
Received September 20, 2021, accepted October 30, 2021, date of publication November 8, 2021,
date of current version November 23, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3125979

IoTsecM: A UML/SysML Extension for Internet
of Things Security Modeling
PONCIANO JORGE ESCAMILLA-AMBROSIO 1, (Senior Member, IEEE),
DAVID ALEJANDRO ROBLES-RAMÍREZ1, THEO TRYFONAS 2, ABRAHAM RODRÍGUEZ-MOTA1,
GINA GALLEGOS-GARCÍA 1, AND MOISÉS SALINAS-ROSALES 1
1Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07738, Mexico
2Faculty of Engineering, University of Bristol, Bristol BS8 1TR, U.K.

Corresponding author: Ponciano Jorge Escamilla-Ambrosio (pescamilla@cic.ipn.mx)

This work was supported in part by the Consejo Nacional de Ciencia y Tecnología (CONACY), and in part by the Instituto Politécnico
Nacional under Grant SIP 1999 and Grant 20210039. The work of Theo Tryfonas was supported by the Department for Business, Energy
and Industrial Strategy, U.K.

ABSTRACT In this paper, an approach referred to as IoTsecM is proposed. This proposal is a UML/SysML
extension for security requirements modeling within the analysis stage in a waterfall development life cycle
in a Model-Based Systems Engineering Approach. IoTsecM allows the security requirements representation
in two very well-known modeling languages, UML and SysML. With the utilization of this extension, IoT
developers can consider the security requirements from the analysis stage in the design process of IoT
systems. IoTsecM allows IoT systems to be designed considering possible threats and the corresponding
security requirements analysis. The applicability of IoTsecM is demonstrated through applying it to analyze
and represent the security requirements in an IoT real-life system in the context of collaborative autonomous
vehicles in smart cities. In this use case, IoTsecM was able to represent the security requirements identified
within the system architecture elements, in which all countermeasures identified were depicted using the
proposed IoTsecM profile.

INDEX TERMS Cybersecurity, UML, SysML, Internet of Things, smart cities, autonomous vehicles.

I. INTRODUCTION
The Internet of Things (IoT) represents a radical transforma-
tion of the existing Internet into an interconnected network
of ‘‘Smart Objects,’’ generically referred to as ‘‘Things.’’ IoT
systems not only collect data from the environment (they
have sensing capabilities) and interact with the physical world
(they can perform actuation, command, and control over other
things), but also use the Internet to provide services for infor-
mation transfer, processing, analytics, storage, and applica-
tions [1]. The main postulate of the IoT is that everything can
be connected to the Internet anytime, anywhere, and using
any network [2]. Hence, more objects such as smart cam-
eras, wearables, environmental sensors, home appliances,
and vehicles, are connected to the Internet every day. These
connected things generate massive amounts of data among
an increased number of IoT users, services, and applica-
tions across different domains. The collection, integration,

The associate editor coordinating the review of this manuscript and

approving it for publication was Moussa Ayyash .

processing, and analytics of these data enable the realization
of smart cities, infrastructures, and services for enhancing
the quality of life. A prediction from Gartner reported that
by 2020 there would be 20.4 billion connected things [3].
These connected things cover a broad range of applications,
for example, smart cities, smart grid, smart farming, smart
health, among many more [1], [4].

In terms of security, identifying the vulnerabilities in an
IoT system is strongly related to the system dimension.
In other words, the attack surface grows when more elements
are added to an IoT system, as these can be a point of access
for an attack or an intrusion. Hence, identifying security
requirements and depicting security controls in IoT systems
impose new challenges that were not present in the traditional
Internet. Furthermore, IoT systems’ security requirements
are frequently reviewed as an after-thought, even when the
information handled by these systems is very sensitive in
most cases. Therefore, understanding the associated security
threats of IoT systems and identifying their potential solu-
tions is imperative. In [4], a review of the main security

154112 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-3772-3651
https://orcid.org/0000-0003-4024-8003
https://orcid.org/0000-0002-5212-350X
https://orcid.org/0000-0002-2167-2792
https://orcid.org/0000-0003-0868-143X

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

threats in IoT and cyber-attacks performed on IoT applica-
tions was presented. This empirical review identified several
security requirements for IoT, such as resilience to attacks,
data authentication, access control, client privacy, user iden-
tification, identity management, secure data communication,
availability, secure network access, secure content, secure
execution environment and tamper resistance.

However, IoT security is not a one-size-fits-all problem,
and the solutions deployed to solve this problem tend to be
quick fixes that do not consider all aspects needed. Hence,
it should be recognized that IoT security is both multi-faceted
and dependent on the effort to standardize IoT security tools.

In this context, an approach referred to as Internet of
Things Security Modeling (IoTsecM) is proposed in this
work. IoTsecM is a UML/SysML extension, which applies
UML stereotypes mechanisms, UML/SysML diagrams and
UMLsec stereotypes. IoTsecM aims to model security
requirements in IoT systems to guide developers along the life
cycle of the IoT systems design within the analysis stage in a
Model-Based Systems Engineering (MBSE) approach. This
work proposes a graphic representation of security modules,
a nomenclature that encapsulates the IoT security require-
ments and UML diagrams extensions.

The first version of this approach was presented in [5],
which was mostly a work in progress. The present
work describes in detail the components of the proposed
UML/SysML extension. Furthermore, to validate the appli-
cability of IoTsecM, it has been employed to model the
security requirements within the Flourish project [6], whose
objective is to find innovative solutions related to customers
interaction, connectivity, data analytics, and safe design for
collaborative autonomous vehicles (CAVs) in a smart city
domain. There are many threats in the Flourish environment,
numerous cyber-attacks may target the Flourish assets, and
they are also exposed to many motivated and not motivated
attackers. Since the CAVs will be moving along the city, they
can be easily reached as also its communication flow. The
use of the IoTsecM profile makes it possible to identify the
overall system security requirements, which then helps to
place and depict the security mechanisms within the system
architecture.

The remainder of the paper is organized as follows.
In Section 2, related works about security modeling in IoT
systems are reviewed. In Section 3, the IoTsecM approach is
presented. Section 4 describes the application of IoTsecM to
cyber security modeling in a CAV system within the Flourish
project. Finally, Section 5 draws conclusions from the pre-
sented work.

II. RELATED WORKS
Several approaches consider IoT security according to dif-
ferent viewpoints. From the security requirements point of
view, the need for confidentiality, integrity, and authentica-
tion mainly depends on the security goals for each applica-
tion at hand. Hence, there are many security requirements
within the IoT applications ecosystem; for example, in [7] a

TABLE 1. Security requirements from the security infrastructure point of
view.

table of security requirements from the infrastructure point
of view was presented (see Table 1). In that proposal, the
IoT environment was split into three categories: System
Dependability, Communication Stack, and User and Service
Privacy. For each of these categories, the authors found
some requirements related to Confidentiality, Integrity, and
Availability. Then they proposed some security components
to target the security goals: AuthN (authentication module),
AuthZ (authorization module), IM (identity management),
KEM (key exchange management), and TRA (trust and rep-
utation authority). However, the IoT involves more security
requirements; for instance, tamper protection is needed for
the physical layer in many scenarios.

In [8], some high-level security requirements were derived:
resilience to attacks, data authentication, access control,
client privacy, user identification, secure storage, identity
management, secure data communication, availability, secure
network access, secure content, secure execution environ-
ment, and tamper resistance. In this approach, more security
concerns for IoT systems were considered, for instance, the
different layer’s requirements, according to their respective
IoT architecture.

In [9], [10], security requirements for IoT systems have
been obtained considering the Industrial Internet Reference
Architecture (IIRA) point of view. The authors envision four
viewpoints in their work: business viewpoint, usage view-
point, functional viewpoint, and implementation viewpoint.
From the business viewpoint, they are focused on the return
of investment for security; in that sense, operations must
be protected against the risk of damage. This damage may
include interruption or stoppage of operations, destruction
of systems, and leaking sensitive business and personal data
resulting in loss of intellectual property, harm to the business
reputation, and loss of customers. For the usage viewpoint,
they propose security monitoring, security auditing, security
policy management, and cryptography. For the functional

VOLUME 9, 2021 154113

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

viewpoint, they provide six interacting building blocks orga-
nized into three layers. The top layer comprises the four core
security functions: endpoint protection, communications and
connectivity protection, securitymonitoring and analysis, and
security configuration and management. These four func-
tions are supported by a data protection layer and a system-
wide security model and policy layer. For the implementation
viewpoint, the authors outline common security issues: end-
to-end security from the edge to the cloud, hardening of
endpoint devices, protecting communications, confidential-
ity and privacy of data collected, managing, and controlling
policies and updates, and using analytics and remote access
to manage and monitor the entire security process.

From the modeling point of view, existing system mod-
eling tools have been adapted to depict IoT systems
through extensions of UML and/or SysML. An IoT-specific
domain modeling language based on UML is proposed
by Eterovic et al. [11]. The proposal represents things with
labeled rectangles. These things contain one or more items
representing sensors, actuators, or other components, and
the communication between items is over ‘‘provided’’ or
‘‘required’’ interfaces. A circle and semicircle notation are
adopted to represent the items’ interfaces in a friendlier way
rather than the traditional stereotypes in UML.

The authors in [12] present the approach referred to
as UML4IoT, a UML profile focused on modeling cyber-
physical components and their effective integration into
IoT systems in the manufacturing application domain. The
proposed approach is used to automate the transformation
of cyber-physical components to an Industrial Automation
Thing, i.e., a component with an IoT wrapper ready to be
integrated into the modern IoT manufacturing environment.
For the usability validation of their approach, the authors used
a prototype implementation of the myLiqueur production
laboratory system [13], which is, roughly, an IoT system that
allows users to custom their liqueur by using a smartphone
app remotely.

The UMLsec approach, presented in [14], is a UML exten-
sion based on a formal semantics to model computer system
security properties. UMLsec aims to support secure system
development through five goals in an already modeled sys-
tem (using UML). UMLsec should be able to evaluate the
system for security-related vulnerabilities in the design auto-
matically. The authors argue that UMLsec defines precise
semantics for security; it allows constructing a single formal
description for the systemmodel, including information from
all diagrams and all abstraction layers.

Moreover, some authors have provided evidence support-
ing the potential benefits of linking cyber security techniques
to MBSE and SysML; in this sense, in [15], an approach for
extending SysML to be security-aware is discussed where,
as stated by the authors, aims to provide a basis for discus-
sion and development. The paper concludes by highlighting
the advantage of using SysML over other modeling lan-
guages for industrial control systems (ICSs) modeling and
the benefits of encouraging model-based systems engineers

to consider security as one of the core concerns of system
design.

In [16], an approach for the modeling, specification, and
analysis of application-specific security requirements is pre-
sented. The proposal is based on a goal-oriented framework
for generating and resolving obstacles to goal satisfaction
focusing on security engineering at the application layer.
From the threat trees point of view, used for modeling or
documenting potential attacks in security-critical systems,
they are built systematically through anti-goal refinement.
Roughly speaking, it is achieved by introducing a formal
epistemic specification that may support a formal derivation
and analysis process.

Uzonov et al. [17] presented a pattern-driven security
methodology (referred to as ASE) designed for distributed
systems that also can consider peer-to-peer systems. The
methodology is particularly focused on the design phase
of these systems. It uses the principle of encapsulation
by employing patterns to incorporate security features and
threats modeling. The approach is illustrated in the develop-
ment of a distributed system for file sharing and collaborative
editing. The authors argue that ASE can address all or most
of the core distributed systems security concerns, providing
developers with detailed guidance on how and where to intro-
duce relevant security features into a system’s architecture
during development.

In [18], Apvrille and Roudier presented SysML-Sec as a
SysML environment that introduces diagrams for security
matters and an associated methodology. They propose the
stereotype �security requirement� which is used in the
requirements diagram of SysML. The same authors in [19]
further developed SysML-Sec to include attack graphs. The
work proposed using the SysML’s parametric diagram to
depict attacks and their composition and represent the assets
target of these attacks. The application of the proposed
approach is illustrated on a PC andmobilemalware examples.
SysML-Sec seemed a useful extension because it can model
security matters properly, but it lacks IoT semantics.

Some of the previous approaches consider a security layer
but mostly as an after-thought: they do not consider a threat
analysis and do not consider the IoT system security require-
ments and the wider attack surface of IoT systems.

Differing from previous works, we propose an approach
referred to as IoTsecM. It is for security requirements mod-
eling within the analysis stage in a waterfall development life
cycle in an MBSE approach. It is achieved by allowing the
security requirements representation in two very well-known
modeling languages, UML and SysML.

III. IoTsecM SECURITY MODELING
In this section, an extension approach to UML/SysML is
introduced. This proposal is referred to as IoTsecM (IoT
Security Modeling) since it aims to model the security
requirements of IoT systems. Firstly, from a security anal-
ysis, fourteen security elements were identified [20], [21],
which are abstract enough to depict the security concerns of

154114 VOLUME 9, 2021

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

IoT systems from the analysis stage in an MBSE process.
Hence, IoTsecM intends to allow developers to add security
mechanisms in subsequent stages, such as design, even if the
developers are not cybersecurity experts.

Once the security concerns were classified and depicted as
elements, a nomenclature was proposed where each abstract
security element was bounded to a nomenclature element.

A UML/SysML extension was chosen to deploy the pro-
posed security nomenclature to provide an intuitive and
graphic notation meant to decide where to introduce security
countermeasures in an IoT system.

IoTsecM has two main contributions:
1) IoTsecM actors: they are introduced in section 3.1; they

model the principal actors in an IoT environment (humans,
actuators, sensors, tags, and IoT devices).

2) IoTsecM nomenclature: it comprises fourteen security
elements. It is the IoTsecM core, introduced in section 3.2.

The IoTsecM profile design development starts once the
IoTsecM metamodel is designed and the security nomencla-
ture and actors are obtained, fitting it into a UML/SysML pro-
file. In order to construct the associated metamodel, Eclipse
Papyrus [22] was used, which is a UML tool that allows
profile generation. There, the stereotypes, constraints, and
tagswere defined. In the following sections, the IoTsecMpro-
file will be explained in detail. An overview of the IoTsecM
profile nomenclature is displayed in Fig. 1, while an overview
of the IoTsecM profile actors is shown in Fig. 2. The IoTsecM
profile applies the UML and SysML metamodels to obtain
the metaclasses’ features from each one. However, it is nec-
essary to clarify that, from SysML, the presented approach
only extends the block and requirement metaclasses in the
stereotypes proposed. For a broader explanation of IoTsecM,
the reader is referred to [20].

A. IoTsecM ACTORS
The IoT landscape comprises an enormous compendium of
items able to interact in many ways. Therefore, there are
many actors frommany domains. Some approaches have tried
to help in the actor’s classification, such as the IoT-A pro-
posal [7], specifically in their domain model, they identified
users and devices.

The proposal of Actors does not rely on the security con-
cerns directly. However, they are fundamental in themodeling
stages since they abstract the main features of each IoT com-
ponent, allowing the modeling process. IoTsecM contains
five Actors regarded as:

• User: users can be humans or any digital device, appli-
cation, service, or software agent that interacts indi-
rectly or directly with the physical entity or the system.

• Sensor: any device that provides information about the
physical entity.

• Actuator: any device that can modify the physical state
of a physical entity.

• Tag: is typically attached to the physical entity and
allows its identification.

• IoT device: is the hub and processing core element
that gathers the sensor information and processes it.
The IoT device handles the communication from the
virtual entity to the system. It can send instructions to
actuators.

The UMLmetaclass extension Actor and UML stereotypes
are used to identify an actor, which defines the IoTsecM
profile, as depicted in Fig. 2.

The IoTsecM stereotypes used to depict actors are:
�IoTdevice�, �User�, �Actuator�, �Sensor� and
�Tag�. They model the actors described earlier. A descrip-
tion of the IoTsecM Actors, including constraints and fea-
tures, is given in the following paragraphs.

1) IoTdevice
Extends the UML metaclass Device (from the deployment
diagram) as it can be used to model the system architecture
in terms of hardware.�IoTdevice� stereotype extends the
Actor and Class metaclasses as well. This means that it can
be applied to model an actor interacting with the system or
a class in a UML class diagram. An IoT device has some
predefined attributes that provide an abstract representation
of its communication capabilities, such as:

• Bluetooth: this is a Boolean type value (True or False),
but it allows the user to specify the value Undefined,
providing developers with some flexibility when apply-
ing the profile. The TRUE value indicates that the Blue-
tooth communication is activated, while the FALSE
value means that this capability is not supported or is
not activated if it is supported.

• WiFi: this attribute is better defined as Boolean type,
although it allows the Undefined value, as is the case
for the Bluetooth attribute.

• MobileNetwork: this attribute is a Boolean type of
value that defines whether the mobile network commu-
nication is activated or not.

• Zigbee: is a widespread communication protocol in
wireless sensor networks (WSN); therefore, it is a
predefined attribute of a Boolean type that represents
whether the service is enabled or disabled. The Unde-
fined value is also allowed.

• USBPort: many IoT devices have USB ports; hence,
an attribute representing this condition has been
defined as a Boolean type value.

• Microphone: if an IoT device is equipped with a micro-
phone, it can be depicted with this attribute defined as
a Boolean type.

• HDMI: it depicts a High Definition Multimedia Inter-
face (HDMI) port, which is shown as a Boolean
attribute.

Two operations are considered as predefined when the
�IoTdevice� stereotype is used to depict the most common
functionalities of this module:

• receiveSensorData(): indicates that the IoT device is
able to gather sensor data.

VOLUME 9, 2021 154115

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

FIGURE 1. IoTsecM profile nomenclature overview.

154116 VOLUME 9, 2021

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

FIGURE 2. IoTsecM profile actors.

• sendData(): is a more general operation, representing
whether the device is able to send data to the user or
not. This operation can also represent that a device can
send information to some external server or the cloud.

The�User� stereotype is applied to display the existence
of a user, which, as mentioned earlier, may be a human,
software, or any electronic device that invokes a resource
from the physical entity. The�User� stereotype extends the
actor and class metaclasses; thus, it can be applied as an actor
in a use case diagram and over a class in a class diagram or
in an object diagram when instances of it appear.

Two attributes are proposed for the �User� stereotype:
ID and TypeUser. The ID attribute is unique and is recom-
mendable to state it as Integer. Although in the stereotype
definition, it is undefined to represent the case where the user
is not linked to any technology or programming language.
The TypeUser attribute is normally a string, and it defines
the type of user who is invoking the resource such as human,
software, device, etc. The operation offered by the�User�
stereotype is invokeService() which invokes a service from
the IoTdevice or another server.

2) ACTUATOR
The �Actuator� stereotype refers to the entity which can
modify the physical entity state. It has two attributes, the
ID attribute, and the TypeActuator attribute. It admits the
actsPE() operation, which is the abstract method defined to
interact directly with the physical entity.

3) SENSOR
The �Sensor� stereotype models the sensor actor, where
there is a unique ID attribute for each �Sensor� instance.
It defines a TypeSensor attribute where the specific sensor
type is defined, for example, humidity, light, camera, etc.
The only predefined operation is monitorPE(), which is the

dedicated method to monitor some physical entity character-
istic according to the type of sensor.

4) TAG
The �Tag� stereotype models the tag actor; it includes a
unique ID attribute for each tag. It also defines the attachedTo
attribute, which indicates to which physical entity it is
attached.

B. IoTsecM NOMENCLATURE
The IoTsecM profile aims to address the security concerns
of IoT systems. Therefore, the core of the proposal is a set
of security elements, which are described in this section.
These security elements encapsulate the security require-
ments. Besides, each element is part of a nomenclature, which
allows us to depict them in a UML/SysML profile, making
them easy to memorize. This profile helps to reduce box sizes
in a diagram and allows a more agile design.

Fourteen elements have been identified and incorporated
into the representation by applying a UML/SysML extension
mechanism. A summary of these elements is presented in
Table 2. The following subsections describe each IoTsecM
nomenclature element.

1) AUTHENTICATION: AUTHN
Authentication is the security service for ensuring that the
identity of an entity (a user or service) is valid. Hence, it is an
essential element of a typical security model. Authentication
can be achieved by a mechanism that develops the authenti-
cation process of verifying the identity of an entity to prove if
someone or something is, indeed, who or what it claims to be;
‘‘authentication is the binding of identity to an entity’’ [23].

In IoT systems, the authentication service is not just imple-
mented in one layer of the system; it can be spread alongside
the multiple layers of the whole architecture. For instance, the

VOLUME 9, 2021 154117

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

TABLE 2. IoTsecM profile nomenclature.

perception layer must authenticate sensors, tags, and actua-
tors; or the service layer must validate the IoT devices’ iden-
tities. Therefore, in IoT systems, the authentication service
becomes more complex; hence, it needs to be part of an entire
security infrastructure.

The authentication process considers three main
aspects [24]:
• What the entity knows: this approach is also known as
knowledge-based, and it refers to private information
supplied by the subject, for instance, passwords or
secret information.

• What the entity possesses: this is also known as
possession-based, and it could be a badge or a card.

• What the entity is: this is biometric-based, including,
for example, fingerprints or retinal characteristics.

The authentication process refers to obtaining related infor-
mation from an entity, analyzing these data, and determining
if it is associated with that entity. This means that the process-
ing unit must store some information about the entity. It also
suggests that mechanisms for data management are required.

The element AUTHN represents an authentication process
in a model item guaranteeing the authentication of an actor
applying an authentication mechanism at a particular time.
The AUTHN stereotype depicts an authenticationmechanism
regarding the abstraction level, which allows to model this
security requirement. Certainly, this helps IoT designers to
represent this security requirement from the design stage.

For the IoTsecM actors, the AUTHN element is applied as
a security requirement and is expressed writing AUTHN over

FIGURE 3. �AUTHN� stereotype depicted as a requirement over the
actor’s head.

FIGURE 4. �AUTHN� stereotype represented as a use case.

the actor’s head; this is an extension of the UML notation,
since UML, SysML or SysMLsec do not depict security
requirements in the use case diagram. This element will
allow designers to depict the authenticated actors properly
in a visual way and during an early stage of the system
development. In Fig. 3, an authenticated actor is depicted,
where AUTHN is written within a text box since it can be
implemented in all UML/SysML tools.

If the authentication process is considered as a use case,
then the �AUTHN� stereotype is annotated, as shown in
Fig. 4. Here an entity is related to the use case, meaning
that the entity stores an authentication process or protocol.
For example, in Fig. 4 the�IoTdevice�, named Device 1,
authenticates other entities, e.g., sensors, actuators, or tags.
At this level of abstraction, it could be difficult to determine
which hardware or infrastructure element will address the
authentication process. Hence, it can be observed that this
representation fills the gap between the non-functional secu-
rity requirements representation not addressed in UML or
SysML approaches and the data or representation required
by some automation tools or well-defined authentication
protocols.

In brief, in a static diagram, the AUTHN stereotype
helps better model a use case, class, software component,
block (SysML), and object. Whereas, in a dynamic dia-
gram the AUTHN element depicts an activity or a state.
In Fig. 5, the�AUTHN� stereotype and the corresponding
extended metaclasses are shown; note that the UML notation
is preserved.

The AUTHN element has the A and f parameters as
entry data. Therefore, the AUTHN element by itself or using
another element of the nomenclature will determine C to
obtain l [23]. The parameter A is the set of specific infor-
mation used by the entities to prove their identities; C is
the set of complementary information that is used by the

154118 VOLUME 9, 2021

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

FIGURE 5. IoTsecM �AUTHN� stereotype and metaclasses extended.

system to validate authentication information; F is the set of
complementation functions that generate the complementary
information from the authentication information; L is the set
of authentication functions used to verify identity, and S is
the set of selection functions that enable an entity to create or
alter the authentication and complementary information.

With l ∈ L and f ∈ F , this is:

AUTHN (A, f) = l(A,C) = {True,False} (1)

f (A) = C (2)

l(A,C) = {True,False} (3)

The �AUTHN� stereotype can be a class; hence, it has
instances (objects) which can be applied in a sequence
diagram, object diagram, and state diagram. The AUTHN
element also can be modeled as a software component
using UML notation. In Fig. 5, the metamodel for the
�AUTHN� stereotype is shown. The metaclasses extended
are UseCase, Class, Component, Activity, and State. The
�AUTHN� stereotype contains the three main operations
described before and the assertion attribute, which results
from the authentication process, which is recommendable to
be declared as a Boolean type value.

The function of the AUTHN element is to provide design-
ers an abstract module that helps them further implement of
either a well-known or a novel authentication approach [25].
This implementation can also be modeled using IoTsecM
state machine diagrams, where the life of an instance of the
�AUTHN� stereotype is described step by step.

2) AUTHORIZATION: AUTHZ
Once an actor is identified and authenticated, we must deter-
mine the rights it is granted (read, write, delete, execute).
Therefore, an authorization element is fundamental for the
IoTsecM extension. The AUTHZ element refers to access
control decisions based on access control policies.

AUTHZ relates to the capacity of authorizing or refusing a
user or entity to access a resource, with some specific actions
permitted according to the user identity. From an abstract
point of view, its basic functional principle can be modeled
like [21]:

AUTHZ (s, r, o)→ {true, false} (4)

FIGURE 6. AUTHZ element for authorized actors.

with s ∈ S, r ∈ R, and o ∈ O; S is the set of subjects
performing the access;R is the set of resources to be accessed;
O is the set of operations to be performed on the resource.
The functionality of the AUTHZ element is based on the

AuthZ component described in [7], here it is defined as:

Boolean : AUTHZ.authorize (Assertion,Resource,

×ActionType) (5)

The result of the AUTHZ element decision is TRUE or
FALSE (permit or deny). Assertion depicts the details of the
actor who accesses the information, which typically are: ID,
certificate, Security Assertion Markup Language (SAML)
assertion, Kerberos assertion, etc. Resource indicates the
asset to be accessed, for instance, services or data. Action-
Type depicts the action to be performed over the associated
resource, for example, read, write, or execute.

In [26], a nomenclature for access control systems is
defined, where the authorize functionality is called Policy
Decision Point (PDP), the Policy Enforcement Point (PEP),
and the Policy Administration Point (PAP). All these func-
tionalities are encapsulated within the AUTHZ element since
these are the basic access control components commonly
utilized, providing the system model with an abstraction of
the access control features.

Currently, two main access control approaches could be
suitable for IoT systems: Role-based access control (RBAC)
and Attribute-based access control (ABAC). IoTsecM pro-
vides an extension to depict whether an actor is authorized or
not; it is achieved by writing AUTHZ over the actor’s head,
indicating that the current actor is or needs to be authorized.
In Fig. 6, an example is shown where a sensor is annotated
with AUTHZ over its head. This is the first step in the
design stage to map an authorization requirement within the
IoTsecM notation.

The functional principle described before is mostly related
to Access Control Lists (ACLs) and its correct implementa-
tion; therefore, the AUTHZ element involves an authentica-
tion mechanism. The AUTHZ element must be able to map
the certificates authenticated from AUTHN to some specific
policies. An �AUTHZ� stereotype instance can be called
from an �IDM� stereotype instance if it is resolving a
pseudonym (see Section 3.A.8). In Fig. 7, an IoT device,
called Device 1, is related to the use case AUTHZ, which
depicts that this actor develops an authorization mechanism.

VOLUME 9, 2021 154119

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

FIGURE 7. �AUTHZ� stereotype applied in a use case.

FIGURE 8. �AUTHZ� stereotype definition.

The AUTHZ element models the three main functionali-
ties of an authorization infrastructure. Therefore, the main
operations of the PAP should be applied in the AUTHZ
element. The IoTsecM profile will allow the design of
these abstract operations within the�AUTHZ� stereotype,
as it is shown in Fig. 8, where the �AUTHZ� stereo-
type definition is shown and the metaclasses extended are
Class, Component, UseCase, Activity, and State. The main
functionalities of a PAP are predefined through the oper-
ations: AUTHZstart(s, r, o), setPolicyRoot(), getPolicies(),
setPolicy(), getPolicy(), addPolicy() and deletePolicy The
�AUTHZ� stereotype includes three properties, two of
them are represented by Boolean values, which are RBAC
and ABAC that define the control access type property, plus
the ID property.

3) ENC: ENCRYPTION AND DEC: DECRYPTION
Cryptography, defined as the study of mathematical tech-
niques related to aspects of information security [27], pro-
vides cryptographic tools, also named primitives, for securing
data, transactions, and personal privacy.

A cryptographic module offers the services of encryption,
digital signature, and message authentication code (MAC),
among other services, to achieve confidentiality, authenti-
cation, integrity, and non-repudiation security services [27].
Cryptographic primitive types fall into the following cate-
gories [28]:

• Encryption:

� Symmetric
� Asymmetric

• Hashing
• Digital signatures

� Symmetric
� Asymmetric

• Random number generation: The basis of most cryp-
tography algorithms requires very large numbers orig-
inating from high entropy sources.

On the one hand, symmetric algorithms use the same
shared cryptographic key to encrypt and decrypt data. On the
other hand, asymmetric algorithms use a publicly known key
for encryption but requires a different key, known only by the
intended recipient, for decryption. From the cryptographic
primitives, different algorithms should be selected, and then
a cryptosystem is defined.

Representing an Encryption element using the �ENC�
stereotype indicates the dynamic or static encryption of
data, with the encryption algorithms to achieve the encryp-
tion of data contained on such element. This element can
work with any other element which encrypts data. There-
fore, the �ENC� stereotype is an abstraction of a crypto-
graphic primitive module; it provides symmetric encryption,
asymmetric encryption, counter modes, hashes, and digital
signatures.

The ENC element receives the data, M (or message), the
encryption key, K , and the encryption algorithm, E , that will
be applied; consequently, it returns the encrypted data (or
ciphertext), CT, and the key used. For symmetric encryption,
it returns the single encryption key, and in the case of asym-
metric encryption, it returns the public encryption key used
for the encryption process. The following function describes
this process:

ENCout = ENCin(M ,K ,E) (6)

whereM is the data (or message) to encrypt, K is the encryp-
tion key, and E is the algorithm required for the encryption
process.

The XOR operation is used in blockchains and counter
modes; besides, it helps other system functionalities. There-
fore, the ENC element includes the XOR operation.

XORout = XORin(M1,M2) (7)

whereM1 and M2 are the data that will be XORed.
The counter modes make use of a Counter; in these, the

plaintext data is not encrypted with the encryption algorithm
and key; instead, each bit of plaintext is XORed with a stream
of continuously produced ciphertext comprising encrypted
counter values that continuously increment; this is:

ENCMout = Generate_CypherText(Counter) (8)

Although the encryption algorithm is not always performed
by just one module, it is important to add a counter mode that
is able to produce ciphertext.

In order to use block chaining modes, the�ENC� stereo-
type instance can be called asmany times as the chain requires
it. Hence, it can be easily added since the ENC element is a
meta-class that can be applied and added following the system
requirements. In this way, the cipher block chaining operation
module (CBC) is included.

The �ENC� stereotype can be applied as a use case
within the use case diagram to depict that a given actor

154120 VOLUME 9, 2021

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

FIGURE 9. �ENC� use case example.

FIGURE 10. �ENC� stereotype definition.

has to encrypt data, or it could have an encryption module
as well. In Fig. 9, the �ENC� stereotype is shown as a
use case where an actor named CentralNode, which is an
IoTdevice, must encrypt data. This means that it requires the
minimum encryption capabilities described before according
to the system security requirements and computing power.

The�ENC� stereotype extends the use case, class, com-
ponent, device, activity, and block (SysML) metaclasses,
see Fig. 10. This stereotype includes the abstract operations
previously described, such as ENCin(M , K , E). The second
operation provided by the �ENC� stereotype is an XOR,
depicted as XOR(M1, M2). The last operation is Generate-
CypherText(Counter) which corresponds to the counter mode
explained earlier.

The main functionality of the DEC element is to decrypt
the encrypted message; therefore, it must know the algo-
rithm used in the encryption process to be able to decrypt
the information. Hence, it knows the key used to encrypt
the data, meaning communication between the DEC and
KM elements is needed. Nevertheless, the architecture is
not regarded in the metamodel proposed and the aim is to
provide the abstract elements with abstract operations and
attributes to be customized as each IoT system requires
them.

The main functionality of the DEC element is the decryp-
tion of data, applying the function:

DECout = DECin(CT ,K ,E) (9)

FIGURE 11. A DEC element as a use case.

FIGURE 12. �DEC� stereotype definition.

where CT is the Ciphertext, K is the decryption key, and E is
the algorithm required for the decryption process.

Within the IoTsecM profile, the DEC element can be
depicted as a use case; this means that an actor who includes
this use case must have a decipher module with the algorithm
used to decrypt the data. An example of this is shown in
Fig. 11, where an actor named CentralNode has a DEC use
case. This means that that this actor performs the decryption
process of a given data.

The�DEC� stereotype is proposed to cover the decryp-
tion process in the analysis stage; therefore, it extends the
UseCase, class, and component metaclasses from UML.
On the other hand, it extends the block metaclass from
SysML. The only property defined is the ID and the opera-
tion defined is the DECin operation, which encapsulates the
�DEC� function described earlier. In Fig. 12, the�DEC�
stereotype definition can be observed.

4) SECST: SECURE STORAGE
As discussed before, within the IoT environment, there are
resources on-device and in the network. In many scenarios,
the stakeholders would like to protect that sensitive informa-
tion or store it in a secure place.

Sensitive data can be protected by applying encryption
at the field, directory, record, file system, or storage device
level. Cryptographic algorithms use keys to encrypt and
decrypt data blocks; nevertheless, key management imposes
a hassle in IoT storage systems. The IoTsecM profile aims
at covering the abstraction of a secure storage requirement.
The IoTsecM profile proposes an extension to UML/SysML
to depict the secure storage requirement. It is done by apply-
ing the stereotype extension mechanism entitled�SECST�
which extends the constraint, link, association, communi-
cationPath, and property metaclasses from UML, and the

VOLUME 9, 2021 154121

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

FIGURE 13. �SECST� stereotype definition.

FIGURE 14. �SCOM� stereotype definition.

requirement metaclass from SysML. The�SECST� stereo-
type definition is shown in Fig. 13.

5) SCOM: SECURE COMMUNICATION
In many cases, at the benchmark of projects, the security
mechanisms to implement or consider are uncertain. At some
point, developers can depict the first use cases and conse-
quently the first security requirements in an abstract represen-
tation.When the secure communication requirement appears,
then some parameters should be addressed. According to [7]
the following parameters can be part of the secure communi-
cations enablement request:

• Target(s) identifier(s): entity identifiers with which the
requesting node is trying to communicate in a secure
way.

• Type of secure communications enablement: it may
be Authenticated Key Exchange (AKE) protocol run-
ning between the communicating nodes. The request
should establish whether the security property of Per-
fect Forward Secrecy (PFS) is required or not between
the requesting node and the target node(s) with which
it will securely communicate. PFS may mean that
an especially robust AKE protocol will be triggered
between the nodes.

• Type of authentication: the requesting node may wish
to authenticate its peer(s) using an end-to-end scheme.

• Supported identification scheme(s): the infrastruc-
ture and both entities must support the identification
scheme.

The proposed extension is based on the UMLsec
�secure links� stereotype [14], where secure communica-
tion and information flow are considered. In the IoTsecM
profile, the �SCOM� stereotype is presented, shown in
Fig. 14, as a UML extension that declares the condition when
the communications between two entities need to be secured.
Besides, it is a constraint, and this means that the security
requirement must be attended to in subsequent stages such as
design. For instance, a certificate-based protocol may attend
the {SCOM} constraint between two entities. Hence, the
�SCOM� stereotype extends the link, communication path,
and constraint metaclasses from UML and the requirement
metaclass from SysML.

6) KM: KEY MANAGEMENT
A key management system enables and assists IoT assets
in the establishment of secure communication or context.
It is an integrated approach to generate, store, and handle
the keys within a cryptosystem. The KM element provides
capabilities to the IoT assets to assist the low-resource nodes
in their operations, and it depends on specific protocols and
security mechanisms. This element should support the pro-
cess of enhancing the secure communication between a user
and a service by setting up a tunnel [7] between gateways,
which is very useful for users and services running on low-
resource devices. In the IoT environment, it is necessary to
grant suitable key management mechanisms that allow two
remote devices to exchange security credentials.

It is possible that a known key management system (KMS)
may not apply in an IoT context, mainly because the user and
service are in different networks. The common behavior of a
KMS is to provide a trusted third party that provides the two
entities with the corresponding keys. For example, if a user
and an IoT device share the same secret key, the objective
would be to provide this single secret key. This would follow
the next simple protocol [23]:

• User to KM: {request for session key to IoTdevice}
kuser

• KM to User: {ksession} kuser || {ksession} kIoTdevice
• User to IoTdevice: {ksession} kIoTdevice
The IoTdevice is now able to decrypt the message and uses

Ksession to communicate with User. This is just an overview
of the performance of a KMS; it has some vulnerabilities and,
clearly, improvements which are explained in [23]. The KM
element aims at describing andmodeling the general behavior
of a KMS; therefore, some abstract operations need to be
considered, such as:

• Key storage: a set of keys is securely stored for subse-
quent use.

• Key generation: the KM element should be able to
generate a proper key when requested.

• Key exchange: in some cases, identical keys need to
be exchanged between two parties (symmetric key sys-
tem); in other cases, the other party’s public key may
require to be shared (asymmetric keys).

154122 VOLUME 9, 2021

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

FIGURE 15. �KM� stereotype definition.

• Crypto-shredding: delete key data or revoke it.
• Key replacement: it should be able to replace a specific
key.

The KM element is modeled by applying a stereotype
named �KM�, which is a UML extension mechanism.
The operation described above is modeled by this stereotype
and extends the following metaclasses: class, component,
device, and block (from SysML). In Fig. 15, the �KM�
stereotype definition is shown in a UML profile diagram.
As can be seen, one attribute is defined, specifying an ID
and the abstract instructions which correspond to the KMS
functionalities introduced earlier. The defined operations are
keyStorage, keyGeneration, keyExchange, cryptoShredding,
and keyReplacement.

7) T&R: TRUST AND REPUTATION
According to [29], trust is a particular level of the subjective
probability with which an agent will perform a particular
action. Reputation is the expectation about an agent’s behav-
ior based on information about it or observations of its past
behavior [30].

The most common functionalities of a trust and reputation
(trust or reputation) model, as described in [7], are:
• Gathering information: collect behavioral information
about the entities in the system.

• Scoring and ranking: once the entity information has
been gathered, then it will be analyzed and scored.

• Entity selection: the scoring data help trusting enti-
ties decide which entities interact with each other and
which are not reliable. In the IoT landscape, it would
define sensor interactions.

• Transaction: once a sensor is selected, the transaction
occurs between both entities giving a specific service.

• Reward and punishment: once a transaction is com-
pleted, the client entity may assess that transaction to
reward or punish the entity which provided the service.

The evaluation of the reputation of an entity needs to
consider the low-computational power of some IoT devices

FIGURE 16. �T&R� stereotype definition.

such as sensors; hence such constraints need to be considered
in this evaluation to be light, scalable, etc.

In the IoTsecM profile, the trust and reputation services
are considered as an extension as well, where the exten-
sion mechanism applied is represented with the stereotype
�T&R�. The name should include the ‘‘or’’ word as well,
although the name would not be very practical to write.
Hence, �T&R� means trust and reputation, and trust or
reputation. The �T&R� functionalities described before
are depicted as operations within the stereotype definition,
as shown in Fig. 16. The operations defined for this stereotype
are gatherInformation, scoreEntity, selectEntity, transaction,
and rewardPunish, corresponding to the general function-
alities described above. The �T&R� stereotype includes
two attributes, the entity ID and the score of the trust and
reputation processes.

8) IDM: IDENTITY MANAGEMENT, AND PSEUD:
PSEUDONYM
In IoTsecM, identity management (IDM) is based on the
approach described in [7]. In many IoT scenarios, it is imper-
ative to protect the identity of users, actors, etc. Therefore,
information about the identity must be supplanted by apply-
ing a pseudonym. This element is related to the�PSEUD�
stereotype since it is the entity that handles the pseudonyms
and system identities. The IDM issues pseudonyms and
accessory information to trusted subjects. This element pro-
tects user privacy and service privacy.

A pseudonym is a temporary identity for an imaginary
subject that includes temporary credentials and access rights
depending on the requesting subject; therefore, a pseudonym
can request another pseudonym.

The pseudonym generation may be depicted as:

createPSEUD(s1[s1, s2, s3, . . . , sn], p→ s∗) (10)

where si is the subject or set of subjects, s∗ is the requested
pseudonym, p is the set of specifications such as key, length,
algorithm, access rights, etc.

The generated pseudonym preserves the subject access
rights or, if it is requested, it may include fewer rights than
the original subject, but it will never contain more rights. The
expiration date possessed by the pseudonym is less than or

VOLUME 9, 2021 154123

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

FIGURE 17. �Ps� stereotype example.

FIGURE 18. �PSEUD� stereotype example.

equal to the subject’s one. The request of a pseudonym should
be only requested by a secure channel.

The IDM element is the only one that keeps track of
the relationship between the pseudonyms and the subjects.
Another functionality of the IDM is that, when creating a new
pseudonym, it must update the access policies in the AUTHZ
element; therefore, it also associates a new address to the ID.

Two stereotypes are defined to depict the pseudonyms’
concerns, the �PSEUD� stereotype is an abbreviation of
the pseudonym word, and it depicts the requirement of an
actor of a pseudonym. For instance, if an �IoTdevice�
entitled as ‘‘node1’’ requires a pseudonym, then�PSEUD�
is depicted as shown in Fig. 17, this will help to identify those
actors that protect their identity and, consequently, the actor’s
privacy.

The �PSEUD� stereotype extends the actor metaclass,
the constraint metaclass, and the requirement metaclass from
SysML. In Fig. 18 the �PSEUD� stereotype definition is
shown.

The �IDM� stereotype is applied to depict the identity
management mentioned earlier. It extends the class, compo-
nent, activity, and association metaclasses. It defines three
main operations: verification of the assertion in the corre-
sponding�AUTHN� instance, the changeRightsInAUTHZ
operation, which changes the root identity permissions, and
assigns the previous ones to the pseudonym generated regard-
ing the constraints mentioned before. The �IDM� stereo-
type has two attributes, see Fig. 19, the first one is the
ID attribute, and the second one is a table (PsTable) which
contains the links between the original root entities and the
pseudonyms generated, it cannot be queried by any external
entity, module, component, etc.

9) CA: CERTIFICATION AUTHORITY AND RA: REGISTRATION
AUTHORITY
A Certification Authority (CA) is a trusted entity responsible
for issuing and revoking digital certificates using a digital
signature, where an asymmetric cryptographic algorithm is

FIGURE 19. �IDM� stereotype definition.

applied. The certificates include numeric IDs and passwords,
besides making available the verification process to validate
the provided certificates. The CA legitimates the relation
between the actor identity and its public key to third entities
that trust the CA certificates. Although a homogenized pro-
cess to trust a CA does not exist, it is a fundamental concept
for the correct performance, and then the entities who request
a certificate from a CA must trust it.

A CA is generally applied in a Public Key Infrastructure
(PKI), where before issuing a certificate, the CA must verify
the identity of each actor requesting network access. In order
to achieve it, the requesting actor delivers a Certificate Sign-
ing Request (CSR), which contains information about the
organization requesting the certificate, a public key, and the
digital signature created by the requestor’s private key. Then
the certificate is generated and signed by using the CA private
key to allow all the network members to validate the authen-
ticity of the certificate and the identity of its holder. Along
with the entity ID, a digital certificate includes essential
information related to the algorithm employed to create the
signature, the digital signature of the CA, the purpose of
the public key encryption, signature, and certificate validity
interval. An example of a digital certificate according to the
standard ITU X.509 is illustrated in Fig. 20.

The CA element is a legacy component, which provides
certificates binding service from virtual entities to defined
attributes.

In the IoTsecM profile, the CA element is regarded as
an extension to UML/SysML. This modeling artifact is
extended by a stereotype named �CA�, see Fig. 21. The
�CA� stereotype is thought to be applied as class, com-
ponent, and device in UML; however, in SysML, it extends
the block metaclass. The functionalities of the �CA�
stereotype issue a certificate, verify the entity (this oper-
ation is with the registration authority), and revoke the
certificate. In order to model these abstract functionali-
ties three operations are proposed: issueCert, verifyEntity,
and revokeCert, each one corresponding to the previous
functionalities.

154124 VOLUME 9, 2021

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

FIGURE 20. Certificate structure according to the ITU standard X.509.

FIGURE 21. �CA� stereotype definition.

The �CA� stereotype can participate in verifying the
identity of the message transmitter when certificates are
supported. Based on the certificates, secure service-based
communication can be established. Other elements such as
AUTHZ, T&R, and AUTHN rely on this element to link their
activities to the correct subjects.

The registration authority controls the certificate genera-
tion and is usually encapsulated in the CA; it realizes the
certification petition and saves the corresponding data. Nev-
ertheless, as IoTsecM aims to cover asmany architectures and
configurations as possible, it is regarded as another element
named�RA�, and it is a stereotype as well. The RA func-
tionalities are:
• Register the user requests to obtain a certificate.
• Verify the user’s data truthfulness.
• Send the request to a CA to be processed.
The �RA� stereotype extends, from UML, the class

and component metaclasses, and from SysML, the block
metaclass, see Fig. 22. It does not extend the device meta-
class since it is usually encapsulated in the CA element.
Nevertheless, to obtain a greater flexibility in the analysis

FIGURE 22. �RA� stereotype definition.

FIGURE 23. �TAMPP� stereotype definition.

and design stages, this stereotype extends the class and com-
ponent metaclasses. The operations included by the�RA�
stereotype are registerActor, verifyActor, and sen2CA, which
model the functionalities introduced before. The attributes of
the�RA� stereotype are an ID and a register, which is the
record of the certificates to be issued.

10) TAMPP: TAMPER PROTECTION
The IoT environment involves many scenarios where IoT
devices and sensors may be deployed in unreachable and
exposed places; thus, an adversary might tamper with them
and capture them to, for example, extract cryptographic infor-
mation, modify programs, or replace them with malicious
nodes. As it would be expensive and complicated to protect
themwith infrastructure or vigilance, the solution to the phys-
ical threats is to attempt to drive IoT devices procurements
that include physical tamper protection [28]. Therefore,
tamper-resistant packaging would assist the defense against
the existing threats [31]. The tamper-resistant package would
mitigate the physical attacks that threaten the confidentiality,
integrity, and vulnerability information as well as the actor’s
privacy.

Another factor as important as the tamper-resistant one is
tamper-detect. In [32], it is mentioned that systems should
provide tamper-evident environments such that any physical
or software tampering by an adversary is guaranteed to be
detected.

In the IoTsecM profile, the tamper protection is regarded
as a UML/SysML extension with the proposed stereotype
named �TAMPP�, which means tamper protection rep-
resents the security requirement of tampering resistance.
Hence, this denotes that an entity containing the�TAMPP�
stereotype must consider tamper protection since the analysis
and design stage, to prevent it from being logically or physi-
cally altered.

VOLUME 9, 2021 154125

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

The �TAMPP� stereotype, see Fig. 23, defines a secu-
rity requirement of tamper protection for entities and sys-
tem components (hardware and software). Thus, it extends
the constraint and property metaclasses from UML and
the requirement metaclass from SysML. Therefore the
�TAMPP� stereotype can depict constraints in UML dia-
grams in order to indicate that a given entity requires to
be tamper-proof, it is a property, and hence it can be
displayed within a class property to indicate that such class or
class property requires to be protected from tampering. The
�TAMPP� stereotype is part of the IoTsecM profile and
can be used in a secure development design process.

11) BEHM: BEHAVIOR MONITOR
The IoT security requirements relate mainly to the
first defense line, which is typically established by the
�AUTHZ� and �AUTHN� stereotype instances. These
security mechanisms provide security to some parts of the
system. However, there is not a systemwithout vulnerabilities
due to inside or outside intruders that may exploit wireless
communication protocols. Therefore, another defense line
is needed where a security control can monitor the system
behavior to detect the malicious behavior and then report it,
and in some cases, react accordingly. In a passive system,
when the behavior monitor detects a possible intrusion,
it stores the information and sends an alert signal that is
stored in a database. In a reactive system, the behavior
monitor reacts to the suspicious activity, reprograming the
firewall, if it is the case, or updating the policies within the
�AUTHZ� stereotype to block the traffic which comes
from the attacker [33]. The analogies to the classical secu-
rity mechanisms are Intrusion Detection System (IDS) and
Intrusion Protection System (IPS). However, applying tradi-
tional IDS techniques to IoT systems is difficult due to their
characteristics, such as resource-constrained devices, specific
protocol stacks, and standards. Finding nodes that comply
with the computational resources to support IDSs and locate
them in a place where the IDS is relevant is not an easy task
when the system is being deployed. Therefore, they should
be considered from the first design stage, helping to define an
adequate architecture better and selecting devices that support
the behavior monitoring. Within IoT systems, the behavior
monitor can be in the border router, in one or more dedicated
hosts, or in every physical object [34].

The IoTsecM profile proposes an abstract module that
allows the behavior monitoring of some or specific system
parts. The analysis of the network traffic, the port scanning,
and the malformed packets are some of the analysis function-
alities of this element. This approach addresses the behavior
monitoring security requirement proposing a UML extension
mechanism, which is a stereotype named �BEHM� that
encapsulates all the semantics described earlier; moreover,
it can be properly placed since the design stage.

The �BEHM� stereotype addresses the necessity of a
behavior analyzer in the system extending the metaclasses:
Component andDevice Component fromUML and the Block

FIGURE 24. �BEHM� stereotype definition.

metaclass from SysML. The �BEHM� stereotype defines
two properties: an ID and a BEHMType, which can be an
IDS or IPS, see Fig. 24. There are three operations defined
that correspond to the behavior of the �BEHM� stereo-
type, and these operations are analyzeTraffic, scanPorts, and
reviwePackets.

IV. APPLICATION OF IoTSecM PROFILE TO
COLLABORATIVE AUTONOMOUS VEHICLES
As described in the previous section, the IoTsecM profile
addresses the design and modeling of IoT systems consid-
ering a security architecture, helping to depict the system
security concerns. Once the possible attacks over a system
are identified, developers can figure out how to provide pro-
tection or countermeasures against those attacks. Therefore,
they would be able to find the right place for the proper
countermeasure for an attack or threat.

There is no unique methodology for threat modeling that
will help to mitigate all risks in a system. The main objec-
tive of threat modeling is to identify the system threats
and vulnerabilities, which undoubtedly would be exploited
by a motivated attacker if countermeasures are not there
to prevent them. More about threat modeling can be found
in [35]. Microsoft proposes another approach, referred to as
Microsoft SDL [36], that uses multiple steps to determine the
severity of threats.

In this sense, a use case applying IoTsecM for threat
modeling in an autonomous vehicles system in the context
of Smart Cities is presented in this section. The selected
system is a real-life project named Flourish [6]. In this sys-
tem, autonomous vehicles are considered, and the interaction
between them and other assets, such as city infrastructure
sensors and traffic lights. The main project’s objective is
to find innovative solutions for customer interaction, con-
nectivity, data analytics, and safe design for collaborative
autonomous vehicles (CAVs). A graphical representation of
the Flourish system is shown in Fig. 25. The objective of
applying IoTsecM over the design of the Flourish project
is to provide an application architecture where the security
mechanisms and controls are depicted and modeled to enable
secure, trustworthy, and private technology within the CAVs
and the whole infrastructure. Hence, IoTsecM focuses on the
security modeling design process for communications and

154126 VOLUME 9, 2021

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

FIGURE 25. Graphical representation of the flourish system.

privacy issues. The IoTsecM extensions provide a notation
and semantics that model and depict the security concerns in
the system architecture model.

There are many threats in the Flourish environment since
CAVs will be moving along the city, and then they will be
easily reached as well as its communication flow. Therefore,
assets may be targeted by numerous cyber-attacks, and prob-
ably exposed to many motivated and not motivated attackers.

In general, some of the key security challenges for IoT that
also apply to CAVs include: a) naming and identity manage-
ment, b) interoperability and standardization, c) information
privacy, d) objects safety and security, e) data confidentiality
and encryption, f) network security and g) spectrum alloca-
tion [37].

In the world of CAVs, IoT specifically applies to connect
sensors and vehicles to networks [38]–[40]. Hence, data pro-
duced by CAVs may pose security challenges for the vehicles
and their users. These security concerns may derive from
the following sources: physical (e.g., side-channel attacks to
crack information), interception (such as man-in-the-middle
attacks), abuse (such as unauthorized access to the vehi-
cle), malicious code (generic malicious code affecting the
integrated infotainment system), data leaks (e.g., when the
vehicle changes owner), among others [37].

In the Flourish project, themain security threats considered
are a) loss of control over the system as the result of cyber-
attacks; b) damage or loss of technology assets (e.g., loss of
data or damage caused by a third party); c) any abuse such as
denial of service attack or unauthorized access to systems;
d) information leakage or sharing, inadequate design, and
planning or lack of adoption of standards; e) failures or mal-
functions (e.g., software bugs); and f) information intercep-
tions or network reconnaissance. These security threats are
inexorably linked with the IoT, as it is how the components
of the Flourish system communicate, exchange data, decide,
take actions, and provide services.

In our work, the process followed to perform the threat
modeling and security countermeasures analysis and design
are based on [28]. However, this process was customized and
extended to add countermeasures modeling; this is summa-
rized in the following steps 1) identify the assets; 2) create

an IoT system architecture overview; 3) decompose the IoT
system; 4) identify threats by constructing an attack tree
for each threat; 5) document identified threats; 6) propose
countermeasures for each threat; 7) propose a system archi-
tecture depicting security countermeasures. A more detailed
explanation of this methodology can be found in [21].

The Flourish project involves autonomous vehicles
communicating with each other, with human-driven vehi-
cles (HDV) and with roadside units (RSU). This commu-
nication is referred to as V2X (vehicle to everything) [40].
The system architecture overview is mainly related to CAVs,
which are autonomous vehicles traveling around the city;
also, there are people who use the CAVs as a transport
medium. The RSU are the communication hubs that are
strategically located to communicate CAVs and various pro-
cessing centers. Therefore, the system architecture overview
includes three assets’ categories: a) CAV, b) RSU, and
c) Processing nodes.

Flourish is a complex ecosystem that consists of many
different assets defined for distinct scenarios described by
the Flourish team. For the matter of space, those scenarios
are not described in this paper; however, the list of identified
assets is shown in Table 3. The assets identification allows an
understanding of what must be protected. Assets are system
components that are of interest to an attacker; therefore, they
can be hardware, software, physical entities, or even humans.
Assets were obtained by analyzing the scenarios provided by
the Flourish team, who described each scenario as general
system use cases.

Once the assets are identified, following the threat mod-
eling described earlier, the next step is to create a system
architecture overview. The system architecture is depicted in
a UML class diagram; it considers the assets identified before
and their connections. As shown in Fig. 26, there are three
main components within the architecture: CAVs, RSU, and
Intelligent Transport Systems (ITS) central station.

The CAVs hold the onboard sensors, the vehicle level
AI unit, and the autonomous control; besides, they contain
some attributes such as an ID and driven intensions. The
operations that the CAVs hold are: feedBBR, receiveInstruc-
tions, broad-castDrivenIntensions, broadcastMotionHDV,
readManoeuvringActions, provideODinformation, avoid-
Congestion, receiveRoutingAdvisory and aggregateODIn-
formation. Each of these instructions corresponds to one
functionality described in the scenarios, e.g., the broadcast-
DrivenIntensions operation corresponds to the use case of
maneuvering collaboration where CAVs must broadcast their
driven intentions to other CAVs for them to react to the new
movements correctly and even predict new driven intensions.

The communication channel between CAVs and RSU may
use 3G/4G technology and ITS-G5 OBU, which is related to
the infrastructure proposed by the Flourish team; these two
communication channels allow the CAVs to send and receive
data from the RSU.

The RSU operations are described in Table 4. The prin-
cipal RSU functionality is to receive information from the

VOLUME 9, 2021 154127

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

FIGURE 26. Flourish architecture overview.

processing nodes and forward data to the CAVs. The oper-
ations correspond to the different kinds of data that the RSU
must forward.

The ControlNode class models the control node identified
as an asset, the operations defined to model the control node
behavior are receiveInformationStreams, elaborateCAVsMa-
noeuveringActions, and sendManoeuveringActions. These
operations are related to the collaborative maneuvering
actions. The actions are calculated in the control node and
sent to the RSU for the CAVs to receive them and act
accordingly.

The network rules engine asset is modeled with the
NRE class, which contains the following operations:
provideRoutingAdvisory, aggreagateODinformation, aggre-
gateExistingFlows, predictCongestion, and FindParking-
Availability. The operations defined for the NRE class model
define the NRE behavior, such as to find parking availability,
predict congestion, etc.

The network AI unit is modeled with the NetworkAIunit
class; therefore, its operations correspond to its behavior.
The control room is modeled with the ControlRoom and
its operations (controlAlgorithm, SendInstructions, givePri-
orityRoads, and calculateCityCicles) which are focused on
prioritizing traffic flow on certain roads and send instructions
to the RSU. The special zone point is modeled with the
PointToSpecialZone class, which is displayed on the Flourish
architecture. Themain functionality of this asset is to send the
request for a special zone; thus, the sendSpecialZonRequest is
proposed to model that behavior. The carer is the person who
requests the activation of a special zone through a zone point,
this asset is modeled by the Carer class, and it includes one
operation activatePoint. LIDAR is the asset that monitors the
CAVs andHDV; it obtains and creates data about the vehicle’s
movements. The operations defined for the LIDAR class are
createBBRFeed and generateBBR. NoCAVs is the class that
models the HDV vehicles and other moving objects that the
LIDAR may observe.

Once the Flourish system architecture is understood, it is
time to identify the possible threats. In order to address the
threat identification, since the system has not been deployed
yet, all the analysis is done based on graphic representations.

Therefore, attack trees diagrams are proposed to address
threats identification. Attack trees are an orderly and sequen-
tial way of describing the sub-attacks to violate a system;
they are useful for conceptualizing and visualizing possible
attacks. This analysis identifies the underlying root causes of
attacks, allowing the analyst to create attacker profiles, make
decisions about the possible mechanisms and security con-
trols needed to protect the system from some attack profiles
and thus reducing the attack surface.

Building an attack tree is not an easy job since it must
consider the entire attack surface as far as possible. Hence,
the use of a tool for this purpose is recommended; in this
work SecureItree, built by the Canadian company Amenaza
(the Spanish word for threat) [41], was used.

For the case of the Flourish system, the following six pos-
sible threats were identified 1) block communication channel
from CAVs to RSU, 2) spoofing of BBR data, 3) carer imper-
sonation, 4) jamming of the RSU communication, 5) spoof
RSU output data, and 4) flashing control node data. For the
matter of space, only the attack trees for the first two threats
above are presented, readers interested in the details of the
remaining attack trees are referred to [20].

One of the underlying concerns for the Flourish system is
the communication flow; hence, the first threat to be modeled
is related to the communication between the CAVs and the
RSU, as depicted in Fig. 27. The threat identified is named
Block communication channel from CAVs to RSU; this
would interrupt any communication between those assets,
attacking the availability of the system. The sub attacks asso-
ciated with the success of the main attack are:
• Jamming data from CAVs to RSU: this kind of attack

is prevalent to compromise a wireless environment such as
the communication between the RSU and CAVs; its goal

154128 VOLUME 9, 2021

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

TABLE 3. Flourish assets. TABLE 4. RSU operations

FIGURE 27. Block communication from CAVs to RSU attack tree.

is to drop the signal to a level where the communication
is interrupted. Typically, old wireless area networks infras-
tructures are the most vulnerable to this kind of attack since
current networks can adapt to unintentional or intentional
interference. The countermeasure proposed for this attack is
an intrusion prevention system (IPS) since it should detect the
presence of any unauthorized client device.
• Turn off power: this attack is related to turn off the power

of a CAV, with two ways to achieve it: break into the car,
which may be by brute force, in this case, a countermeasure
is to enforce the car door locks; the other way is when a
malicious passenger gets into the car, for example through

VOLUME 9, 2021 154129

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

FIGURE 28. Spoofing BBR data attack tree.

using social engineering to obtain authorized credentials;
in this case, the countermeasure proposed is to enforce the
policies to get entry into the CAVs.
• Block communication channel by DoS attack: this attack

consists in sending many requests to the CAVs or to the RSU
to make them attend just the false and malformed requests,
whereas they deny any other request, even the authenticated
requests. The countermeasure against this attack is the use of
an IDS or an IPS.

The next attack tree presented here considers the spoofing
of BBR data, shown in Figure 28. This attack means that
an attacker can somehow masquerade himself as another
actor to falsify data, in this case, the BBR data generated
by the LIDAR sensor. In other words, this threat describes
the BBR data falsification. In this case, we are focusing on
the leaf attacks since blocking these attacks would thwart the
complete vector attack. The attack tree considered for this
threat involves the following sub attacks:

• Tamper the onboard sensors: this attack means that the
onboard sensors are manipulated by an attacker who can
change the data the sensor is reading to create false infor-
mation and consequently change the BBR data from CAV.
The countermeasure for this attack is hardware and soft-
ware tamper-proof for the on-board sensors; in this way, the
attacker who has reached the sensors physically will not be
able to perform the tamper attack.
• Impersonate the CAV sensor node: another way to change

the BBR data from CAV is through a man in the mid-
dle (MITM) attack. If an attacker can impersonate the CAV
sensor node, then it can receive and change the onboard
sensors data. Therefore, the countermeasure for this attack
is the authentication of the onboard sensors, to guarantee that
the sensors are whom they claim to be.
• Create a fake RSU: this attack consists in creating a false

RSU to perform a MITM attack; in this way, the LIDAR
would not be able to identify the false RSU, would trust it and
it would share the BBR data. The countermeasure proposed
against this attack is the authentication of the RSU. Besides,
a trust and reputation scheme would help to mitigate this kind
of attack.
• Create a fake processing node: this is quite similar to the

previous attack. However, in this case, the MITM attack is
deployed between the LIDAR and some of the processing
nodes. The countermeasure proposed to mitigate this threat
is the authentication of the LIDAR and a trusted processing
node.
• Tampering into the LIDAR: the most despicable way

to attack the system is to tamper with the LIDAR. This
attack means that a well-motivated attacker performs a
physical tamper to the LIDAR to change the data about
to be sent. In this case, as a countermeasure, tamper
protection for the software and hardware is required in
the LIDAR.

FIGURE 29. LIDAR scenario use case diagram.

154130 VOLUME 9, 2021

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

FIGURE 30. Flourish architecture applying the IoTsecM profile.

VOLUME 9, 2021 154131

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

TABLE 5. �ENC� use case for CAV, scenario 1.

Once the attack trees have been analyzed and the counter-
measures have been identified, it is time to determine where
they must be placed.

The IoTsecM profile includes some extensions to the use
cases metaclasses. The first approach to the definition of the
system architecture is to identify which system actor carries
out the security countermeasures identified before. There-
fore, according to the scenarios proposed by the Flourish
team, a set of use case diagrams for each scenario adding
security countermeasures were developed.

The scenario about the LIDAR and its interactions with
the CAV and RSU is depicted in Fig. 29. Due to the matter
of space, this is the only use case explained here; for the
remaining use cases, the reader is referred to [20].

The use cases concerned with the countermeasures are
presented in Tables 5 to 11, providing the following details:
use case name, participating actor, entry condition, the flow
of events, and exit condition.

Besides the security use cases defined before, other con-
straints are displayed on the use case diagram to integrate
more security concerns within the diagram. The CAVs must
be authorized actors; this is depicted with an ‘‘AUTHZ’’ over
the actor’s head, which indicates an authorization constraint
for all the CAVs actor instances. A pseudonym must be
assigned to each CAV; this is depicted with the stereotype
�PSEUD� applied to the CAVs actor. This means that
the security resolution unit provides pseudonyms certificates.
It is common for such certificates to be temporal; hence,
the certificates are revoked in a short time to guarantee the
privacy of CAVs.

Two links are identified as secure communications con-
straints: Receives data from RSU and Sends data to CAVs
where the communication from RSU to the CAVs is estab-
lished. The other Secure Communication ({SCOM}) con-
straint appears in the link between the LIDAR and the RSU.

The LIDAR needs to be an authorized actor in order to
be able to send data to the RSU. The RSU needs to be
authenticated; thus, the ‘‘AUTHN’’ text box is placed over
its head.

The analysis of the countermeasures identified allows
determining the points where the security mechanisms should

TABLE 6. �AUTHN� authenticates use case for CAV, scenario 1.

TABLE 7. �DEC� deciphers1 use case for CAV, scenario 1.

TABLE 8. �ENC� RSUEncrypts use case for RSU, scenario 1.

be placed. The IoTsecM extensions within the use case
diagrams allowed to depict each security countermeasure
identified in the attack trees.

The next step is to propose the whole system architecture;
here, the functional and non-functional elements are shown

154132 VOLUME 9, 2021

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

TABLE 9. �AUTHN� use case for CAV, scenario 1.

TABLE 10. �BEHM� implements an IPS use case for RSU, scenario 1.

TABLE 11. �DEC� RSUDecrypyts use case for CAV, scenario 1.

in a class diagram. This helps solve all the issues concerning
the interconnections between the assets, the identification of
their operations, and the relationships between the security
mechanisms.

The IoTsecM profile includes extensions for classes, com-
ponents, and devices meta-classes, which assist the design of
the system architecture. In Fig. 30, the system architecture
regarding the security elements is depicted. The objective of
the IoTsecM profile is to allow designers to build, model, and
depict the security mechanisms together with the functional

elements; thus, a complete representation for the system may
be conceptualized, and then, the system architecture can be
established.

As shown in Fig. 30, the security countermeasures
identified before are depicted in the system architecture.
The CAV requires tamper protection and secure storage;
besides, it requires a pseudonym. As shown in the use
case diagrams, the CAV authenticates, authorizes, encrypts,
decrypts, and monitors the entry data and network. Hence,
the �AUTHN�, �ENC�, �DEC�, �BEHM� and
�AUTHZ� stereotypes are instantiated.

The addition of other security elements such as CA, RA,
IDM, andKM follows the necessity of issuing certificates and
the pseudonyms requirements. All these elements conform
a PKI, or in the case of the pseudonyms requirement, the
pseudonym public key infrastructure (PPKI).

The RSU must contain the security countermeasures.
Therefore, the stereotypes instances associated with the
RSU are �AUTHN�, �ENC�, �DEC�, �BEHM�
and �AUTHZ�, besides the CAV, the PPKI infrastructure
supported by the RSU. Tamper protection is placed as a
requirement.

The processing nodes are the Control Node, the NRE,
and the Control Room. The security mechanisms for
these processing nodes are modeled contained in a cen-
tral station; the central station contains the stereotype
instances �AUTHN�, �ENC�, �DEC�, �BEHM�
and�AUTHZ�.

V. CONCLUSION
Besides the emergence of new technologies and applications
in this area, the continuous evolution of the IoT paradigm has
shaped a heterogeneous ecosystem where new technical and
operative challenges are present. These challenges are perva-
sive, touching probably all aspects of systems design, imple-
mentation, and operation, including cybersecurity. In this
context, experience has demonstrated that considering cyber-
security aspects during the analysis stage in the design pro-
cess of any system helps to prevent attacks and facilitates
changes in the future, resulting in the reduction of expenses
and security risks. In this sense, different approaches have
aimed to introduce cybersecurity aspects through all phases
of system development processes, mainly supported by tech-
nologies and tools already in use. UML and SysML have
become significant players in modeling but still face lim-
itations to cope with IoT systems’ modeling challenges.
Therefore, this work discussed an approach referred to as
Internet of Things Security Modeling (IoTsecM), which is a
UML/SysML extension that applies UML stereotype mecha-
nisms, UML/SysML diagrams and UMLsec stereotypes.

In the CAV system use case presented, IoTsecM allowed us
to depict security concerns applying the stereotypes described
by the profile. Once the threat analysis was performed,
the countermeasures were identified and depicted with the
functional requirements in use case diagrams and class dia-
grams. The UML notation provided a better understanding of

VOLUME 9, 2021 154133

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

where the security countermeasures need to be placed, which
actor is associated with them, and how they are related to
other system assets. This architectural view may be extended
with behavioral diagrams where the use cases and objects’
actions would be depicted to observe their processes, besides
their interactions.

Although IoTsecM has been applied to the Flourish project
in this work, the profile has also been applied in securing
mHealth (mobile health) applications, particularly for the
mApp case of study for urgent care management [42].

Hence, IoTsecM represents a useful tool that helps to
understand and consider the security of IoT systems during
their design stage before they are implemented in physi-
cal objects. Furthermore, it is expected that the IoTsecM
approach will facilitate the building of security aware-
ness and consideration specifically in IoT ecosystems to
address risks to IoT applications in digital sectors beyond
smart cities. IoTsecM depicts and models security require-
ments, and it is a UML/SysML extension; therefore, it is
visual and helps in terms of conceptualization and repre-
sentation of security requirements. Compared with other
state-of-the-art approaches, and to the authors’ knowledge,
there is no other UML/SysML extension covering all these
aspects.

REFERENCES
[1] P. J. Escamilla-Ambrosio, A. Rodríguez-Mota, E. Aguirre-Anaya,

R. Acosta-Bermejo, and M. Salinas-Rosales, ‘‘Distributing computing in
the Internet of Things: Cloud, fog and edge computing overview,’’ in NEO,
vol. 2016, Y. Maldonado, L. Trujillo, O. Schátze, A. Riccardi, M. Vasile,
Eds. Cham, Switzerland: Springer, 2018, pp. 87–115.

[2] S. Agrawal andM. L. Das, ‘‘Internet of Things—A paradigm shift of future
internet applications,’’ in Proc. Nirma Univ. Int. Conf. Eng., Dec. 2011,
pp. 1–7.

[3] R. Kandaswamy and D. Furlonger. (2020). Blockchain-Based
Transformation. Accessed: Jan. 15, 2020. [Online]. Available:
https://www.gartner.com/en/doc/3869696-blockchain-based-
transformation-a-gartner-trend-insight-report/

[4] T. A. Ahanger and A. Aljumah, ‘‘Internet of Things: A comprehensive
study of security issues and defense mechanisms,’’ IEEE Access, vol. 7,
pp. 11020–11028, 2018, doi: 10.1109/ACCESS.2018.2876939.

[5] D. A. Robles-Ramirez, P. J. Escamilla-Ambrosio, and T. Tryfonas, ‘‘IoT-
sec: UML extension for Internet of Things systems security modelling,’’
in Proc. Int. Conf. Mechatronics, Electron. Automot. Eng. (ICMEAE),
Cuernavaca Morelos, Mexico, Nov. 2017, pp. 151–156.

[6] Flourish. Accessed: Aug. 5, 2019. [Online]. Available: http://www.
flourishmobility.com/

[7] A. Serbanati, A. Salinas-Segura, A. Olivereau, Y. B. Saied, N. Gruschka,
D. Gessner, and F. Gomez-Marmol, ‘‘Internet of Things architecture IoT,’’
in Project Deliverable D4.2—Concepts and Solutions for Privacy and
Security in the Resolution Infrastructure, N. Gruschka, D. Gessner, Eds.
Luxembourg: Publications Office Eur. Union, 2012.

[8] S. Babar, P. Mahalle, A. Stango, N. Prasad, and R. Prasad, ‘‘Proposed
security model and threat taxonomy for the Internet of Things (IoT),’’
in Proc. 3rd Int. Conf. Netw. Secur. Appl. Berlin, Germany: Springer,
Jul. 2010, pp. 420–429.

[9] S.-W. Lin, B. Miller, J. Durand, G. Bleakley, A. Chigani, R. Martin, B.
Murphy, and M. Crawford, ‘‘The industrial Internet of Things volume G1:
Reference architecture,’’ Ind. Internet Consortium, Object Manage. Group,
Needham, MA, USA, 2019.

[10] S. Schrecker, H. Soroush, J. Molina, J. P. LeBlanc, F. Hirsch, M. Buchheit,
A. Ginter, R. Martin, H. Banavara, S. Eswarahally, K. Raman, A. King,
Q. Zhang, P. MacKay, and B. Witten, ‘‘Industrial Internet of Things, G4:
Security framework,’’ Ind. Internet Consortium, Object Manage. Group,
Needham, MA, USA, 2016.

[11] T. Eterovic, E. Kaljic, D. Donko, A. Salihbegovic, and S. Ribic, ‘‘An Inter-
net of Things visual domain specific modeling language based on UML,’’
inProc. Int. Conf. Inf., Commun. Autom. Technol. (ICAT), Sarajevo, Bosnia
Herzegovina, Oct. 2015, pp. 1–5.

[12] K. Thramboulidis and F. Christoulakis, ‘‘UML4IoT—A UML-
based approach to exploit IoT in cyber-physical manufacturing
systems,’’ Comput. Ind., vol. 82, pp. 259–272, Oct. 2016, doi:
10.1016/j.compind.2016.05.010.

[13] F. Basile, P. Chiacchio, and D. Gerbasio, ‘‘On the implementation of
industrial automation systems based on PLC,’’ IEEE Trans. Autom. Sci.
Eng., vol. 10, no. 4, pp. 990–1003, Oct. 2013.

[14] J. Jârjens, ‘‘UMLsec: Extending UML for secure systems development,’’
in Proc. 5th Int. Conf. Unified Modeling Lang. Berlin, Germany: Springer,
2002, pp. 412–425.

[15] R. Oates, F. Thom, and G. Herries, ‘‘Security-aware, model-based systems
engineering with SysML,’’ inProc. 1st Int. Symp. ICS SCADACyber Secur.
Res., Leicester, U.K., Sep. 2013, pp. 78–87.

[16] A. Van Lamsweerde, ‘‘Elaborating security requirements by construction
of intentional anti-models,’’ inProc. 26th Int. Conf. Softw. Eng., Edinburgh,
U.K., May 2004, pp. 148–157.

[17] A. V. Uzunov, E. B. Fernandez, and K. Falkner, ‘‘ASE: A comprehensive
pattern-driven security methodology for distributed systems,’’ Comput.
Stand. Interface, vol. 41, pp. 112–137, Sep. 2015.

[18] L. Apvrille and Y. Roudier, ‘‘SysML-Sec: A SysML environment for
the design and development of secure embedded systems,’’ in Proc.
Asia–Pacific Council Syst. Eng., 2013, pp. 8–11.

[19] L. Apvrille andY. Roudier, ‘‘SysML-Sec attack graphs: Compact represen-
tations for complex attacks,’’ in Proc. Int. Workshop Graph. Models Secur.
Cham, Switzerland: Springer, 2015, pp. 35–49.

[20] D. A. Robles-Ramírez, ‘‘IoTsecM: UML/SysML extension for
Internet of Things security modeling,’’ M.S. thesis, Centro de
Investigación en Computación, Instituto Politécnico Nacional,
Mexico City, Mexico, Jan. 2018. [Online]. Available: http://www.
cic.ipn.mx/~pescamilla/tesis_terminadas/MSc_David_Robles_final.pdf

[21] D. A. Robles-Ramirez, P. J. Escamilla-Ambrosio, R. Acosta-Bermejo,
E. Aguirre-Anaya, A. Rodrìguez-Mota and J. J. Reyes-Torres, ‘‘Security
oriented methodology for designing Internet of Things systems,’’ in Smart
Technology, F. T. Guerrero, J. Lozoya-Santos, E. G. Mendivil, L. Neira-
Tovar, P. R. Flores, J. Martin-Gutierrez, Eds. Cham, Switzerland: Springer,
2018, pp. 96–107.

[22] Papyrus. Accessed: Apr. 13, 2018. [Online]. Available: https://www.
eclipse.org/papyrus/

[23] M. Bishop, Computer Security: Art and Science. Boston, MA, USA:
Addison-Wesley, 2003.

[24] B. Menkus, ‘‘Understanding the use of passwords,’’Comput. Secur., vol. 7,
no. 2, pp. 132–136, 1988, doi: 10.1016/0167-4048(88)90325-2.

[25] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, ‘‘Security,
privacy and trust in Internet of Things: The road ahead,’’ Comput. Netw.,
vol. 76, pp. 146–164, Jan. 2015, doi: 10.1016/j.comnet.2014.11.008.

[26] P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. De Bruijn, C. De Laat,
M. Holdrege, and D. Spence, AAA Authorization Framework, docu-
ment RFC 2904, Internet SoCity, Aug. 2000.

[27] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. Boca Raton, FL, USA: CRC Press, 2018.

[28] B. Russell and D. van Duren, Practical Internet of Things Security: Design
a Security Framework for an Internet Connected Ecosystem. Birmingham,
U.K.: Packt, 2018.

[29] D. Gambetta, ‘‘Can we trust trust?’’ in Making Breaking Cooperation
Relations, Electronics (Department of Sociology), D. Gambetta, Ed.
Oxford, U.K.: Univ. Oxford, 2013, pp. 213–237. [Online]. Available:
http://www.sociology.ox.ac.U.K./papers/gambetta213-237.pdf

[30] A. Abdul-Rahman and S. Hailes, ‘‘Supporting trust in virtual communi-
ties,’’ in Proc. 33rd Annu. Hawaii Int. Conf. Syst. Sci., Maui, HI, USA,
Jan. 2000, pp. 1–15.

[31] D. Boneh, D. Lie, P. Lincoln, J. Mitchell, and M. Mitchell, ‘‘Hardware
support for tamper-resistant and copy-resistant software,’’ Comput. Sci.,
Stanford University, Tech. Rep. CS-TN-00-97, Aug. 2000.

[32] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, ‘‘AEGIS:
Architecture for tamper-evident and tamper-resistant processing,’’ in Proc.
25th Anniversary Int. Conf. Supercomput. Anniversary, Munich, Germany,
2014, pp. 357–368.

[33] S. Raza, L. Wallgren, and T. Voigt, ‘‘SVELTE: Real-time intrusion detec-
tion in the Internet of Things,’’AdHocNetw., vol. 11, no. 8, pp. 2661–2674,
May 2013, doi: 10.1016/j.adhoc.2013.04.014.

154134 VOLUME 9, 2021

http://dx.doi.org/10.1109/ACCESS.2018.2876939
http://dx.doi.org/10.1016/j.compind.2016.05.010
http://dx.doi.org/10.1016/0167-4048(88)90325-2
http://dx.doi.org/10.1016/j.comnet.2014.11.008
http://dx.doi.org/10.1016/j.adhoc.2013.04.014

P. J. Escamilla-Ambrosio et al.: IoTsecM: UML/SysML Extension for Internet of Things Security Modeling

[34] B. B. Zarpelāo, R. S Miani, C. T. Kawakani, and S. C. de Alvarenga,
‘‘A survey of intrusion detection in Internet of Things,’’ J. Netw. Comput.
Appl., vol. 84, pp. 25–37, Apr. 2017.

[35] A. Shostack, Threat Modeling: Designing for Security. Hoboken, NJ,
USA: Wiley, 2014.

[36] B. Potter, ‘‘Microsoft SDL threat modelling tool,’’ Netw. Secur., vol. 2009,
no. 1, pp. 15–18, Jan. 2009.

[37] B. Sheehan, F. Murphy, M. Mullins, and C. Ryan, ‘‘Connected and
autonomous vehicles: A cyber-risk classification framework,’’ Transp. Res.
A, Policy Pract., vol. 124, pp. 523–536, Jun. 2019.

[38] C. Yan, W. Xu, and J. Liu, ‘‘Can you trust autonomous vehicles: Con-
tactless attacks against sensors of self-driving vehicle,’’ in Proc. Hacking
Conf., 2016, vol. 24, no. 8, pp. 1–5.

[39] O. Henniger, L. Apvrille, A. Fuchs, Y. Roudier, A. Ruddle, and B. Weyl,
‘‘Security requirements for automotive on-board networks,’’ in Proc.
9th Int. Conf. Intell. Transp. Syst. Telecommun., (ITST), Oct. 2009,
pp. 641–646.

[40] J. McCarthy, J. Bradburn, D. Williams, R. Piechocki, and K. Hermans
Connected & Autonomous Vehicles: Introducing the Future of Mobility.
Epsom, U.K.: Atkins, 2016.

[41] Amenaza. Accessed: Aug. 5, 2019. [Online]. Available: http://www.
amenaza.com/

[42] P. J. E. Ambrosio, D. R. Ramírez, S. Alsalamah, T. Tryfonas, S. Orantes
Jiménez, A. Rodríguez Mota, S. AlQahtani, T. Nouh, H. Alsalamah,
S. Almutawaa, H. Alkabani, M. Alsmari, N. Alashgar, A. Alrajeh, and
H. Kurdi, ‘‘Securing health applications using loTsecM security mod-
elling: Dentify. Me app case study for urgent care management,’’ Comput.
Sistemas, vol. 23, no. 4, pp. 1139–1158, Dec. 2019.

PONCIANO JORGE ESCAMILLA-AMBROSIO
(Senior Member, IEEE) received the B.Sc. degree
in mechanical electrical engineering and the
M.Sc. degree (Hons.) in electrical engineering
from theNational AutonomousUniversity ofMex-
ico (UNAM), in 1995 and 2000, respectively, and
the Ph.D. degree from The University of Sheffield,
U.K., in January 2004. From 2003 to 2010, he was
a Research Associate with the University of Bris-
tol, U.K., within the Departments of Aerospace

Engineering and Computer Science. From 2010 to 2011, he was a Research
Associate with the Department of Electronics, National Institute of Astro-
physics Optics and Electronics, Mexico. From 2011 to 2013, he was the
General Director of Innovation and Development at the Scientific Division
of the Secretariat of the Interior, Mexico. He is currently a Researcher with
the Computing Research Centre, National Polytechnic Institute, Mexico.
He has more than 80 publications among journals, conference proceedings,
and book chapters. His research interests include cybersecurity, security in
the IoT and wireless sensor networks, applications of the Internet of Things,
wireless sensor networks, and multi-sensor data fusion.

DAVID ALEJANDRO ROBLES-RAMÍREZ recei-
ved the B.Sc. degree in mechatronics engineering
and the M.Sc. degree (Hons.) in computer science
with cybersecurity specialty from the National
Polytechnic Institute (IPN), Mexico, in 2015 and
2018, respectively. He did a research stay at the
University of Bristol, U.K., from May 2017 to
August 2017, working in the Flourish Project.
From 2018 to 2019, he worked as the Internet of
Things (IoT) Expert Analyst for AT&T Mexico

within the IoT Network Department. In 2019, he worked as the IoT and Data
Science Expert with Grupo Salinas, within the Research and Digital Trans-
formation Department. Since 2020, he has been working with Schlumberger,
USA, as the IoT and Edge Computing Analyst and Developer. He is currently
on a research stay at the Centro de Investigación en Computación, Instituto
Politécnico Nacional, Mexico.

THEO TRYFONAS received the B.Sc. degree in
computer science from the University of Crete,
Greece, and the M.Sc. degree in information sys-
tems and the Ph.D. degree in informatics from The
University of Athens.

His Ph.D. was sponsored by Ernst &Young, one
of the ‘‘Big Four’’ global assurance and advisory
firms. He is currently an Associate Professor of
smart cities and urban innovation with a back-
ground in systems engineering, cybersecurity, and

software development with the University of Bristol. He teaches across
undergraduate programs of engineering design and civil engineering and
the M.Sc. in computer science. He is a fellow of the Royal Society of
Arts and a Chartered Professional Member of the Chartered Institute for IT
(MBCS CITP).

ABRAHAM RODRÍGUEZ-MOTA received the
B.Sc. degree in communications and electronics
engineering from the Superior School of Mechan-
ical and Electrical Engineering, Campus Zaca-
tenco Instituto Politécnico Nacional, Mexico, the
M.Sc. degree in communications, computer and
human centred systems from the University of
Birmingham, Birmingham, U.K., and the Ph.D.
degree in Computer Science from The University
of Sheffield, Sheffield, United Kingdom.

GINA GALLEGOS-GARCÍA received the B.Sc.
degree in computing engineering, theM.Sc. degree
in communications and microelectronics, and the
Ph.D. degree in communications and electron-
ics from the National Polytechnic Institute (IPN),
Mexico, in 2003, 2005, and 2011, respectively.
During the summer of 2011, she performed a post-
doctoral research at Yale University, USA. From
2011 to April 2019, she was a Research Asso-
ciate at the Mechanical and Electrical Engineering

School, IPN. She is currently an Associate Researcher with the Computing
Research Centre, IPN. She has publications in journals, conference proceed-
ings, and book chapters. Her research interests include formal and practical
modern cryptography, post-quantum cryptography in devices of constrained
resources, and security in cyberspace and information systems. She is a
member of the IACR.

MOISÉS SALINAS-ROSALES received the Ph.D.
degree in communications and electronics. He is
currently a Research Professor with the Computer
Research Center, National Polytechnic Institute,
Mexico. He worked as an information security
specialist in various consulting projects in both
public and private organizations. He has also pub-
lished works in research journals and technical
conferences and has served as an advisor to var-
ious master’s, specialty, and bachelor’s thesis. His

research interests include information security controls, cryptographic pro-
tocols, and secure implementations.

VOLUME 9, 2021 154135

