(XL ,XR)•λc. The equation
is expressed as

XL • λb = S34 (XR ⊕ S
1
4 (XL ⊕ XR)) • λc.

It follows

(XL ⊕ XR) • λb ⊕ S14 (XL ⊕ XR) • λb
= (XR ⊕ S14 (XL ⊕ XR)) • λb
⊕S34 (XR ⊕ S

1
4 (XL ⊕ XR)) • λc.

The equation becomes

Y • λb ⊕ S14 (Y ) • λb = W • λb ⊕ S34 (W ) • λc (24)

by using the definition of Y and W . Note that the function
(XL ,XR) 7→ (Y ,W ) is bijective. The (λb||0(4), 0(4)||λc) case
has zero bias if and only if the equation (24) is not biased,
which is equivalent to condition iii) where λα = λb, λβ = λc.

(λb||0(4), λd ||0(4)): Its bias can be calculated by the number
of (XL ,XR) satisfying XL • λb = CL(XL ,XR) • λd . The
equation is expressed as

XL • λb = S24 (XL ⊕ S
1
4 (XL ⊕ XR)) • λd .

It follows

S14 (XL ⊕ XR) • λb
= (XL ⊕ S14 (XL ⊕ XR)) • λb
⊕S24 (XL ⊕ S

1
4 (XL ⊕ XR)) • λd .

The equation becomes

S14 (Y ) • λb = Z • λb ⊕ S34 (Z ) • λd (25)

by using the definition of Y and Z . Note that the func-
tion (XL ,XR) 7→ (Z ,Y ) is bijective. The (λb||0(4), λd ||0(4))
case has zero bias if and only if the equation (25) is not
biased, which is equivalent to condition iv) where λα = λb,
λβ = λd . �
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Theorem 5: The DBN of bijective 8-bit S-boxes, con-
structed using the unbalanced-MISTY structure depicted in
Fig. 1-(C), is greater than 2 if and only if conditions i) and
ii) are both satisfied (1α,1β, and1γ below represent arbi-
trary 5, 5 and 3-bit differences, respectively, where wt(1α) =
wt(1β) = wt(1γ ) = 1). For each 1α, 1β, and 1γ ;
i) at least one entry of the (1γ,1γ ) in DDT of S3 and

(1γ ||0(2),1α) in DDT of S25 is 0,
ii) for each A,B( 6= A) ∈ F2

2, at least one of F
1
A(X ) ⊕

F1
B(X ) = 1α andF

2
A(X )⊕F

2
B(X ) = 1β has no solution

X, where X ∈ F3
2.

Proof: The expression of the CL and CR is

CL(XL ,XR) = S25 (S
1
5 (XL)⊕ XR||0

(2)),

CR(XL ,XR) = τ3(S15 (XL))⊕ XR ⊕ S3(XR).

We define the following notation for ease of expression.

Y = S15 (XL), Z = S15 (XL)⊕ XR||0
(2),

A = τ ′2(Y ) = τ
′

2(Z ), Y = Y ′||A, Z = Z ′||A.

(0(5)||1a, 0(5)||1c): It happens if and only if there exists at
least one (XL ,XR) satisfying both CL(XL ,XR)⊕CL(XL ,XR⊕
1a) = 10 and CR(XL ,XR) ⊕ CR(XL ,XR ⊕ 1a) = 1c. The
first equation is expressed as

S25 (S
1
5 (XL)⊕ XR||0

(2))⊕ S25 (S
1
5 (XL)⊕ (XR ⊕1a)||0(2))

= 10.

By applying (S25 )
−1, we obtain

1a||0(2) = 10.

Since the equation is impossible, the (0(5)||1a, 0(5)||1c)
case does not happen.

(0(5)||1a,1d ||0(3)): It happens if and only if there exists at
least one (XL ,XR) satisfying both CL(XL ,XR)⊕CL(XL ,XR⊕
1a) = 1d and CR(XL ,XR)⊕ CR(XL ,XR ⊕1a) = 10. The
second equation is expressed as

τ3(S15 (XL))⊕ XR ⊕ S3(XR)

⊕τ3(S15 (XL))⊕ XR ⊕1a⊕ S3(XR ⊕1a) = 10.

Clearly,

S3(XR)⊕ S3(XR ⊕1a) = 1a. (26)

Similarly, the first equation CL(XL ,XR) ⊕ CL(XL ,XR ⊕
1a) = 1d is expressed as

S25 (S
1
5 (XL)⊕ XR||0

(2))⊕ S25 (S
1
5 (XL)⊕ (XR ⊕1a)||0(2))

= 1d .

By using the definition of Z , we obtain

S25 (Z )⊕ S
2
5 (Z ⊕1a||0

(2)) = 1d . (27)

Since the function (XL ,XR) 7→ (Z ,XR) is bijective, the
(0(5)||1a,1d ||0(3)) case does not happen if and only if there
is no (Z ,XR) satisfying both equations (26) and (27), which
is equivalent to condition i) where 1α = 1a, 1β = 1d .

(1b||0(3), 0(5)||1c): It happens if and only if there exists
at least one (XL ,XR) satisfying both CL(XL ,XR)⊕ CL(XL ⊕
1b,XR) = 10 and CR(XL ,XR) ⊕ CR(XL ⊕ 1b,XR) = 1c.
The second equation is expressed as

τ3(S15 (XL))⊕ XR ⊕ S3(XR)

⊕τ3(S15 (XL ⊕1b))⊕ XR ⊕ S3(XR) = 1c.

Clearly,

τ3(S15 (XL))⊕ τ3(S
1
5 (XL ⊕1b)) = 1c. (28)

Similarly, the first equation CL(XL ,XR) ⊕ CL(XL ⊕
1b,XR) = 1d is expressed as

S25 (S
1
5 (XL)⊕ XR||0

(2))⊕ S25 (S
1
5 (XL ⊕1b)⊕ XR||0

(2))

= 10.

By applying (S25 )
−1, we obtain

S15 (XL)⊕ S
1
5 (XL ⊕1b) = 10. (29)

Since equations (28) and (29) cause contradiction, the
(1b||0(3), 0(5)||1c) case does not happen.
(1b||0(3),1d ||0(3)): It happens if and only if there exists

at least one (XL ,XR) satisfying both CL(XL ,XR)⊕ CL(XL ⊕
1b,XR) = 1d and CR(XL ,XR) ⊕ CR(XL ⊕ 1b,XR) = 10.
The second equation is expressed as

τ3(S15 (XL))⊕ XR ⊕ S3(XR)

⊕τ3(S15 (XL ⊕1b))⊕ XR ⊕ S3(XR) = 10.

Clearly,

τ3(S15 (XL))⊕ τ3(S
1
5 (XL ⊕1b)) = 10.

Since S15 is bijection, for a non-zero difference 1ω ∈ F2
2,

the above equation becomes

S15 (XL)⊕ S
1
5 (XL ⊕1b) = 1ω. (30)

By applying (S15 )
−1, we get

XL ⊕1b = (S15 )
−1(S15 (XL)⊕1ω).

By using the definition of Y , we obtain

(S15 )
−1(Y )⊕ (S15 )

−1(Y ⊕1ω) = 1b. (31)

Similarly, the first equation CL(XL ,XR) ⊕ CL(XL ⊕
1b,XR) = 1d is expressed as

S25 (S
1
5 (XL)⊕ XR||0

(2))⊕ S25 (S
1
5 (XL ⊕1b)⊕ XR||0

(2))

= 1d .

By applying equation (30) and using the definition of Y ,
we obtain

S25 (Y )⊕ S
2
5 (Y ⊕1ω) = 1d . (32)

For each A, the equations (31) and (32) are equivalent to

F2
A(Y
′)⊕ F2

A⊕1ω(Y
′) = 1b, (33)

F1
A(Z
′)⊕ F1

A⊕1ω(Z
′) = 1d . (34)
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Here, 1ω is arbitrary nonzero 2-bit difference, and thus
we can define B = A ⊕ 1ω i.e., B 6= A. Since the function
(XL ,XR) 7→ (Y ′,A,Z ′) is bijective, the (1b||0(3),1d ||0(3))
case does not happen if and only if there is no (Y ′,A,Z ′)
satisfying both equations (33) and (34) for all B( 6= A), which
is equivalent to condition ii) where1α = 1b,1β = 1d . �
Theorem 6: The LBN of bijective 8-bit S-boxes, con-

structed using the unbalanced-MISTY structure depicted in
Fig. 1-(C), is greater than 2 if and only if conditions i) and ii)
are both satisfied (λα , λβ , and λγ below represent arbitrary
5,5 and 3-bit masks, respectively, where wt(λα) = wt(λβ ) =
wt(λγ ) = 1). For each λα , λβ , and λγ ;
i) at least one entry of the (λγ , λγ ) in LAT of S3 and

(λα, λγ ||0(2)) in LAT of S15 is 0,
ii)

∑
A∈F22

X · Y = 0 where X is the entry (0, λα) in LAT

of F1
A and Y is the entry (0, λβ ) in LAT of F2

A.
Proof: We use CL , CR, Y , and Z defined in the proof of

Theorem 5.
(0(5)||λa, 0(5)||λc): Its bias can be calculated by the number

of (XL ,XR) satisfyingXR•λa = CR(XL ,XR)•λc. The equation
is expressed as

XR • λa = (τ3(S15 (XL))⊕ XR ⊕ S3(XR)) • λc.

It follows

XR • (λa ⊕ λc)⊕ S3(XR) • λc = τ3(S15 (XL)) • λc.

Clearly,

XR • (λa ⊕ λc)⊕ S3(XR) • λc = S15 (XL) • λc||0
(2).

Since S15 is bijective, the (0(5)||λa, 0(5)||λc) case has zero
bias.

(0(5)||λa, λd ||0(3)): Its bias can be calculated by the number
of (XL ,XR) satisfying XR • λa = CL(XL ,XR) • λd . The
equation is expressed as

XR • λa = S25 (S
1
5 (XL)⊕ XR||0

(2)) • λc.

The equation becomes

XR • λa = S25 (Z ) • λc

by using the definition of Z . Since left side is not biased, the
(0(5)||λa, λd ||0(3)) case has zero bias.
(λb||0(3), 0(5)||λc): Its bias can be calculated by the number

of (XL ,XR) satisfyingXL•λb = CR(XL ,XR)•λc. The equation
is expressed as

XL • λb = (τ3(S15 (XL))⊕ XR ⊕ S3(XR)) • λc.

It follows

XR • λc ⊕ S3(XR) • λc = XL • λb ⊕ τ3(S15 (XL)) • λc.

Clearly,

XR • λc ⊕ S3(XR) • λc = XL • λb ⊕ S15 (XL) • λc||0
(2).

(35)

The (λb||0(3), 0(5)||λc) case has zero bias if and only if the
equation (35) is not biased, which is equivalent to condition
i) where λα = λb, λβ = λc.
(λb||0(3), λd ||0(3)): Its bias can be calculated by the number

of (XL ,XR) satisfying XL • λb = CL(XL ,XR) • λd . The
equation is expressed as

XL • λb = S25 (S
1
5 (XL)⊕ XR||0

(2)) • λd .

The equation becomes

(S15 )
−1(Y ) • λb = S25 (Z ) • λd

by using the definition of Y and Z . For definition of A, the
above equation is equivalent to

f 1A (Y
′) • λb = f 2A (Z

′) • λd . (36)

The (λb||0(3), λd ||0(3)) case has zero bias if and only if the
equation (36) is not biased, which is equivalent to condition ii)
where λα = λb, λβ = λd . �

The detailed proofs of Theorems 7 and 8 can be found
in [21].
Theorem 7 [21]: The DBN of bijective 8-bit S-boxes con-

structed using the unbalanced-Bridge structure of Fig. 1-(D)
is greater than 2 if and only if conditions i), ii), and iii) are all
satisfied (1α and 1β below represent arbitrary differences
where wt(1α) = wt(1β) = 1):
i) For each 1α,1β ∈ F3

2, at least one of the
entry (1α,1β) in DDT of S3 and the entry
(1β||0(2),1β||0(2)) in DDT of S25 is 0,

ii) For each 1α,1β ∈ F5
2, for each A,B(6= A) ∈ F2

2,
at least one of F1

A(X ) ⊕ F1
B(X ) = 1α and F2

A(X ) ⊕
F2
B(X ) = 1β has no solution X, where X ∈ F3

2,
iii) For each 1α ∈ F3

2 and 1β ∈ F5
2, for each

A,B ∈ F2
2, at least one of F

1
A(X )⊕ F1

B(X ⊕1α) = 1β
and F2

A(X ) ⊕ F2
B(X ⊕ 1α) = 10 has no solution X,

where X ∈ F3
2.

Theorem 8 [21]: The LBN of bijective 8-bit S-boxes con-
structed using the unbalanced-Bridge structure of Fig. 1-(D)
is greater than 2 if and only if conditions i), ii), and iii) are all
satisfied (λα and λβ below represent arbitrary masks where
wt(λα) = wt(λβ ) = 1):
i) For each λα, λβ ∈ F3

2, at least one of the entry (λα, λβ )
in LAT of S3 and the entry (0, λβ ||0(2)) in LAT of S25 is 0,

ii) For each λα ∈ F5
2 and λβ ∈ F3

2,
∑

A∈F22
X ·Y = 0where

X is the entry (λβ , λα) in LAT of F1
A and Y is the entry

(λβ , λβ ||0(2)) in LAT of F2
A,

iii) For each λα, λβ ∈ F5
2 satisfying τ3(λβ ) = 0,

∑
A∈F22

X ·

Y = 0 where X is the entry (0, λα) in LAT of F1
A and Y

is the entry (0, λβ ) in LAT of F2
A.

In practice, most S-boxes searched from the above theo-
rems have both DBN and LBN of 3. In order to provide higher
DBN or LBN of S-boxes, additional conditions are generally
required (e.g., a search for S-boxes of DBN of 4 requires addi-
tional conditions for eliminating input and output differences
where the sum of their Hamming weights is three).
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TABLE 1. Comparison of bitslice 8-bit S-boxes with respect to cryptographic properties and numbers of operations (‘U-’ represents ‘Unbalanced-’).

In the above theorems, conditions of smaller S-boxes are
different for each structure, leading to different numbers of
the required smaller S-box computations. In order to find
an S-box with DBN (or LBN) of 3, then the Feistel, Lai-
Massey, unbalanced-MISTY and unbalanced-Bridge struc-
tures depicted in Fig. 1 require about 11,200, 1,000, 600,
and 1,700 (or 13,300, 1,600, 800, and 900) smaller S-box
computations, respectively, whichwere confirmed in our sim-
ulations. Employed smaller S-boxes or their combinations are
early aborted once they do not meet any of the conditions in
Theorems 1–8. Note that the method described in this section
can be applied to any of S-box extension structures.

III. SEARCHING FOR NEW CRYPTOGRAPHICALLY GOOD
AND LIGHTWEIGHT S-BOXES
In this section, we describe the characteristics of balanced
and unbalanced structures and the S-box search process. Note
that 6, 7 and 8-bit S-boxes constructed in this paper are
all bijective. We focus on the following three criteria when
constructing the 8-bit S-boxes.

1) It should offer an efficient bitsliced implementation
including 12 or fewer nonlinear operations.

2) Its DBN and LBN should both be greater than 2.
3) Its differential uniformity should be 16 or less, and its

non-linearity should be 96 or more.
Criterion 1 minimizes the number of nonlinear opera-

tions required to implement an S-box, which allows for effi-
cient higher-order masking implementations. Criteria 2 and 3
ensure the cryptographic strengths of the 8-bit S-box
against differential cryptanalysis and linear cryptanalysis.
The thresholds of the criteria were selected based on the prop-
erties of the existing lightweight 8-bit S-boxes (cf. Table 1).
In this section, we take into account DBN, LBN, differential
uniformity, non-linearity, algebraic degree, and fixed point
as the security metrics of an S-box, which are directly nec-
essary for the security analysis of instantiated block cipher.
Other cryptographic properties, such as algebraic immunity,
strict avalanche criterion (SAC), and bit independence crite-
rion (BIC) are presented in Appendix A.

A. CONSTRUCTING S-BOXES WITH THE
BALANCED STRUCTURES
To construct an 8-bit S-box that satisfies criterion 3 through
the balanced structures in Fig. 1, the differential uniformity

of each 4-bit S-box must be less than or equal to 4 and the
non-linearity must be greater than or equal to 8. It is known
that at least 4 ANDs are required to implement such a 4-
bit S-box with a differential uniformity of 4 [29]. Therefore,
to construct an 8-bit S-box that satisfies criterion 3 using
the balanced structures, at least 12 nonlinear operations are
required. Block ciphers Robin, Scream v3, and FLY each
adopted an S-box constructed using different balanced struc-
tures, and 12 nonlinear operations are used to implement one
of them (cf. Table 1). Among them, only the Littlun S-box
used in the block cipher FLY satisfies criterion 2. We con-
structed S-boxes with DBN and LBN of 3 by combining
4-bit S-boxes that satisfy the conditions of Theorems 1–4, and
presented them in Table 1. Appendix B includes the bitsliced
implementations of the S-boxes found from each structure.

B. CONSTRUCTING S-BOXES WITH THE UNBALANCED
STRUCTURES
The S-box adopted in the block cipher Fantomas was
constructed using a unbalanced-MISTY structure, and is
meaningful because it can be implemented with the fewest
nonlinear operations among the 8-bit S-boxes that satisfy
criterion 3 proposed so far. This is because the 8-bit S-box
satisfies criterion 3 even if only 4 and 3 nonlinear oper-
ations are used in the 5-bit S-boxes and the 3-bit S-box
of unbalanced structure, respectively. However, Fantomas
adopts a word-oriented binary matrix as its linear layer, and
thus the designers do not consider the DBN and LBN of
the S-box.

Our search process with unbalanced structures is outlined
as follows. First, we generated 3-bit and 5-bit S-box sets; for
3-bit S-boxes we ran an exhaustive search with AND, OR,
XOR, and NOT instructions while restricting the number of
nonlinear (resp. linear) operations to 3 (resp. 4), and for 5-bit
S-boxes we ran an exhaustive search with AND, OR, and
XOR instruction while restricting the number of nonlinear
(resp. linear) operations to 4 (resp. 7) with a differential
uniformity of 8 or less. Second, we classified two 5-bit
S-boxes and one 3-bit S-box that satisfy the conditions of
Theorems 5–8. For the unbalanced-Bridge structure, con-
ditions of Proposition 1 must also be satisfied. During this
process, the search space was significantly reduced because
the early abort technique was used to select S3, S51 , and S

5
2 .
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TABLE 2. Comparison of 6 and 7-bit S-boxes with respect to cryptographic properties and numbers of operations.

Third, we randomly chose the combination of S3, S15 , and
S25 to verify whether the corresponding 8-bit S-boxes satisfy
criterion 3.

Through this process, it was possible to construct S-box
that satisfy all criteria 1–3 using unbalanced-MISTY structure.
Table 1 and Listing 3 show that this S-box can be imple-
mented with fewer operations than the S-box adopted by
Fantomas. Also, in [27], it was mentioned that the S-box
constructed through unbalanced-Bridge seems to give bad
cryptanalytic properties, but we could find more than 8,000
of S-boxes satisfying criteria 1–3. One of them is adopted in
the block cipher PIPO [21]. It can be implemented with the
fewest operations among all the S-boxes presented so far that
satisfy critrion 3.

Since the unbalanced-Bridge structure allows S25 to be
either bijective or non-bijective, the search pool is larger than
that in the unbalanced-MISTY structure.
Proposition 2: The number of possible combinations of

S3, S15 , and S25 in the unbalanced-Bridge structure of
Fig. 1-(D) is 32! × 8! × 983048 ≈ 2265.6, whereas that in
the structure of unbalanced-MISTY of Fig. 1-(C) is 32!×8!×
32! ≈ 2250.6.

Proof: All the smaller S-boxes in (C) and (D) should be
bijective except for S25 in (D). Condition iii) of Proposition 1
should hold for S25 in order to make the 8-bit S-box bijective.
For a fixed y ∈ F3

2, the number of functions S25 (y||·) is 4!×8
4.

Since y can have any value in F3
2, the number of possible S25

is (4! × 84)8 = 983048. �
Furthermore, the unbalanced-Bridge structure enabled us

to constructmore than 1,000 S-boxeswithDBNof 4 and LBN
of 3. They were found by using the aforementioned additional
conditions, but there is one entry of −128 in each of their
LATs that might cause ciphers weakened by LC. Its bitsliced
implementation can be found in the Listing 4.

C. CONSTRUCTING 6 AND 7-BIT S-BOXES
Sarkar et al. proposed algorithms to search for 5 and 6-bit
S-boxes with DBN and LBN greater than 2, and presented
several such S-boxes [23]. They have good cryptographic

properties. However, they are not efficient in a bitslice man-
ner, since their search algorithms are based on the alge-
braic methods. Meanwhile, 7-bit S-boxes have been used in
KASUMI and MISTY, but DBN and LBN of 7-bit S-boxes
have not been studied.

With minor modifications, the theorems presented in
Section II can be applied not only to the 6-bit S-boxes but
also to the 7-bit S-boxes. We were able to find 6-bit S-boxes
with DBN and LBN of 3 using three 3-bit S-boxes in the
Feistel structure. Using two 4-bit S-boxes and a 3-bit S-box
in the unbalanced-MISTY structure, we were able to find 7-bit
S-boxes with DBN and LBN of 3. Since these are based
on 3 and 4-bit small S-boxes, it is easy to find their
efficient bitsliced implementations (some are described in
Appendix B). The 6 and 7-bit S-boxes we found are compared
with published ones in Table 2.

D. APPLICATION OF OUR S-BOX ON BLOCK
CIPHER DESIGN
In general, in the SPN structure, the confusion is provided by
the substitution function, and a diffusion layer is constructed
using an MDS matrix, a binary matrix with a large branch
number, or a bit permutation with a low branch number.
Although there have been many studies on efficient matri-
ces [6], [12], [30]–[32], bit permutation is a very attractive
candidate for diffusion layer in lightweight block ciphers
because it does not require any cost in hardware environment.
Bit permutation based block ciphers use a large number of
rounds to be immune to differential and linear attacks due
to the weak diffusion effect. In order to reduce the amount
of memory required for the implementation of the diffusion
layer and increase the execution speed of block ciphers,
PRESENT and GIFT propose new techniques that provide
effective diffusions even based on bit permutations [1], [16].
The diffusion layer of theGIFTwas chosen to be a BOGI (Bad
Output must go to Good Input) bit permutation [16], whereas
the PRESENT uses the S-box with DBN of 3 [1]. Since the
new S-boxes we present in Tables 1 and 2 have high DBN
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TABLE 3. Comparison of 8-bit S-boxes with respect to cryptographic properties.

TABLE 4. Comparison of 6 and 7-bit S-boxes with respect to cryptographic properties.

and LBN, if combined with appropriate bit permutations,
instantiated block ciphers can be effectively secured.

The block cipher PIPO was designed with the S-box con-
structed by our method [21]. The ciphsr uses the 64-bit state
as an 8 × 8 bit array, applying an S-box to each column and
different 8-bit rotations to each row within one round. There-
fore, the output bits of one S-box are positioned as inputs
of different S-boxes in the next round. This design made it
possible to secure cipher against differential and linear attacks
with a small number of rounds through the combination of a
bit permutation and an S-box with high DBN and LBN.

IV. CONCLUSION AND FUTURE WORK
In this paper, we presented a widely applicable method
for constructing lightweight S-boxes with DBN and LBN
greater than 2, from smaller S-boxes. Using structures such as
the Feistel, Lai-Massey, unbalanced-MISTY and unbalanced-
Bridge structure, we were able to find many lightweight
S-boxes with both DBN and LBN of at least 3. We believe
that our proposed method can help cipher designers build
lightweight S-boxes with high DBN and LBN.

For future work, it would be interesting to investigate the
following research questions.

• Are there any other 8-bit S-boxes that have the same
level of cryptographic properties as the new S-boxes
listed in Table 1 but require fewer nonlinear operations?

• Are there secure and efficient 8-bit S-boxes with both
DBN and LBN of 4?

APPENDIX A
ADDITIONAL CRYPTOGRAPHIC PROPERTIES OF S-BOXES
In Tables 1 and 2, we presented cryptographic properties that
can be directly used for block cipher cryptanalyes. How-
ever, there are many other indicators for the cryptographic
security of the S-box such as Correlation immunity (CI),
Algebraic immunity (AI), SAC (Strict Avalanche Criterion),
and BIC (Bit Independence Criterion) [33]–[35]. These indi-
cators are often used when proposing a new S-box with

high cryptographic security or an S-box for image encryption
[7]–[9]. We define them as follows, and present and compare
the corresponding values of the S-boxes in Tables 3 and 4.
We can see that there is no significant difference between the
values of our new S-boxes and others. Since the new S-boxes
we present have high LBN, their correlation immunities are
also higher than those of other S-boxes with an LBN of 2.

Let the independence matrix of an n-bit S-box
S = (f1, · · · , fn) be given by

pi,j =
1
2n

∑
x∈Fn2

fi(x)⊕ fi(x ⊕ ej).

where ej is j-th standard basis. Then we can define crypto-
graphic properties below.
• The Strict Avalanche Criterion (SAC) of an n-bit S-box
S = (f1, · · · , fn) is

1
22n

∑
1≤i,j≤n
i 6=j

pi,j.

• The Bit Independence Criterion (BIC) for SAC of an
n-bit S-box S = (f1, · · · , fn) is

1
22n − 2n

∑
1≤i,j≤n
i 6=j

1
22n

∑
1a∈Fn2

wt(1a)=1

∑
x∈Fn2

gi,j(x)⊕ gi,j(x ⊕1a)

where gi,j(x) = fi(x)⊕ fj(x).
• The BIC for non-linearity of an n-bit S-box
S = (f1, · · · , fn) is

1
22n − 2n

∑
1≤i,j≤n
i 6=j

NL(gi,j)

where NL(gi,j) is non-linearity of gi,j for
gi,j(x) = fi(x)⊕ fj(x).

• The Correlation Immunity of a Boolean function f is the
maximum number t such that∑

x∈Fn2

(−1)f (x)⊕λa•x = 0
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where wt(λa) ≤ t . The n-bit S-box S = (f1, · · · , fn) has
CIs for each of f1, · · · , fn.

• Algebraic Immunity (AI) of a Boolean function f is the
minimum order d of a polynomial p(x) ∈ F2[x] such
that p(f −1({0})) = {0} or p(f −1({1})) = {0}. The n-bit
S-box S = (f1, · · · , fn) has AIs for each of f1, · · · , fn.

APPENDIX B
BITSLICED IMPLEMENTATIONS OF NEW S-BOXES
Listings 1 – 6 represent bitsliced implementations of
new S-boxes.

LISTING 1. The bitsliced implementation of the S-box with both DBN and
LBN of 3 constructed by the Feistel structure (in C code).

LISTING 2. The bitsliced implementation of the S-box with both DBN and
LBN of 3 constructed by the Lai-Massey structure (in C code).

LISTING 3. The bitsliced implementation of the S-box with both DBN and
LBN of 3 constructed by the unbalanced-MISTY structure (in C code).
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LISTING 4. The bitsliced implementation of the S-box with DBN of 4 and
LBN of 3 constructed by the unbalanced-Bridge (in C code).

LISTING 5. The bitsliced implementation of the 6-bit S-box with both
DBN and LBN of 3 constructed by the Feistel structure (in C code).

LISTING 6. The bitsliced implementation of the 7-bit S-box with both DBN
and LBN of 3 constructed by unbalanced-MISTY structure (in C code).
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