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ABSTRACT Scalp electroencephalogram (EEG) is a non-invasive measure of brain activity. It is widely
used in several applications including cognitive tasks, sleep stage detection, and seizure prediction. When
recorded over several hours, this signal is usually corrupted by noisy disturbances such as experimental
errors, environmental interferences, and physiological artifacts. These may generate confounding factors
and, therefore, lead to false results. Models able to minimise EEG artifacts are then necessary for improving
further analysis and application. In this work, we developed an EEG artifact removal model based on
deep convolutional neural networks. The proposed approach was applied on long-term EEGs, acquired
from epileptic patients, available in the EPILEPSIAE database. The main goal of our work is to develop
a model able to automatically and quickly remove artifacts from EEGs. To develop it, we used EEG
segments, manually preprocessed by experts and named target EEG segments. Our approach was evaluated
comparing denoised segments with the target segments. Furthermore, we compared our approach with other
artifact removal models. Results show that the developed model was able to attenuate the influence of
artifacts, present in long-term EEG signals, in a similar way to that performed by experts. Additionally,
results evidence that our approach performs better than other artifact removal models, combining a minor
reconstruction error with a fast processing. Being a fully automatic and fast model that does not require
reference artifact templates, turns it suitable, for example, for continuous preprocessing of long-term
electroencephalogram for sleep staging or seizure prediction.

INDEX TERMS Artifact removal, automatic reconstruction, deep convolutional neural networks, electroen-

cephalogram, preprocessing.

I. INTRODUCTION

Electroencephalogram (EEG) is a nonlinear and nonsta-
tionary signal that measures the electrical activity of the
brain [1], [2]. It is widely used in tasks involving the study
of the brain dynamics such as cognitive tasks, development of
epileptic seizure prediction models, and sleep stage detection.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ludovico Minati

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Brain potentials propagate over the entire scalp. Therefore,
several electrodes are required to capture them with high
spatial resolution [3]. Beyond brain information, these elec-
trodes often capture noise, such as environment interference,
experimental errors, and physiological artifacts [4].

Environmental interference is generated by external dis-
turbances, e.g., main power leads and electromagnetic
waves [5]. Experimental errors are usually related with poor
electrode adhesion, incorrect scalp cleansing, and subject
motion resulting from daily life routine. These errors, that
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frequently distort the EEG signal, are quite difficult to
remove, even with artifact removal approaches [4], [6]. Phys-
iological artifacts are alterations generated from other physi-
ological processes, such as eye movements, muscle activity
(chewing, swallowing, talking, and scalp contraction), and
cardiac activity. Therefore, these artifacts cannot be fully
avoided even in controlled environments. Physiological arti-
facts generally present a spectrum overlapping the frequen-
cies of interest of the EEG signals [5]-[10].

In general, EEG artifacts can be reduced or even avoided
when signal acquisition is performed under controlled condi-
tions. However, in tasks such as epileptic seizure prediction,
EEG signals have to be continuously acquired over several
days [11], [12] being practically impossible to avoid arti-
facts. Although a possible solution would be to detect and
to remove noisy segments, this removal would result in a
high loss of information. Thus, researchers have developed
artifact removal techniques to eliminate, or at least attenuate,
noisy data from the EEG signals while preserving neural
information [4], [6].

Simple digital filtering is a highly used technique for
removing undesired frequency spectrum bands from the EEG
signals, e.g., power-line component. However, these filters
may not be used to separate EEG from artifacts with over-
lapped frequency spectra, as is the case of experimental errors
and physiological artifacts. For this reason, other techniques
have been considered to improve EEG filtering [4], [5].

Linear regression algorithms were the most used meth-
ods for artifact removal until the 1990s due to their lower
computational complexity. However, these methods present
two major drawbacks: the linear behaviour does not fully
adapt to the nonlinearity of the physiological processes, and
a template signal is required [5], [6].

Filtering methods conduct artifact elimination by adapting
filter weights to minimise the mean squared error (MSE)
between the target and denoised signals. Adaptive, Wiener,
and Bayes filters are examples of filtering methods which
consider different optimisation techniques for achieving the
minimum MSE. The major drawback of these algorithms is
the requirement of a priori user input [4], [6].

Source decomposition methods, such as wavelets and
empirical mode decomposition (EMD) approaches, aim at
separating the neural information from the artifacts by
decomposing each signal channel into different waveforms.
However, similarly to simple digital filtering, wavelets cannot
remove artifacts that overlap frequencies of interest without
removing important data. Also, although the EMD is able
to adapt itself to nonlinear and nonstationary signals, such
as EEG, it is computationally complex and thus difficult to
be used in real-time. Furthermore, both approaches require
thresholds tuning to select the components of interest [4]—[6].

Linear blind source separation (BSS) methods are the most
used for artifact attenuation [5], [6], [13]. These methods
focus on the separation of the signals into their independent
sources, by assuming that the measured signals result from
the sum of the linear mixture of sources. Generally, EEG
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signals are considered to be generated by independent dipolar
sources that linearly mix together. Thus, linear BSS algo-
rithms tend to perform well when separating brain signals
from artifacts [13], [14]. These methods do not require any
external information about the type of artifacts, making them
an important solution whenever artifact template signals are
not available. However, these methods require visual inspec-
tion to distinguish between brain and noisy sources. Some
authors have overcome this drawback by developing classi-
fiers to label the independent sources [15]-[21]. Although
these classifiers may solve the visual inspection task, linear
BSS approaches still require expensive computational time,
which makes these ones difficult to be used in real-time
scenarios.

Recently, authors have reported new EEG artifact removal
methods, based on deep learning architectures, that aim
at solving the drawbacks of the aforementioned methods
[22]-[26]. Ghosh et al. [22] and Yang et al. [23] developed
autoencoders (AEs), based on fully connected layers, to auto-
matically remove ocular artifacts from EEG signals. Later
on, Leite et al. [24], Zhang et al. [25] and Sun et al. [26] pro-
posed models, based on deep convolutional neural networks
(DCNNSs), which are able to extract spatio-temporal features,
and, therefore, are more robust than the traditional fully
connected neural networks. Leite er al. developed a deep
convolutional autoencoder (DCAE) for removing eye blink
and jaw clenching artifacts that were previously added to
clean EEG signals. Zhang et al. [25] proposed a DCNN,
that gradually increases its width, to remove muscle arti-
facts from EEG signals. They reported that this architec-
ture prevents the occurrence of overfitting. Their model was
trained using a publicly available benchmark dataset [27].
Sun et al. [26] presented a DCNN, based on residual con-
nections, for removing ocular, muscle and cardiac artifacts
from noisy EEG signals. These signals were generated from
summing clean epileptic EEG segments, from the CHB-MIT
Scalp EEG Database, with electromyogram (EMG), elec-
trocardiogram (ECG) and electrooculogram (EOG) signals
from Physionet. To develop these approaches, authors require
large datasets and considerable computational time. However,
comparing to the current state-of-the-art BSS methods, these
approaches present some main advantages: minor loss of
relevant information; faster signal estimation; no need for
several channels to get cleaner signals; and fully automatic
output.

In summary, researchers are currently exploring the poten-
tial of deep neural networks to eliminate artifacts from EEG
signals. They report that these approaches can learn the
complex patterns and the high-dimensional characteristics
of the EEG signals, being able to separate these ones from
noisy disturbances. However, despite the high performances
obtained using deep learning methods, studies were evaluated
using either simulated data or data acquired under controlled
environments. Therefore, these studies do not completely
simulate artifact removal from realistic long-term EEG signal
acquisitions.
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To overcome this drawback, this article proposes an origi-
nal EEG artifact removal model, based on DCNN, developed
using long-term data acquired from epileptic patients, in pre-
surgical monitoring. Specifically, firstly two experts removed
artifacts present in these signals by visually inspecting the
independent sources of the signals. Then, using these data,
we developed a model that tries to automatically remove
artifacts present in long-term EEG signals. The model was
evaluated using root mean squared error, relative root mean
squared error, Pearson correlation coefficient, and signal-
to-noise ratio difference. Finally, we compared it with the
1D-ResCNN model from [26] and with an automatic ICA
model based on extended Infomax ICA and MARA classi-
fier [16].

The main goal of our approach is to develop a model
able to automatically and quickly remove artifacts from long-
term EEG signals without human intervention, making it
suitable to be applied in real-time long-term scenarios such
as epileptic seizure prediction.

The remainder of this document contains the following
sections: Section II describes the dataset, the preprocessing
methods performed to remove the EEG artifacts, and the
development and evaluation of the proposed EEG artifact
removal model; Section III presents the results and subse-
quent analysis; Section IV discusses the obtained results and
presents the advantages and the limitations of the developed
approach; Section V concludes the paper by presenting the
completed objectives and directions for future work.

Il. MATERIALS AND METHODS

This section presents the methods considered to prepare the
dataset used in this study as well as the procedures followed
to develop and evaluate our approach.

A. DATASET

EPILEPSIAE database [28], [29] contains long-term epilep-
tic EEG signals from 275 patients, along with seizure meta-
data acquired during presurgical monitoring. From these 275
datasets, 222 contain scalp EEG, 49 contain intracranial EEG,
and 4 contain both types of EEG recordings. These record-
ings were obtained with different sampling rates, which vary
from 250 Hz to 2500 Hz, over several days.

Data were acquired at Universitdtsklinikum Freiburg
(Germany), Centro Hospitalar e Universitirio de Coim-
bra (Portugal) and Hopital de la Pitié-Salpétriere, Paris
(France). The use of these data for research purposes has
been authorised by the Ethical Committee of the three
hospitals involved on the EPILEPSIAE database develop-
ment (Ethik-Kommission der Albert-Ludwigs-Universitit,
Freiburg; Comité consultatif sur le traitement de I’information
en matiere de recherche dans le domaine de la santé, Pitié-
Salpétriere University Hospital; and Comité de Etica do Cen-
tro Hospitalar e Universitario de Coimbra). All methods were
performed following the relevant guidelines and regulations.
Informed written consent was obtained from the patients.
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Our dataset comprises data, acquired at Universitit-
sklinikum Freiburg, from 25 patients (13 males and
12 females, aged 39.6 & 16.8 years) who suffer from tem-
poral lobe epilepsy which is the most prevalent, difficult to
treat epilepsy. These data were acquired using a sampling rate
of 256 Hz and the electrodes were organised according to the
10-20 international system [3] with the following channels:
Fpl, Fp2, F3, F4, C3, C4, P3, P4, 01, 02, F7,F8, T7, T8, P7,
P8, Fz, Cz and Pz.

This study is framed in the context of epileptic seizure
prediction. To develop epileptic seizure prediction models,
we considered data ranging from 4.5 hours before the begin-
ning of the leading seizure [30] until its onset. This selection
was made based on the assumption that EEG signals, within
the mentioned period, contain information from both normal
and pre-seizure brain states [31]-[33].

Before proceeding to the development of seizure prediction
models, we believe it is crucial to remove artifacts that may be
present over the long-term EEG signals. However, perform-
ing visual inspection of the ICs of the EEG signals is a tough
and time-consuming task, therefore demanding for an auto-
matic procedure to remove noise from this type of data. Based
on this, we used the aforementioned data to develop EEG
denoising models, which can be later used to preprocess data
before applying further specific methods in any EEG-based
application including epileptic seizure prediction models.

B. DATA PREPARATION

We filtered the 4.5-hour EEG signals using a 0.5-100 Hz
bandpass 4th-order Butterworth filter and a 50 Hz 2nd-order
notch filter, with the purpose of removing DC component,
high frequency noise and powerline interference, respec-
tively. Then, we removed noise generated by experimental
errors, such as flatlines, saturated segments, and abnormal
peaks. Afterwards, we divided the 4.5-hour EEG signals
in 10-minute segments. Later, we identified channels with
experimental errors that were not removed earlier and fixed
them using spherical interpolation method [34] available in
EEGLAB toolbox [35]. More details are available in Supple-
mentary Material.

Table 1 presents the duration of both raw data and data after
the described preprocessing steps (preprocessed EEG data).
35.32 hours of the initial EEG data (5.45%) were removed.
Regarding interpolation steps, 18.25 hours of the prepro-
cessed EEG data (2.98%) contain, at least, one interpolated
sample.

After removing experimental errors, we re-referenced the
EEG segments to average reference and processed them
using extended-infomax ICA [36] available in EEGLAB.
Finally, the resulting independent components (ICs) were
visually inspected by experts (see Supplementary Material).
The entire dataset was divided in training and test sets.
The first one contains 3399 segments (486.03 hours), from
20 patients, whereas the second one includes 910 segments
(126.65 hours), from the remaining 5 patients. Afterwards,
two experts visually inspected the ICs of the EEG segments

149957



IEEE Access

F. Lopes et al.: Automatic Electroencephalogram Artifact Removal Using Deep Convolutional Neural Networks

Deep Convolutional Neural Network
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FIGURE 1. DCNN proposed to automatically remove artifacts from EEG segments. Input and output data contain 153600 x 19 samples. This size
corresponds to the number of samples that a 10-minute segment with 19 channels, acquired using a sampling rate of 256 Hz, contains. Convolutional
layers are presented as grey parallelipipeds. The larger the number of filters in the layer, the larger the width of the parallelipiped. All convolutional filters
were of size 3. Leaky RelLU activation layers are presented green rectangles. All activation layers uses a « value of 0.2.

TABLE 1. Duration of all raw EEG signals, all preprocessed EEG signals,
removed EEG signals, and preprocessed EEG signals with at least one
interpolated sample. These values describe the data corresponding to
all 25 patients.

Data Duration (Hours)

Raw EEG Data 648.00
Preprocessed EEG Data 612.68
Removed EEG Data 35.32
EEG Data with at least one 18.25

interpolated sample

of both training and test sets with the purpose of eliminating
noisy ICs. However, two different procedures were performed
for both sets. EEG segments that were already analysed
by one expert, were not analysed by the other, i.e. each
expert analysed different segments from the training set.
Test set was, firstly, analysed by both experts, independently.
Then, discordant samples were inspected by the two experts
together with the purpose of producing a set, validated by
both, to evaluate our approach. After the visual inspection, the
segments from training and test sets were reconstructed using
the non-noisy ICs. Finally, we had a training set and a test set
with two different versions for the same EEG segment: the
segment before visual inspection of the ICs (noisy segment),
and the segment after the visual inspection of the ICs (target
segment).

C. EEG ARTIFACT REMOVAL DEEP CONVOLUTIONAL
NEURAL NETWORK

The proposed EEG artifact removal method, based on deep
convolutional neural networks (DCNNs), was designed to
automatically remove noise from EEG segments. Although
the ICA reconstruction is linear, the decisions performed
by the experts to classify the ICs are nonlinear. Therefore,
a nonlinear model is required to automatically remove noisy
artifacts from the EEG segments.

DCNNs contain convolutional layers and layers with sev-
eral possible activation functions. Convolutional layers [37]
include several filters, used for extracting features from the
input data, optimised during learning process. Layers with
activation functions are used for controlling the information
which is transferred to the following layer. Rectified linear
unit (ReLU) function is commonly used given its nonlinear
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behaviour and fast computation [37]. However, this nonlinear
function can produce dead neurons, which means that some
neurons of the network will output a zero value for different
inputs. Leaky ReLU function was introduced in order to
overcome this disadvantage [38]. It solves the problem by
outputting a smaller portion of the negative inputs instead of
nullifying them.

As seen in Figure 1, we developed an architecture based
on three convolutional blocks, i.e., three sets of three convo-
lutional layers followed by leaky ReLU activation function.
The convolutional layers, used in each block, become wider
as DCNN depth increases. ICA may be viewed as a single
convolutional layer with a linear filter that covers all chan-
nels at a time. Therefore, we consider that more than one
nonlinear convolutional layer is required to allow the model
to better learn such task.

Since the various scalp EEG channels are not independent
from each other, and as ICA processing covers all channels at
the same time, we decided to produce a model able to remove
artifacts from all the channels, simultaneously.

Researchers report that deep learning models improve
with the increasing of depth and width [39], [40]. Thus,
we developed an architecture that combine both factors taking
into account the available computational resources (4 GPU
NVIDIA Quadro P5000 with 16 GB GDDRS RAM). The
number of filters per layer starts at 32 and doubles from
one block to the next. The last convolutional layer is used
for converting the data back to the initial dimensions. Small
filters are useful for exploring fine details of the data and have
less computational cost than large filters [41]. Filters with
size 1 were not considered because these ones are not able
to analyse the values around the unit under analysis. Filters
with an even size were also not used because these ones
cannot maintain the symmetry around the unit under analysis
resulting in data distortions across the layers. Finally, we per-
formed grid-search experiments using filters with size 3 and
filters with size 5 and verified that the results were similar.
Therefore, all convolutional layers comprise filters with size 3
making the training of the model faster and less prone to
overfit. As we did not want to reduce the sample size across
the layers, we used a stride of 1 for every convolutional layer.

All activation layers use leaky ReLU function. All the used
leaky ReL.U functions consider an « of 0.2 as suggested by
Xu et al. [42].
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D. TRAINING AND VALIDATION

The training set was further filtered by the number of elim-
inated ICs. Therefore, the EEG segments, with more than
half of their ICs classified as noise, were discarded. This
step was performed in order to remove segments with few
brain independent sources, which would not provide enough
information for reliable EEG segment reconstruction. After
this filtering step, 2900 EEG segments remained. It is worth
noting that this filtering step was not performed in the test set.

We split the training set in training and validation subsets
by performing a random 70/30 holdout partition. Validation
aims to prevent overfitting in training. Therefore, training
subset contains 2030 samples whereas the validation subset
contains 870 samples. Each sample consists of one noisy
segment and one target segment. After that, the samples last-
ing less than 10 minutes were zero padded. Thereafter, both
subsets were standardised using the average and standard
deviation calculated using all noisy segments belonging to the
training subset.

For training the DCNN, we used Adam optimisation func-
tion [43], with an initial learning rate of 3.0e-4. Regard-
ing the loss function, the usually used root mean squared
error (RMSE) gives more significance to larger reconstruc-
tion errors, thus leading the algorithm to focus in artifacts
with larger amplitude, independently from the range of values
of the target signal (see Equation 1). For reducing this bias,
we replaced the RMSE by the relative root mean squared error
(RRMSE). RRMSE [6] normalises the RMSE by dividing it
by the root mean square (RMS) of the target EEG segment
(see Equations 2 and 3).

[ERp——
RMSE(x,y) = ZlN—yl v
N i=t
N2
RMS(x) = Zﬁl ”
i=1
RRMSE(x,y) = % .

where:

x;  i-th Input Value
yi  i-th Target Value
N Number of Samples

The model was trained for 500 epochs. Simultaneously, the
model was evaluated, every new epoch, using the validation
subset, with the purpose of saving the one that obtained the
lowest validation loss.

The aforementioned procedures were performed ten times.
This was intended to decrease the randomness of the training
process. At the end of each run, the best model was saved with
the intention of being tested with the completely independent
test set.

Table 2 summarises the hyperparameters used for training
the models.
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TABLE 2. Hyperparameters used to train the DCNN models.

Hyperparameter Value
Dataset Partition Holdout Validation 70/30
Optimisation Function Adam
Learning Rate 3.0e-4
Loss Function RRMSE
Epochs 500
Number of Runs 10

E. EVALUATION METRICS

We evaluated the model using standard statistical metrics.
As standard statistical metrics we used RMSE, for measuring
reconstruction error (see Equation 1), RRMSE, for measuring
normalised reconstruction error (see Equation 3), Pearson
correlation coefficient (PCC), for measuring the linear cor-
relation between the denoised and the target segments (see
Equation 4), and signal-to-noise ratio (SNR) difference [18],
[44], [45] for measuring the noise attenuation.

We calculated RMSE, RRMSE, and PCC for both noisy
and denoised segments. In other words, we compared the
noisy segments and the denoised segments with the target
segments. In this way, we could inspect whether the DCNN
model approximates the noisy data to the target data.

SNR difference is the difference between input and output
SNRs (see Equations 5 and 6). Input SNR was computed
under the assumption that noise is equal to the difference
between the noisy and target segments. Output SNR was
performed under the assumption that noise is equal to the
difference between the denoised and target segments.

Covariance(x,y)

PCC(x,y) = ——8M8 ™ — “4)

0xOy

N 2
SNR(x, y) = 10 x logloNZ:’;]y' (5)
Yo (i —yi)?

SNRgir = SNR(3, y) — SNR(x, y) (6)

where:
x  Noisy segment
y  Target segment
y  Denoised segment
N Number of samples

We computed RMSE, RRMSE, PCC, and SNR difference
for each EEG channel, independently. In this way, we can
analyse the alterations that the model performed in each
channel.

It is worth noting that the SNR difference cannot be per-
formed when there is no difference between noisy and target
segments. Thus, for implementing this evaluation metric,
we removed test segments containing only brain ICs.

F. COMPARISON WITH DIFFERENT ARTIFACT REMOVAL
MODELS

We compared our DCNN model with 1D-ResCNN model
from [26] and with an automatic ICA model based on
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FIGURE 2. Mean and standard deviation of training and validation learning curves obtained from averaging all ten developed models.

extended Infomax ICA and MARA classifier [16]. As the
1D-ResCNN is not publicly available, we developed it fol-
lowing the procedures presented by the authors. The MARA
model is publicly available in EEGLAB toolbox. These mod-
els were chosen because they are also able to automatically
remove several different artifacts from the EEG signals.

All models were tested in a computer with an AMD
Ryzen 5 2600 CPU 3.4 GHz, 64 GB of RAM, NVIDIA
RTX 2060 Super, and Linux Ubuntu 20.04 LTS. The extended
Infomax ICA-MARA was tested in Matlab 2019b whereas
the DCNN and 1D-ResCNN models were tested using Ten-
sorflow 2.0 and Keras 2.3 from Python 3.8 in Anaconda
Spyder 4.! The inference phase of the DCNN models was
performed using CPU rather than GPU with the purpose
of comparing it with the extended Infomax-MARA model,
which has to be performed in CPU. Additionally, testing the
models on the CPU allows to approximate the simulation to
a real environment where GPUs are usually less available.

IIl. RESULTS
This section describes the results obtained for the developed
deep convolutional neural network (DCNN).

A. TRAINING AND VALIDATION LEARNING CURVES
Figure 2 show the mean and standard deviation of the training
and validation learning curves for all the developed models.
Figures 2a and 2b show that the validation learning curve
follows the training learning curve. This suggests that the
developed models did not overfit the training data. Further-
more, it is seen that the models started to stabilise around the
300th epoch which means that the number of epochs was not
a limiting factor to the learning procedure. Moreover, the low
standard deviation indicates that all the ten models perform
similarly. Therefore, we randomly selected one of them for
further analysis.

B. EXAMPLES OF EEG SEGMENTS RECONSTRUCTED BY
OUR APPROACH

In order to demonstrate how our approach performed for the
various types of artifacts found in segments, we present some

1 https://docs.spyder-ide.org/4/
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examples of the noisy segments along with the target and
obtained denoised segments. We show one example for each
type of EEG artifact present in our data. More examples are
available in Supplementary Material for further exploration.

Figure 3a shows three types of artifacts: eye blinks, eye
movements, and muscle activity. Figures 3b, 3¢, and 3d show
these artifacts in detail whereas Figures 3e, 3f, and 3g present
the power spectrum density (PSD) of the time series in the
selected time windows.

As can be observed in Figures 3b and 3c, the model was
able to remove the ocular artifacts and returned a denoised
segment similar to the target segment. However, Figure 3e
evidences a loss of information in high frequencies. Eye
blinks are typically artifacts with large amplitude and low
frequency. Therefore, as the used loss function most strongly
penalises the larger differences between the denoised and the
target segments, the training of the model tries to find out how
to reduce these artifacts before learning how to correct the
small details of the data. As the EEG amplitude is, in most
cases, inversely proportional to its frequency, in the case of
an incomplete training there may be a loss of high frequency
information. Figure 3d shows that the model attenuated the
presence of the muscle activity, but did not remove it com-
pletely. This behaviour is confirmed by Figure 3g, i.e., there
was only an attenuation of the PSD of the noisy channel.
This may happen as a result of the difficulty of eliminating
this artifact even by visual inspection of the independent
components (ICs).

Figure 4 shows cardiac peaks in channel O1, which were
not removed by the DCNN model. As these artifacts appeared
rarely in the training set, the model may have had difficulty
in considering them as noise.

Figure 5 shows pulse artifacts in channel C4. These arti-
facts resulted from having the EEG electrode on a pulsating
vessel on the scalp. It can be observed that the model was
not able to remove this interference from the noisy segment.
These artifacts also did not occur frequently in the training
set. Therefore, similarly to cardiac artifacts, the model may
not had learned to consider them as noise.

Figure 6 shows electrode movement in all channels. These
artifacts usually appear when there is a disturbance in the

VOLUME 9, 2021



F. Lopes et al.: Automatic Electroencephalogram Artifact Removal Using Deep Convolutional Neural Networks

IEEE Access

Time Series - All EEG Channels

L JHAI)I T Y PP T NPT NPT LY AL s e b WO,
i m T Y

A A Y

Fpl

Fp2 PPN oty

-

F3 WE-,-‘W‘-MW —— ]
F4 o Ny Y WA LU D it - . IRV AN AP A

il
VI

A VM A

| — Noisy EEG Segment
Target EEG'Segment - A
—— Denoised EEG Segment

A, ‘l "
) ”M,HJW!‘\N TIY
I

EEG Channel

124 125 126 127
Time (s)

128

‘ 100 pv

(a) Five seconds of all channels of an example EEG segment containing eye blinks (1), eye movements (2) and

muscle activity (3).

Time Series - EEG Channel (Fp2) 100 Time Series - EEG Channel (F7)
—— Noisy EEG Segment —— Noisy EEG Segment
Target EEG Segment Target EEG Segment
150 —— Denoised EEG Segment 75 —— Denoised EEG Segment
50
100
= -~ 25 i
s s
2 50 E
g %
El z °
E H
HE =
=25
=50
=50
-100 =75
-1 -100
12550 125.75 126.00 126.25 126,50 126.75 127.00 127.25 127.50 12400 12425 12450 12475 12500 12525 12550 125.75 126.00
Time (s) Time (s)

(b) EEG time series of the selected portion of (c) EEG time series of the selected portion of
the Fp2 channel of Figure 3a. the F7 channel of Figure 3a.

Power Spectrum Density - EEG Channel (Fp2) Power Spectrum Density - EEG Channel (F7)

—— Noisy EEG Segment —— Noisy EEG Segment

19
Target EEG Segment Target EEG Segment
—— Denoised EEG Segment —— Denoised EEG Segment
10
-1

Power Spectral Density (dB/Hz)
Power Spectral Density (dB/Hz)

0 20 40 60 80 100 120 0 20 40 60 80 100 120
Frequency (Hz) Frequency (Hz)

(e) PSD of the selected portion of the Fp2 (f) PSD of the selected portion of the F7
channel of Figure 3a. channel of Figure 3a.

Amplitude (uv)

Time Series - EEG Channel (T7)

100

-100

—— Noisy EEG Segment

—— Denoised EEG Segment

Target EEG Segment

127.6

127.8

128.0
Time (s)

1282 128.4

(d) EEG time series of the selected portion of

the T7 channel of Figure 3a.

Power Spectral Density (dB/Hz)

Power Spectrum Density - EEG Channel (T7)

-102

—— Noisy EEG Segment.

—— Denoised EEG Segment

Target EEG Segment

40

60
Frequency (Hz)

80

100 120

(g) PSD of the selected portion of the T7
channel of Figure 3a.

FIGURE 3. Example EEG segment from the test set. The noisy segment, target segment and denoised segment are presented in blue, orange and black,
respectively. The selected portions of Figure 3a provide the exact moment of artifact occurrence: in Fp2 channel there is an eye blink, in F7 channel there
is an eye saccade and in T7 channel there is muscle activity. These portions are zoomed in in Figures 3b, 3c and 3d. The PSD of the EEG time series, in the

selected portions, are provided in Figures 3e, 3f and 3g.
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FIGURE 4. Five seconds of all channels of an example EEG segment. The noisy segment, target segment and denoised

segment are presented in blue, orange and black, respectively. The selected portions provide the exact moments when the
cardiac artifacts occur.
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FIGURE 5. Five seconds of all channels of an example EEG segment. The noisy segment, target segment and denoised
segment are presented in blue, orange and black, respectively. The selected portion evidences the EEG channel where the
pulse artifacts occur.

Figure 7 evidences that the model was not able to extract
brain information from time intervals when there were elec-
trode connection errors. We would expect that this type of

electrodes which leads to a change of impedance. In this case,
the model was able to remove this interference from the noisy

segment.
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FIGURE 6. Five seconds of all channels of an example EEG segment contaning electrode movements. The noisy

segment, target segment and denoised segment are presented

in blue, orange and black, respectively.
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FIGURE 7. Five seconds of all channels of an example EEG segment containing experimental errors which were not
removed in the first step of the EEG preprocessing algorithm. The noisy segment, target segment and denoised
segment are presented in blue, orange and black, respectively.

artifact would be removed in the first stage of the EEG pre-
processing algorithm. The algorithm was designed to remove
portions, with an amplitude greater than 5 mV or lower
than -5 mV, when the connection error occurred on several
channels, simultaneously. Therefore, it is possible that some
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portions, with connection problems, still remained after the
initial EEG preprocessing.

Figure 8 shows that the model has learned not to make
considerable transformations when noise is not present in
the EEG segments. However, it is seen that there was an
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FIGURE 9. Five seconds of all channels of an example EEG segment which had some brain information removed by
visual inspection that was not removed by the EEG artifact removal model. The noisy segment, target segment and
denoised segment are presented in blue, orange and black, respectively.

attenuation of the high frequency waves in EEG channels,
specially, where high amplitude artifacts usually appear such
as Fpl, Fp2, F7 and F8. This means that the model focused
excessively on removing artifacts on these channels contain-
ing low frequency artifacts, and thus, failed to learn high
frequency details.
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Figure 9 presents a very important behaviour of the devel-
oped model. This figure shows a portion of a segment, with a
connection error, that resulted in removing more than half of
the ICs by visual inspection. In this case, the model learned
to analyse small windows of the entire noisy segment and
to keep the data that did not have any noisy artifact. Before
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developing our models, we removed every EEG segment with
more than 50% noisy ICs. Therefore, the models may not
have learned to remove excessive information in situations
as this one. This is an important advantage comparing to
independent component analysis (ICA) approaches, because
it preserved brain information while attenuating the influence
of artifacts.

In summary, we may conclude that our model could attenu-
ate artifacts such as eye blinks, eye saccades, muscle activity,
and channel movements present in Figures 3b, 3c, 3d, and 6,
respectively. Furthermore, it could perform reasonable recon-
structions when no artifacts were present on the EEG data (see
Figures 8 and 9). However, the model could not handle rare
EEG artifacts such as cardiac artifacts, pulse artifacts, and
saturated segments present in Figures 4, 5, and 7, respectively.

C. EVALUATION METRICS

The developed EEG artifact removal model was assessed
using the evaluation metrics presented in Subsection II-E.
Thus, we computed the metrics for all independent test sam-
ples. The metrics were calculated for each EEG channel,
independently. Therefore, for each EEG channel, we obtained
910 values for root mean squared error (RMSE), relative root
mean squared error (RRMSE), and Pearson correlation coef-
ficient (PCC) for noisy and denoised segments and 875 values
for signal-to-noise ratio (SNR) differences.

When inspecting the results for RMSE, RRMSE, PCC, and
SNR difference, we observed skewed distributions explained
by the existence of some outliers in these metrics. These
outliers result from some experimental errors that were not
removed in the initial preprocessing pipeline. Therefore,
instead of using the common central tendency statistics, mean
and standard deviation, we utilised the median and interquar-
tile range (see Figure 10). Mean and standard deviation are
available in Supplementary Material.

Figures 10a and 10b present the median and interquar-
tile range values of the RMSE and RRMSE, respectively.
As stated in Section II-E, RMSE evaluates the reconstruction
error whereas RRMSE measures the normalised reconstruc-
tion error. The lower these metrics are, the closer the obtained
denoised data are to the target one. In general, these values
decreased when using the DCNN model, which suggests that
the model learned to approximate the noisy segments to the
target ones.

According to Figures 10a and 10b, Fpl, Fp2, F7, and F8
were the EEG channels associated with a larger decrease in
RMSE and RRMSE. This occurred as a result of the removal
of ocular artifacts, which typically have an amplitude higher
than the brain data. Channels F3, F4, T7, and T8 also evi-
denced a large reduction of these metrics. Although all EEG
channels contained some muscle activity at a certain period
of time, F3, F4, T7, and T8 were usually contaminated with
this artifact over several segments. Therefore, results suggest
that the developed model was able to reduce the presence of
these artifacts, even in highly-corrupted channels. Comparing
RMSE and RRMSE for the denoised segments, it is seen that
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although the channels O1, O2, P7 and P8 evidence RMSE
values similar to the those obtained for channels C3, C4, P3
and P4, these channels present RRMSE values among the
lowest of all channels. This means that the expected root mean
squared (RMS) of channels O1, O2, P7 and P8 were greater
than the expected RMS of the channels C3, C4, P3 and P4.
Therefore, we conclude that the same error value has a lower
relevance for those channels.

Figure 10c shows the median and interquartile range val-
ues of the PCC values. As mentioned in Section II-E, PCC
measures the linear correlation between two time series.
Therefore, the higher this metric is, the greater is the linear
correlation between the obtained denoised segment and the
target one. In general, PCC increased after using the DCNN
model, which suggests that the noisy segments became
more linearly correlated with the target ones after using it.
As already verified in Figures 10a and 10b, the larger PCC
increase can be seen for the EEG channels containing ocular
artifacts (Fp1, Fp2, F7 and F8).

Figure 10d shows the median and interquartile range values
of the SNR difference values. As mentioned in Section II-E,
SNR difference measures the improvement of the SNR after
using the DCNN model. Positive values suggest a SNR
increase, after using the model, whereas negative values
suggest a SNR decrease and, therefore, a lower success in
denoising the EEG. Although the overall results evidence the
improvement of the SNR for all channels, the Fz channel
presents an interquartile range that contains the zero value.
As seen in Figures 10b and 10c, the interquartile range of the
results for this channel, before using the DCNNs, contains
almost optimal values. This indicates that for our test dataset,
this channel was less corrupted by artifacts. Therefore, it was
practically unchanged by the model.

D. COMPARISON WITH DIFFERENT ARTIFACT REMOVAL
MODELS

For each artifact removal model, we computed the RMSE,
RRMSE, PCC, and SNR difference for all independent test
samples. Furthermore, we obtained the computation times.
Contrary to the previous section, to simplify the compari-
son, we computed these metrics using all channels. Table 3
presents the RMSE, the RRMSE and the PCC for the original
data and denoised data reconstructed by our model, 1D-
ResCNN, and extended Infomax ICA-MARA. Furthermore,
itcontains the SNR difference and computation times for each
artifact removal model.

We also performed pairwise comparisons, using non-
parametric tests (Kruskal-Wallis [46] and Dunn-Sidak [47)),
between all approaches, using all statistical metrics, to study
whether there are statistical differences between them.
To compare the performances, we used a significance level
of 0.05. Figure 11 presents those pairwise comparisons. For
RMSE, RRMSE and prediction time, lower values are related
with lower noise levels whereas for PCC and SNR difference,
higher values are preferred.
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TABLE 3. Statistical metrics used to compare the EEG artifact removal models

. The values are presented in the format median (first quartile - third

quartile).
Noisy Denoised (Our Model) | Denoised (1D-ResCNN) | Denoised (Extended Infomax ICA - MARA)
RMSE (Microvolts) 13.88 (4.53 - 19.04) 4.83 (2.92 - 6.90) 9.83 (6.93 - 12.70) 5.28 (3.32-7.62)
RRMSE 1.57 (0.50 - 2.29) 0.52 (0.32-0.77) 1.03 (0.61 - 1.51) 0.63 (0.38 - 0.81)
PCC 0.54 (0.40 - 0.90) 0.86 (0.70 - 0.95) 0.53 (0.37 - 0.83) 0.78 (0.60 - 0.93)
SNR Difference - 8.81 (4.83 - 10.05) 3.12(0.11 - 3.78) 7.58 (3.08 - 10.37)
Computation Time (Seconds) - 0.29 (0.29 - 0.30) 3.37 (3.35-3.38) 384.52 (375.43 - 391.49)

Results presented in Table 3 evidence that our model
obtained considerably lower reconstruction errors and higher
PCCs and SNR differences, compared to the 1D-ResCNN.
Furthermore, our model is faster than 1D-ResCNN. Figure 11
shows that the differences between both methods were
statistical significant (p-value (RMSE) = 0; p-value
(RRMSE) = 0; p-value (PCC) ~ 0; p-value (SNR Diff) ~ 0;
p-value (Prediction Time) ~ 0).

Comparing our model with the extended Infomax
ICA-MARA, results provided in Table 3 evidence that our
model obtained lower median reconstruction error and higher
median PCCs and SNR differences. Figure 11 also evidences
that our model obtained lower RRMSE, higher PCC and SNR
difference with significant statistical differences (p-value
(RRMSE) = 0.015; p-value (PCC) =~ 0; p-value (SNR
Diff) = 0.003). However, it shows that both models did not
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obtain significant statistical differences for RMSE (p-value =
0.087). Additionally, results demonstrated that our approach
is considerably faster than the extended Infomax ICA-MARA
which lasted around 6 minutes on average compared to less
than a second (p-value = 0) in our method.

IV. DISCUSSION

The automatic electroencephalogram (EEG) artifact removal
approach, presented in this article, is based on deep con-
volutional neural networks (DCNNs). It was designed to
automatically remove several artifacts, commonly observed
in long-term EEG signals, such as ocular artifacts, mus-
cle activity, cardiac activity, pulse artifacts, and electrode
connection issues, in a similar way to that performed by
experts. Studies cited in the literature review, which devel-
oped deep learning models that whether only remove one
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FIGURE 11. Pairwise comparison plots comparing the statistical metrics of the noisy data and the denoised data reconstructed by our model,
by 1D-ResCNN and by extended Infomax ICA-MARA. The presented values represent the mean ranks and the standard errors obtained from the statistical
test. Overlapping confidence intervals mean that there are no significant statistical differences between the results under analysis. These figures were

obtained using the multcompare function from MATLAB.

type of artifact [22], [23] or were trained with artificially
generated noisy EEG data [24], [26], do not fully simulate
real application scenarios such as clinical EEG evaluation.
Our approach is a step forward because it was able to remove
several artifacts present in long-term signals collected from
epileptic patients, in pre-surgical monitoring.

Our approach was developed using EEG data previously
processed using independent component analysis (ICA).
ICA is a linear decomposition method. Therefore, the
reconstruction of EEG segments, after removing noisy inde-
pendent components (ICs), is performed using linear equa-
tions. However, our model must not only automate the linear
reconstruction of the EEG segments without artifacts but also
the nonlinear decisions performed by experts when classify-
ing the ICs.

The developed approach was able to attenuate the influence
of artifacts while preserving brain information. Additionally,
it was able to recognise artifacts within a segment and min-
imise information related to these ones keeping the remainder
data. Thus, it could preserve more information than ICA [23],
[26]. These results could be related to the removal of training
data with more than half of their ICs classified as noise,
i.e., the model did not learn to excessively remove data.
Finally, the model removed artifacts from signals which were
not used in training, which means that it did not overfit to
signals from patients used in training, and, therefore, may be
used in EEG signals from new subjects.

We found out that the model had difficulty in preserving
small details of the EEG signals in channels where high
amplitude artifacts were common, e.g., Fpl and Fp2 chan-
nels. This behaviour was also noticed by Yang et al. [23].

VOLUME 9, 2021

They reported that gamma bands (more than 30 Hz) were not
perfectly reconstructed when ocular artifacts were present,
which means their model also lost high frequency details
when signals were corrupted with this type of artifacts. Note
that loss functions, which aim at reducing the reconstruction
error, firstly find out how to decrease the larger errors, and
secondly learn the smaller details. Therefore, as these chan-
nels presented high amplitude artifacts, the model learned
to remove their influence before learning how to reconstruct
low amplitude data. In the EEG signals, the frequency is,
in most cases, inversely proportional to the amplitude. Thus,
although our model could preserve low frequency EEG data,
it may require a different training setup, e.g., increasing the
training set, searching for the optimal deep learning archi-
tecture, using longer training times or replacing the utilised
loss function by another one, in order to improve its high
frequency detail reconstruction.

Results evidenced that our model obtained the greatest
performance among the tested artifact removal models. Com-
pared to the 1D-ResCNN, this could be explained by the
fact that the latter was developed using simulated noisy
EEG data which could not precisely mimic real noisy EEG
segments. Considering the extended Infomax-MARA, our
approach presented a minor loss of information because
instead of removing the entire source related with the noise,
it focuses on removing just the time interval when the arti-
fact occurs. Furthermore, our model is faster than the other
evaluated approaches. Therefore, it may be used to remove
artifacts from signals in real-time scenarios. Our approach
could be, for example, deployed into the IBM’s TrueNorth
Neurosynaptic System [48], [49], which is a power-efficient
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neuromorphic chip that can be adapted to implement deep
convolutional neural networks [50], to remove artifacts from
EEG signals before epileptic seizure prediction.

As our approach was developed with EEG segments
acquired using a sampling rate of 256 Hz, it is restricted to
acquisition systems using the same number of samples per
second. However, this may not be seen as a strong limitation
because studies often consider scalp EEG that was either
obtained using this sampling rate [51]-[56] or using higher
sampling rates which where subsequently downsampled for
further analysis [57]-[60]. Moreover, as it was trained using
multi-channel EEG segments, it is also restricted to the same
channel placement over scalp. Furthermore, it is limited to
segments lasting up to 10 minutes, i.e., signals with longer
duration must be segmented before being processed.

The model was developed with 19-channel EEG segments
previously processed using ICA. ICA can only find a num-
ber of independent sources at most equal to the number of
used channels. Although some authors state that 19 may be
considered as a high number of EEG channels, ICA usually
performs more accurately with EEG data with at least 64
channels [61], [62]. Therefore, the reconstruction capability
of our model may be limited by the performance of the ICA
decomposition. However, as our main goal was to develop a
model that would be able to work in real long-term scenarios,
we were restricted to low-density EEG data that were avail-
able in the database.

We developed our model using EEG data from epileptic
patients under pre-surgical monitoring conditions. These data
were acquired without conditioning patients’ activities. This
means that data contain several artifacts which most probably
are present in EEG signals acquired for other research pur-
poses. Therefore, although it was developed using epileptic
EEG data, it may be used for denoising other types of EEG
signals.

V. CONCLUSION

This work demonstrates the potential of deep learning archi-
tectures in the development of models that can automatically
remove artifacts from electroencephalograms (EEGs) in less
than a second.

Removing artifacts present in real long-term EEG signals,
by visual inspecting the independent sources of the signals,
is a time consuming task since it requires the examination of
several hours of data. Therefore, we developed a deep learn-
ing approach to automatically and quickly remove artifacts,
such as eye blinks, eye movements, muscle activity, cardiac
activity, and electrode connection interferences. In this way,
we could use it later to automatically eliminate noise from
EEG signals from other patients, available in the EPILEP-
SIAE database, or for removing noise in real-time scenarios.

Experimental results suggested that the developed model
was able to attenuate the influence of the artifacts in the
EEG signals. Furthermore, compared to other approaches,
our model could combine a minor reconstruction error with a
fast computation, making it suitable to be used to preprocess
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real-time long-term EEG signals. This demonstrates that EEG
artifact removal models, based on deep neural networks,
developed using real EEG signals, should be taken into con-
sideration when noisy artifacts are present in the EEG data.

Following this study, we plan to develop deep convolu-
tional neural network models using each EEG channel indi-
vidually and compare them with the model presented in this
article. In this way, if the new approaches achieve similar
or better performance, they could be used to remove arti-
facts from noisy segments acquired with any type of acqui-
sition system, as long as one provides the same sampling
rate.
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